Skip to main content

2011 | OriginalPaper | Buchkapitel

Embryonic Stem Cells: A Biological Tool to Translate the Mechanisms of Heart Development

verfasst von : Omonigho A. Aisagbonhi, Antonis K. Hatzopoulos

Erschienen in: Stem Cell Engineering

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Heart organogenesis is sensitive to both genetic and environmental factors and heart malformations account for the majority of birth defects. The development of the mammalian heart is a complex morphogenetic process that ultimately results in a contractile, four-chambered organ that is formed from progenitor cells of mesodermal and neural crest origins. Studies in animal models with primitive hearts such as drosophila, zebrafish, and xenopus have provided important insights into the way the heart begins to form and the molecular cues that guide the early stages of cardiac morphogenesis. Much of what we know about the development of the heart in higher vertebrates comes mostly from embryological investigations in chick and mouse. In addition, genetic studies in zebrafish and mouse, including loss- and gain-of-function approaches, have been especially valuable for gaining information about the role of individual genes in heart development. However, the various animal models also have a number of limitations regarding lack of genetic tools (chick, xenopus), inaccessibility to observation and embryological manipulation (mouse), or unsuitability for high-throughput screens to identify pharmacologic compounds to treat cardiac defects. Mouse embryonic stem (ES) cells give rise to a wide variety of organ-specific cell types, offering an accessible and relevant system to investigate how cell lineages emerge and grow. The ES cell model is particularly pertinent for studying the molecular mechanisms regulating the specification and differentiation of cardiovascular progenitor cells, because these cells appear relatively early during embryonic development and ES cell differentiation. This chapter reviews a selective number of studies that have applied the in vitro differentiation of embryonic stem cells toward understanding the regulatory steps of cardiac development.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Snarr BS, Kern CB, Wessels A. Origin and fate of cardiac mesenchyme. Dev Dyn. 2008 Oct; 237(10):2804–2819.CrossRef Snarr BS, Kern CB, Wessels A. Origin and fate of cardiac mesenchyme. Dev Dyn. 2008 Oct; 237(10):2804–2819.CrossRef
2.
Zurück zum Zitat Brand T. Heart development: molecular insights into cardiac specification and early morphogenesis. Dev Biol. 2003; 258:1–19.CrossRef Brand T. Heart development: molecular insights into cardiac specification and early morphogenesis. Dev Biol. 2003; 258:1–19.CrossRef
3.
Zurück zum Zitat Olson EN. Gene regulatory networks in the evolution and development of the heart. Science 2006; 313(5795):1922–1927.CrossRef Olson EN. Gene regulatory networks in the evolution and development of the heart. Science 2006; 313(5795):1922–1927.CrossRef
4.
Zurück zum Zitat Martisen BJ. Reference guide to the stages of chick heart embryology. Dev Dyn. 2005; 233:1217–1237.CrossRef Martisen BJ. Reference guide to the stages of chick heart embryology. Dev Dyn. 2005; 233:1217–1237.CrossRef
5.
Zurück zum Zitat van den Berg G, Moorman AF. Concepts of cardiac development in retrospect. Pediatr. Cardiol. 2009; 30(5): 580–587. van den Berg G, Moorman AF. Concepts of cardiac development in retrospect. Pediatr. Cardiol. 2009; 30(5): 580–587.
6.
Zurück zum Zitat Manner J. The anatomy of cardiac looping: a step towards the understanding of the morphogenesis of several forms of congenital cardiac malformations. Clin Anat. 2009; 1:21–35.CrossRef Manner J. The anatomy of cardiac looping: a step towards the understanding of the morphogenesis of several forms of congenital cardiac malformations. Clin Anat. 2009; 1:21–35.CrossRef
7.
Zurück zum Zitat Waldo K, Kumiski D, Wallis K, Stadt H, Hutson M, Platt D, Kirby ML. Conotruncal myocardium arises from a secondary heart field. Development 2001; 128:3179–3188. Waldo K, Kumiski D, Wallis K, Stadt H, Hutson M, Platt D, Kirby ML. Conotruncal myocardium arises from a secondary heart field. Development 2001; 128:3179–3188.
8.
Zurück zum Zitat Buckingham M, Meilhac S, Zaffran S. Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet. 2005; 6:826–835.CrossRef Buckingham M, Meilhac S, Zaffran S. Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet. 2005; 6:826–835.CrossRef
9.
