Skip to main content
Erschienen in:

19.09.2024 | Connected Automated Vehicles and ITS, Vision and Sensors

Embedding Object Avoidance to End-To-End Driving Systems by Input Data Manipulation

verfasst von: Younggon Jo, Jeongmok Ha, Sungsoo Hwang

Erschienen in: International Journal of Automotive Technology | Ausgabe 2/2025

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we present a simple, yet efficient data-manipulation method to embed object avoidance feature to end-to-end driving system. Previous works used either additional sensors or extra algorithm to embed object avoidance to end-to-end driving. However, the proposed system tried to keep the simplicity of the end-to-end learning. To this end, we conduct marking on each input image to indicate the location of objects first. This is done by connecting an object-detection network to the front of the steering-estimation network. Thereafter, the proposed steering-estimation network learns the steering angle from the manipulated image sequence. We tested several ways of marking for better understanding of object location. Furthermore, we modified the steering angle estimation network which is based on PilotNet so that the network can estimate the proper steering angle even with the existence of objects. Experimental results show that the proposed network successfully performs object avoidance and steering-estimation accuracy has been improved by 10% compared to PilotNet. Since the proposed system does not require many resources (e.g., millions of data) to perform autonomous driving, we believe it is suitable for systems that perform driving in a specific area: Autonomous valet-parking systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
Zurück zum Zitat Chen, J., et al. (2021). Interpretable end-to-end urban autonomous driving with latent deep reinforcement learning. IEEE Transactions on Intelligent Transportation Systems, 23(6), 5068–5078.MATHCrossRef Chen, J., et al. (2021). Interpretable end-to-end urban autonomous driving with latent deep reinforcement learning. IEEE Transactions on Intelligent Transportation Systems, 23(6), 5068–5078.MATHCrossRef
Zurück zum Zitat Cui, J., et al. (2022). COOPERNAUT: End-to-end driving with cooperative perception for networked vehicles. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022, 17252–17262. Cui, J., et al. (2022). COOPERNAUT: End-to-end driving with cooperative perception for networked vehicles. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022, 17252–17262.
Zurück zum Zitat Gelbal, S., et al. (2020). Collision avoidance of low speed autonomous shuttles with pedestrains. International Journal of Automotive Technology, 21(4), 903–917.MATHCrossRef Gelbal, S., et al. (2020). Collision avoidance of low speed autonomous shuttles with pedestrains. International Journal of Automotive Technology, 21(4), 903–917.MATHCrossRef
Zurück zum Zitat Guo, D., et al. (2022). Vision-based end-to-end deep learning for autonomous driving in next-generation IoT systems. In Artificial intelligence-based internet of things systems. Internet of Things (pp. 445–465). Cham: Springer. Guo, D., et al. (2022). Vision-based end-to-end deep learning for autonomous driving in next-generation IoT systems. In Artificial intelligence-based internet of things systems. Internet of Things (pp. 445–465). Cham: Springer.
Zurück zum Zitat Huang, Z., et al. (2021). Multi-modal sensor fusion-based deep neural network for end-to-end autonomous driving with scene understanding. IEEE Sensors Journal, 21(10), 11781–11790.MATHCrossRef Huang, Z., et al. (2021). Multi-modal sensor fusion-based deep neural network for end-to-end autonomous driving with scene understanding. IEEE Sensors Journal, 21(10), 11781–11790.MATHCrossRef
Zurück zum Zitat Lee, D. H., et al. (2023). End-to-end deep learning of lane detection and path prediction for real-time autonomous driving. Signal, Image and Video Processing, 17, 199–205.MATHCrossRef Lee, D. H., et al. (2023). End-to-end deep learning of lane detection and path prediction for real-time autonomous driving. Signal, Image and Video Processing, 17, 199–205.MATHCrossRef
Zurück zum Zitat Li, P., & Jin, J. (2022). Time3D: End-to-end joint monocular 3d object detection and tracking for autonomous driving. In IEEE/CVF conference on computer vision and pattern recognition (CVPR), New Orleans, LA, USA (pp. 3875–3884). Li, P., & Jin, J. (2022). Time3D: End-to-end joint monocular 3d object detection and tracking for autonomous driving. In IEEE/CVF conference on computer vision and pattern recognition (CVPR), New Orleans, LA, USA (pp. 3875–3884).