Zurück zum Zitat Ratajska A, Czarnowska E, Ciszek B. Embryonic development of the proepicardium and coronary vessels. Int J Dev Biol. 2008; 52:229–236.CrossRef Ratajska A, Czarnowska E, Ciszek B. Embryonic development of the proepicardium and coronary vessels. Int J Dev Biol. 2008; 52:229–236.CrossRef
10.
Zurück zum Zitat Cai CL, Martin JC, Sun Y, et al. A myocardial lineage derives from Tbx18 epicardial cells. Nature 2008; 454(7200):104–108.CrossRef Cai CL, Martin JC, Sun Y, et al. A myocardial lineage derives from Tbx18 epicardial cells. Nature 2008; 454(7200):104–108.CrossRef
11.
Zurück zum Zitat Zhou B, Pu T. More than a cover: epicardium as a novel source of cardiac progenitor cells. Regen Med. 2008; 5:633–635.CrossRef Zhou B, Pu T. More than a cover: epicardium as a novel source of cardiac progenitor cells. Regen Med. 2008; 5:633–635.CrossRef
12.
Zurück zum Zitat Waldo K, Miyagawa-Tomita S, Kumiski D, Kirby ML. Cardiac neural crest cells provide new insight into the septation of the cardiac outflow tract: aortic sac to ventricular septal closure. Dev Biol. 1998; 196:129–144.CrossRef Waldo K, Miyagawa-Tomita S, Kumiski D, Kirby ML. Cardiac neural crest cells provide new insight into the septation of the cardiac outflow tract: aortic sac to ventricular septal closure. Dev Biol. 1998; 196:129–144.CrossRef
13.
Zurück zum Zitat Brown CB, Baldwin HS. Neural crest contribution to the cardiovascular system. Adv Exp Med Biol. 2006; 589:134–154.CrossRef Brown CB, Baldwin HS. Neural crest contribution to the cardiovascular system. Adv Exp Med Biol. 2006; 589:134–154.CrossRef
14.
Zurück zum Zitat Person A, Klewer S, Runyan R. Cell biology of cardiac cushion development. Int Rev Cytol. 2005; 243:287–324.CrossRef Person A, Klewer S, Runyan R. Cell biology of cardiac cushion development. Int Rev Cytol. 2005; 243:287–324.CrossRef
15.
Zurück zum Zitat Armstrong EJ, Bishoff J. Heart valve development: endothelial cell signaling and differentiation. Circ Res. 2004; 95:459–470.CrossRef Armstrong EJ, Bishoff J. Heart valve development: endothelial cell signaling and differentiation. Circ Res. 2004; 95:459–470.CrossRef
16.
Zurück zum Zitat Kirby ML, Gale TF, Stewart DE. Neural crest cells contribute to aorticopulmonary septation. Science 1983; 220:1059–1061.CrossRef Kirby ML, Gale TF, Stewart DE. Neural crest cells contribute to aorticopulmonary septation. Science 1983; 220:1059–1061.CrossRef
17.
Zurück zum Zitat Bodmer R. The gene tinman is required for specification of the heart and visceral muscles in drosophila. Development 1993; 118:719–729. Bodmer R. The gene tinman is required for specification of the heart and visceral muscles in drosophila. Development 1993; 118:719–729.
18.
Zurück zum Zitat Schott J, Benson D, Basson C, et al. Congenital heart disease caused by mutations in the transcription factor Nkx2.5. Science 1998; 281:108–111.CrossRef Schott J, Benson D, Basson C, et al. Congenital heart disease caused by mutations in the transcription factor Nkx2.5. Science 1998; 281:108–111.CrossRef
19.
Zurück zum Zitat Pashmforoush M, Lu JT, Chen H, et al. Nkx2-5 pathways and congenital heart disease: loss of ventricular myocyte lineage specification leads to progressive cardiomyopathy and complete heart block. Cell 2004; 117:373–386.CrossRef Pashmforoush M, Lu JT, Chen H, et al. Nkx2-5 pathways and congenital heart disease: loss of ventricular myocyte lineage specification leads to progressive cardiomyopathy and complete heart block. Cell 2004; 117:373–386.CrossRef
20.
Zurück zum Zitat Lyons I, Parsons L, Hartley L, Li R, Andrews J, Robb L, Harvey R. Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeobox gene Nkx2.5. Genes Dev. 1995; 9:1654–1666.CrossRef Lyons I, Parsons L, Hartley L, Li R, Andrews J, Robb L, Harvey R. Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeobox gene Nkx2.5. Genes Dev. 1995; 9:1654–1666.CrossRef
21.
Zurück zum Zitat Schoenbeck JJ, Yelon D. Illuminating cardiac development: advances in imaging add new dimensions to the utility of zebrafish genetics. Semin Cell Dev Biol. 2007; 1:27–35. Schoenbeck JJ, Yelon D. Illuminating cardiac development: advances in imaging add new dimensions to the utility of zebrafish genetics. Semin Cell Dev Biol. 2007; 1:27–35.
22.
Zurück zum Zitat Garrity D, Childs S, Fishman M. The heartstrings mutation in zebrafish causes heart/fin Tbx5 deficiency syndrome. Development 2002; 129:4635–4645. Garrity D, Childs S, Fishman M. The heartstrings mutation in zebrafish causes heart/fin Tbx5 deficiency syndrome. Development 2002; 129:4635–4645.
23.
Zurück zum Zitat Mori A, Bruneau B. TBX5 mutations and congenital heart disease: Holt-Oram syndrome revealed. Curr Opin Cardiol. 2004; 19:211–215.CrossRef Mori A, Bruneau B. TBX5 mutations and congenital heart disease: Holt-Oram syndrome revealed. Curr Opin Cardiol. 2004; 19:211–215.CrossRef
24.
Zurück zum Zitat Moon A. Mouse models of congenital cardiovascular disease. Curr Top Dev Biol. 2008; 84:171–248.CrossRef Moon A. Mouse models of congenital cardiovascular disease. Curr Top Dev Biol. 2008; 84:171–248.CrossRef
25.
Zurück zum Zitat Doetschman TC, Eistetter H, Katz M, Schmidt W, Kemler R. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol. 1985; 87:27–45. Doetschman TC, Eistetter H, Katz M, Schmidt W, Kemler R. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol. 1985; 87:27–45.
26.
Zurück zum Zitat Murry CE, Keller G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 2008; 132:661–680.CrossRef Murry CE, Keller G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 2008; 132:661–680.CrossRef
27.
Zurück zum Zitat Kehat I, Kenyagin-Karsenti D, Snir M, et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest. 2001; 108:407–414. Kehat I, Kenyagin-Karsenti D, Snir M, et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest. 2001; 108:407–414.
28.
Zurück zum Zitat Xu C, Police S, Rao N, Carpenter MK. Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ Res. 2002; 91:501–508.CrossRef Xu C, Police S, Rao N, Carpenter MK. Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ Res. 2002; 91:501–508.CrossRef
29.
Zurück zum Zitat Yang L, Soonpaa MH, Adler ED, et al. Human cardiovascular progenitor cells develop from a KDR+ embryonic stem-cell-derived population. Nature 2008; 453:524–528.CrossRef Yang L, Soonpaa MH, Adler ED, et al. Human cardiovascular progenitor cells develop from a KDR+ embryonic stem-cell-derived population. Nature 2008; 453:524–528.CrossRef
30.
Zurück zum Zitat Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981; 292:154–156.CrossRef Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981; 292:154–156.CrossRef
31.
Zurück zum Zitat Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA. 1981; 78:7634–7638.CrossRef Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA. 1981; 78:7634–7638.CrossRef
32.
Zurück zum Zitat Roberston E, Bradley A, Kuehn M, Evans M. Germline transmission of genes introduced into cultured pluripotent stem cells. Nature 1986; 323(6087):445–448.CrossRef Roberston E, Bradley A, Kuehn M, Evans M. Germline transmission of genes introduced into cultured pluripotent stem cells. Nature 1986; 323(6087):445–448.CrossRef
33.
Zurück zum Zitat O’Shea KS. Embryonic stem cell models of development. Anat Rec New Anat. 1999; 257:32–41.CrossRef O’Shea KS. Embryonic stem cell models of development. Anat Rec New Anat. 1999; 257:32–41.CrossRef
34.
Zurück zum Zitat Keller G. Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev. 2005; 19:1129–1155.CrossRef Keller G. Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev. 2005; 19:1129–1155.CrossRef
35.