Zurück zum Zitat Ma, X., et al. (2023). 3D object detection from images for autonomous driving: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 46(5), 3537–3556.MATHCrossRef Ma, X., et al. (2023). 3D object detection from images for autonomous driving: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 46(5), 3537–3556.MATHCrossRef
Zurück zum Zitat Park, M., et al. (2021). A convolutional neural network-based end-to-end self-driving using LiDAR and camera fusion: Analysis perspectives in a real-world environment. Electronics, 10, 2608.MATHCrossRef Park, M., et al. (2021). A convolutional neural network-based end-to-end self-driving using LiDAR and camera fusion: Analysis perspectives in a real-world environment. Electronics, 10, 2608.MATHCrossRef
Zurück zum Zitat Rong, G., et al. (2020). Simulator: A high fidelity simulator for autonomous driving. In IEEE 23rd international conference on intelligent transportation systems (ITSC), Rhodes, Greece, 2020 (pp. 1–6). Rong, G., et al. (2020). Simulator: A high fidelity simulator for autonomous driving. In IEEE 23rd international conference on intelligent transportation systems (ITSC), Rhodes, Greece, 2020 (pp. 1–6).
Zurück zum Zitat Sina, N., et al. (2023). (Mis-)use of standard autopilot and full self-driving (FSD) beta: Results from interviews with users of Tesla’s FSD beta. Frontiers in Psychology, 14, 1101520.MATHCrossRef Sina, N., et al. (2023). (Mis-)use of standard autopilot and full self-driving (FSD) beta: Results from interviews with users of Tesla’s FSD beta. Frontiers in Psychology, 14, 1101520.MATHCrossRef
Zurück zum Zitat Song, J. G., & Lee, J. W. (2023). CNN-based object detection and distance prediction for autonomous driving using stereo images. International Journal of Automotive Technology, 24(3), 773–786.MATHCrossRef Song, J. G., & Lee, J. W. (2023). CNN-based object detection and distance prediction for autonomous driving using stereo images. International Journal of Automotive Technology, 24(3), 773–786.MATHCrossRef
Zurück zum Zitat Toromanoff, M., et al. (2021). End-to-end model-free reinforcement learning for urban driving using implicit affordances. In IEEE/CVF conference on computer vision and pattern recognition (CVPR) (pp. 7151–7160). Toromanoff, M., et al. (2021). End-to-end model-free reinforcement learning for urban driving using implicit affordances. In IEEE/CVF conference on computer vision and pattern recognition (CVPR) (pp. 7151–7160).
Zurück zum Zitat Wang, Q., et al. (2019). End-to-end autonomous driving: An angle branched network approach. IEEE Transactions on Vehicular Technology, 68(12), 11599–11610.MATHCrossRef Wang, Q., et al. (2019). End-to-end autonomous driving: An angle branched network approach. IEEE Transactions on Vehicular Technology, 68(12), 11599–11610.MATHCrossRef
Zurück zum Zitat Yu, Y., et al. (2019). Moving object detection for a moving camera based on global motion compensation and adaptive background model. International Journal of Control, Automation and Systems, 17, 1866–1874.MATHCrossRef Yu, Y., et al. (2019). Moving object detection for a moving camera based on global motion compensation and adaptive background model. International Journal of Control, Automation and Systems, 17, 1866–1874.MATHCrossRef
Metadaten
Titel
Embedding Object Avoidance to End-To-End Driving Systems by Input Data Manipulation
verfasst von
Younggon Jo
Jeongmok Ha
Sungsoo Hwang
Publikationsdatum
19.09.2024
Verlag
The Korean Society of Automotive Engineers
Erschienen in
International Journal of Automotive Technology / Ausgabe 2/2025
Print ISSN: 1229-9138
Elektronische ISSN: 1976-3832
DOI
https://doi.org/10.1007/s12239-024-00156-x

Weitere Artikel der Ausgabe 2/2025

Multi-physical Field Coupling Analysis of Flat Wire Motor

  • Electric, Fuel Cell, and Hybrid Vehicle, Electrical and Electronics

Iterative Trajectory Prediction Model Based on Interactive Agent

  • Connected Automated Vehicles and ITS, Vision and Sensors

A Study on Abnormal Detection of High-Speed Bearings for Electric Vehicle Drive Systems

  • Body and Safety, Chassis, Human Factors and Ergonomics, Materials and Recycling, Noise, Vibration and Harshness, Transmission and Driveline, Vehicle Dynamics and Control

Harnessing Electrocardiography Signals for Driver State Classification Using Multi-layered Neural Networks

  • Connected Automated Vehicles and ITS, Electrical and Electronics, Human Factors and Ergonomics