Zurück zum Zitat Sachinidis A, Fleischmann B, Kolossov E, Wartenberg M, Sauer H, Hescheler J. Cardiac specific differentiation of mouse embryonic stem cells. Cardiovasc Res. 2003; 58:278–291.CrossRef Sachinidis A, Fleischmann B, Kolossov E, Wartenberg M, Sauer H, Hescheler J. Cardiac specific differentiation of mouse embryonic stem cells. Cardiovasc Res. 2003; 58:278–291.CrossRef
36.
Zurück zum Zitat Gerecht-Nir S, Fishman B, Itskovitz-Eldor J. Cardiovascular potential of embryonic stem cells. Anat Rec A 2004; 276A:58–65.CrossRef Gerecht-Nir S, Fishman B, Itskovitz-Eldor J. Cardiovascular potential of embryonic stem cells. Anat Rec A 2004; 276A:58–65.CrossRef
37.
Zurück zum Zitat Hescheler J, Fleishmann B, Lentinis S, Maltsev V, Rohwedel J, Wobus A, Addicks K. Embryonic stem cells: a model to study structural and functional properties in cardiomyogenesis. Circ Res. 1997; 36:149–162. Hescheler J, Fleishmann B, Lentinis S, Maltsev V, Rohwedel J, Wobus A, Addicks K. Embryonic stem cells: a model to study structural and functional properties in cardiomyogenesis. Circ Res. 1997; 36:149–162.
38.
Zurück zum Zitat Boheler KR, Czyz J, Tweedie D, Yang H, Anisimov S, Wobus A. Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ Res. 2002; 91:189–201.CrossRef Boheler KR, Czyz J, Tweedie D, Yang H, Anisimov S, Wobus A. Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ Res. 2002; 91:189–201.CrossRef
39.
Zurück zum Zitat Kattman S, Adler E, Keller G. Specification of multipotential cardiovascular progenitor cells during embryonic stem cell differentiation and embryonic development. Trends Cardiovasc Med. 2007; 17:240–246.CrossRef Kattman S, Adler E, Keller G. Specification of multipotential cardiovascular progenitor cells during embryonic stem cell differentiation and embryonic development. Trends Cardiovasc Med. 2007; 17:240–246.CrossRef
40.
Zurück zum Zitat Cohen ED, Tian Y, Morrisey EE. Wnt signaling: an essential regulator of cardiovascular differentiation, morphogenesis and progenitor self-renewal. Development 2008; 135:789–798.CrossRef Cohen ED, Tian Y, Morrisey EE. Wnt signaling: an essential regulator of cardiovascular differentiation, morphogenesis and progenitor self-renewal. Development 2008; 135:789–798.CrossRef
41.
Zurück zum Zitat Garcia-Martinez V, Schoenwolf G. Primitive streak origin of the cardiovascular system in avian embryos. Dev Biol. 1993; 159:706–719.CrossRef Garcia-Martinez V, Schoenwolf G. Primitive streak origin of the cardiovascular system in avian embryos. Dev Biol. 1993; 159:706–719.CrossRef
42.
Zurück zum Zitat LeDouarin N, Dieterlen-Lièvre F, Creuzet S, Teillet MA. Quail-chick transplantations. Methods Cell Biol. 2008; 87:19–58.CrossRef LeDouarin N, Dieterlen-Lièvre F, Creuzet S, Teillet MA. Quail-chick transplantations. Methods Cell Biol. 2008; 87:19–58.CrossRef
43.
Zurück zum Zitat Viragh S, Gittenberger-de Grot A, Poelmann R, Kalman F. Early development of quail heart epicardium and associated vascular and glandular structures. Anat Embryol (Berlin) 1993; 188(4):381–393.CrossRef Viragh S, Gittenberger-de Grot A, Poelmann R, Kalman F. Early development of quail heart epicardium and associated vascular and glandular structures. Anat Embryol (Berlin) 1993; 188(4):381–393.CrossRef
44.
Zurück zum Zitat Eisenberg C, Bader D. QCE-6: a clonal cell line with cardiac myogenic and endothelial cell potentials. Dev Biol. 1995; 167:469–481.CrossRef Eisenberg C, Bader D. QCE-6: a clonal cell line with cardiac myogenic and endothelial cell potentials. Dev Biol. 1995; 167:469–481.CrossRef
45.
Zurück zum Zitat Stanley EG, Biben C, Elefanty A, Barnett L, Koentgen F, Robb L, Harvey R. Efficient cremediated deletion in cardiac progenitor cells conferred by a 3’UTR-Ires-Cre allele of the homeobox gene Nkx2.5. Int J Dev Biol. 2002; 46:431–439. Stanley EG, Biben C, Elefanty A, Barnett L, Koentgen F, Robb L, Harvey R. Efficient cremediated deletion in cardiac progenitor cells conferred by a 3’UTR-Ires-Cre allele of the homeobox gene Nkx2.5. Int J Dev Biol. 2002; 46:431–439.
46.
Zurück zum Zitat Kattman S, Huber T, Keller G. Multipotent Flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial and vascular smooth muscle lineages. Dev Cell 2006; 11:723–732.CrossRef Kattman S, Huber T, Keller G. Multipotent Flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial and vascular smooth muscle lineages. Dev Cell 2006; 11:723–732.CrossRef
47.
Zurück zum Zitat Wu S, Fujiwara Y, Cibulsky S, Clapham D, Lien C, Schultheiss T, Orkin S. Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart. Cell 2006; 127:1–14.CrossRef Wu S, Fujiwara Y, Cibulsky S, Clapham D, Lien C, Schultheiss T, Orkin S. Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart. Cell 2006; 127:1–14.CrossRef
48.
Zurück zum Zitat Moretti A, Caron L, Nakano A, et al. Multipotent embryonic Isl1+ progenitor cells lead to cardiac, smooth muscle and endothelial cell diversification. Cell 2006; 127:1–15.CrossRef Moretti A, Caron L, Nakano A, et al. Multipotent embryonic Isl1+ progenitor cells lead to cardiac, smooth muscle and endothelial cell diversification. Cell 2006; 127:1–15.CrossRef
49.
Zurück zum Zitat Cai C, Liang X, Shi Y, Chu P, Pfaff S, Chen J, Evans S. Isl1 identifies a cardiac progenitor that proliferated prior to differentiation and contributes a majority of cells to the heart. Dev Cell 2003; 5:877–889.CrossRef Cai C, Liang X, Shi Y, Chu P, Pfaff S, Chen J, Evans S. Isl1 identifies a cardiac progenitor that proliferated prior to differentiation and contributes a majority of cells to the heart. Dev Cell 2003; 5:877–889.CrossRef
50.
Zurück zum Zitat Saga Y, Miyagawa-Tomita S, Takagi A, Kitajima S, Miyazaki J. Mesp1 is expressed in the heart precursor cells and required for the formation of a single heart tube. Development 1999; 126:3437–3447. Saga Y, Miyagawa-Tomita S, Takagi A, Kitajima S, Miyazaki J. Mesp1 is expressed in the heart precursor cells and required for the formation of a single heart tube. Development 1999; 126:3437–3447.
51.
Zurück zum Zitat Ema M, Takahashi S, Rossant J. Deletion of the selection cassette, but not cis-acting elements, in targeted Flk1-lacZ allele reveals Flk1 expression in multipotent mesodermal progenitors. Blood 2006; 107:111–117.CrossRef Ema M, Takahashi S, Rossant J. Deletion of the selection cassette, but not cis-acting elements, in targeted Flk1-lacZ allele reveals Flk1 expression in multipotent mesodermal progenitors. Blood 2006; 107:111–117.CrossRef
52.
Zurück zum Zitat Lints T, Parsons L, Hartley L, Lyons I, Harvey R. Nkx2.5 a novel murine homeobox gene expressed in early heart cells and their myogenic descendants. Development 1993; 109:419–431. Lints T, Parsons L, Hartley L, Lyons I, Harvey R. Nkx2.5 a novel murine homeobox gene expressed in early heart cells and their myogenic descendants. Development 1993; 109:419–431.
53.
Zurück zum Zitat Heikinheimo M, Scandrett J, Wilson DB. Localization of transcription factor GATA-4 to regions of the mouse embryo involved in cardiac development. Dev Biol. 1994; 164:361–373.CrossRef Heikinheimo M, Scandrett J, Wilson DB. Localization of transcription factor GATA-4 to regions of the mouse embryo involved in cardiac development. Dev Biol. 1994; 164:361–373.CrossRef
54.
Zurück zum Zitat Morrisey EE, Ip HS, Tang Z, et al. GATA-5: a transcriptional activator expressed in a novel temporally and spatially-restricted pattern during embryonic development. Dev Biol. 1997; 183:21–36.CrossRef Morrisey EE, Ip HS, Tang Z, et al. GATA-5: a transcriptional activator expressed in a novel temporally and spatially-restricted pattern during embryonic development. Dev Biol. 1997; 183:21–36.CrossRef
55.
Zurück zum Zitat Morrisey EE, Ip HS, Lu MM, et al. GATA-6: a zinc finger transcription factor that is expressed in multiple lineages derived from lateral mesoderm. Dev Biol. 1996; 177:309–322.CrossRef Morrisey EE, Ip HS, Lu MM, et al. GATA-6: a zinc finger transcription factor that is expressed in multiple lineages derived from lateral mesoderm. Dev Biol. 1996; 177:309–322.CrossRef
56.
Zurück zum Zitat Bruneau BG, Logan M, Davis N, et al. Chamber-specific cardiac expression of Tbx5 and heart defects in Holt Oram syndrome. Dev Biol. 1999; 211:100–108.CrossRef Bruneau BG, Logan M, Davis N, et al. Chamber-specific cardiac expression of Tbx5 and heart defects in Holt Oram syndrome. Dev Biol. 1999; 211:100–108.CrossRef
57.
Zurück zum Zitat Kelly R, Brown N, Buckingham M. The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. Dev Cell 2001; 1:435–440.CrossRef Kelly R, Brown N, Buckingham M. The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. Dev Cell 2001; 1:435–440.CrossRef
58.
Zurück zum Zitat Lim S, Woodroofe N, Limanski LF. An analysis of contractile proteins in developing chick heart by SDS polyacrylamide gel electrophoresis and electron microscopy. J Embryol Exp Morphol. 1983; 77:1–14. Lim S, Woodroofe N, Limanski LF. An analysis of contractile proteins in developing chick heart by SDS polyacrylamide gel electrophoresis and electron microscopy. J Embryol Exp Morphol. 1983; 77:1–14.
59.
Zurück zum Zitat Yatskievych T, Ladd A, Antin P. Induction of cardiac myogenesis in avian pregastrula epiblast: the role of the hypoblast and activin. Development 1997; 124:2561–2570. Yatskievych T, Ladd A, Antin P. Induction of cardiac myogenesis in avian pregastrula epiblast: the role of the hypoblast and activin. Development 1997; 124:2561–2570.
60.
Zurück zum Zitat Schultheiss T, Xydas S, Lassar A. Induction of avian cardiac myogenesis by anterior endoderm. Development 1995; 121:4203–4214. Schultheiss T, Xydas S, Lassar A. Induction of avian cardiac myogenesis by anterior endoderm. Development 1995; 121:4203–4214.
61.
Zurück zum Zitat Sugi Y, Lough J. Activin-A and FGF-2 mimic the inductive effects of anterior endoderm on terminal cardiac myogenesis in vitro. Dev Biol. 1995; 169:567–574.CrossRef Sugi Y, Lough J. Activin-A and FGF-2 mimic the inductive effects of anterior endoderm on terminal cardiac myogenesis in vitro. Dev Biol. 1995; 169:567–574.CrossRef
62.
Zurück zum Zitat Mitrani E, Ziv T, Thomsen G, Shimoni Y, Melton DA, Bril A. Activin can induce the formation of axial structures and is expressed in the hypoblast of the chick. Cell 1990; 63(3):495–501.CrossRef Mitrani E, Ziv T, Thomsen G, Shimoni Y, Melton DA, Bril A. Activin can induce the formation of axial structures and is expressed in the hypoblast of the chick. Cell 1990; 63(3):495–501.CrossRef
63.
Zurück zum Zitat Sanders EJ, Prasad S, Hu N. The involvement of TGF beta 1 in early avian development: gastrulation and chondrogenesis. Anat Embryol (Berlin) 1993; 187(6):573–581.CrossRef Sanders EJ, Prasad S, Hu N. The involvement of TGF beta 1 in early avian development: gastrulation and chondrogenesis. Anat Embryol (Berlin) 1993; 187(6):573–581.CrossRef
64.
Zurück zum Zitat Conlon FL, Lyons KM, Takaesu N, Barth KS, Kispert A, Hermann B, Robertson EJ. A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse. Development 1994; 120(7):1919–1928. Conlon FL, Lyons KM, Takaesu N, Barth KS, Kispert A, Hermann B, Robertson EJ. A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse. Development 1994; 120(7):1919–1928.
65.
Zurück zum Zitat Ladd A, Yatskievych T, Antin P. Regulation of avian cardiac myogenesis by activin/TGFβ and bone morphogenetic proteins. Dev Biol. 1998; 204:407–419.CrossRef Ladd A, Yatskievych T, Antin P. Regulation of avian cardiac myogenesis by activin/TGFβ and bone morphogenetic proteins. Dev Biol. 1998; 204:407–419.CrossRef
66.
Zurück zum Zitat Matzuk MM, Kumar TR, Vassalli A, Bickenbach JR, Roop DR, Jaenisch R, Bradley A. Functional analysis of activins during mammalian development. Nature 1995; 374(6520):354–356.CrossRef Matzuk MM, Kumar TR, Vassalli A, Bickenbach JR, Roop DR, Jaenisch R, Bradley A. Functional analysis of activins during mammalian development. Nature 1995; 374(6520):354–356.CrossRef
67.
Zurück zum Zitat Kulkarni AB, Karlsson S. Transforming growth factor-beta 1 knockout mice. A mutation in one cytokine causes a dramatic inflammatory disease. Am J Pathol. 1993; 143:3–9. Kulkarni AB, Karlsson S. Transforming growth factor-beta 1 knockout mice. A mutation in one cytokine causes a dramatic inflammatory disease. Am J Pathol. 1993; 143:3–9.
68.
Zurück zum Zitat Christ M, McCartney-Francis N, Kulkarni AB, et al. Immune dysregulation in TGF-beta 1-deficient mice. J Immunol. 1994; 153:1936–1946. Christ M, McCartney-Francis N, Kulkarni AB, et al. Immune dysregulation in TGF-beta 1-deficient mice. J Immunol. 1994; 153:1936–1946.
69.
Zurück zum Zitat Zhou X, Sasaki H, Lowe L, Hogan BL, Kuehn MR. Nodal is a novel TGF-beta-like gene expressed in the mouse node during gastrulation. Nature 1993; 361:543–547.CrossRef Zhou X, Sasaki H, Lowe L, Hogan BL, Kuehn MR. Nodal is a novel TGF-beta-like gene expressed in the mouse node during gastrulation. Nature 1993; 361:543–547.CrossRef
70.
Zurück zum Zitat Gu Z, Nomura M, Simpson B, Lei H, Feijen A, van den Eijnden-van Raaj J, Donahoe PK, Li E. The type 1 activin receptor ActRIB is required for egg cylinder organization and gastrulation in the mouse. Genes Dev. 1998; 6:844–857.CrossRef Gu Z, Nomura M, Simpson B, Lei H, Feijen A, van den Eijnden-van Raaj J, Donahoe PK, Li E. The type 1 activin receptor ActRIB is required for egg cylinder organization and gastrulation in the mouse. Genes Dev. 1998; 6:844–857.CrossRef
71.
Zurück zum Zitat Kitamura R, Takahashi T, Nakajima N, Isodono K, Asada S, Ueno H, Ueyama T, Yoshikawa T, Matsubara H, Oh H. Stage-specific role of endogenous Smad2 activation in cardiomyogenesis of embryonic stem cells. Circ Res. 2007; 101:78–87.CrossRef Kitamura R, Takahashi T, Nakajima N, Isodono K, Asada S, Ueno H, Ueyama T, Yoshikawa T, Matsubara H, Oh H. Stage-specific role of endogenous Smad2 activation in cardiomyogenesis of embryonic stem cells. Circ Res. 2007; 101:78–87.CrossRef
72.
Zurück zum Zitat Lough J, Sugi Y. Endoderm and heart development. Dev Dyn. 2000; 217:327–342.CrossRef Lough J, Sugi Y. Endoderm and heart development. Dev Dyn. 2000; 217:327–342.CrossRef
73.
Zurück zum Zitat Marvin M, Di Rocco G, Gardiner A, Bush S, Sive H, Lassar A. Inhibition of wnt activity induces heart formation from posterior mesoderm. Genes Dev. 2001; 15:316–327.CrossRef Marvin M, Di Rocco G, Gardiner A, Bush S, Sive H, Lassar A. Inhibition of wnt activity induces heart formation from posterior mesoderm. Genes Dev. 2001; 15:316–327.CrossRef
74.
Zurück zum Zitat Lickert H, Kutsch S, Kanzler B, Tamai Y, Taketo M, Kemler R. Formation of multiple hearts in mice following deletion of beta-catenin in the embryonic endoderm. Dev Cell. 2002; 3:171–181.CrossRef Lickert H, Kutsch S, Kanzler B, Tamai Y, Taketo M, Kemler R. Formation of multiple hearts in mice following deletion of beta-catenin in the embryonic endoderm. Dev Cell. 2002; 3:171–181.CrossRef
75.
Zurück zum Zitat Haegel H, Larue L, Ohsugi M, Fedorov L, Herrenknecht K, Kemler R. Lack of beta-catenin affects mouse development at gastrulation. Development 1995; 121:3529–3537. Haegel H, Larue L, Ohsugi M, Fedorov L, Herrenknecht K, Kemler R. Lack of beta-catenin affects mouse development at gastrulation. Development 1995; 121:3529–3537.
76.
Zurück zum Zitat Wu X, Golden K, Bodmer R. Heart development in drosophila requires the segment polarity gene wingless. Dev Biol. 1995; 169:619–628.CrossRef Wu X, Golden K, Bodmer R. Heart development in drosophila requires the segment polarity gene wingless. Dev Biol. 1995; 169:619–628.CrossRef
77.
Zurück zum Zitat Naito A, Shiojima I, Akazawa H, Hidaka K, Morisaki T, Kikuchi A, Komuro I. Developmental stage-specific biphasic roles of wnt/β-catenin signaling in cardiomyogenesis and hematopoiesis. PNAS 2006; 103:19812–19817.CrossRef Naito A, Shiojima I, Akazawa H, Hidaka K, Morisaki T, Kikuchi A, Komuro I. Developmental stage-specific biphasic roles of wnt/β-catenin signaling in cardiomyogenesis and hematopoiesis. PNAS 2006; 103:19812–19817.CrossRef
78.
Zurück zum Zitat Kwon C, Arnold J, Hsiao EC, Taketo MM, Conklin BR, Srivastava D. Canonical wnt signaling is a positive regulator of mammalian cardiac precursors. PNAS 2007; 104:10894–10899.CrossRef Kwon C, Arnold J, Hsiao EC, Taketo MM, Conklin BR, Srivastava D. Canonical wnt signaling is a positive regulator of mammalian cardiac precursors. PNAS 2007; 104:10894–10899.CrossRef
79.
Zurück zum Zitat Lin L, Cui L, Zhou W, Dufort D, et al. β-catenin directly regulates Islet1 expression in cardiovascular progenitors and is required for multiple aspects of cardiogenesis. PNAS 2007; 104:9313–9318.CrossRef Lin L, Cui L, Zhou W, Dufort D, et al. β-catenin directly regulates Islet1 expression in cardiovascular progenitors and is required for multiple aspects of cardiogenesis. PNAS 2007; 104:9313–9318.CrossRef
80.
Zurück zum Zitat Qyang Y, Puig S, Chiravuri M, et al. The renewal and differentiation of Isl+ cardiovascular progenitors are controlled by a wnt/β-catenin pathway. Cell Stem Cell 2007; 1:1–15.CrossRef Qyang Y, Puig S, Chiravuri M, et al. The renewal and differentiation of Isl+ cardiovascular progenitors are controlled by a wnt/β-catenin pathway. Cell Stem Cell 2007; 1:1–15.CrossRef
81.
Zurück zum Zitat Klaus A, Saga Y, Taketo M, Tzahor E, Birchmeier W. Distinct roles of wnt/β-catenin and Bmp signaling during early cardiogenesis. PNAS 2007; 104:18531–18536.CrossRef Klaus A, Saga Y, Taketo M, Tzahor E, Birchmeier W. Distinct roles of wnt/β-catenin and Bmp signaling during early cardiogenesis. PNAS 2007; 104:18531–18536.CrossRef
82.
Zurück zum Zitat Frasch M. Induction of visceral and cardiac mesoderm by ectodermal Dpp in the early drosophila embryo. Nature 1995; 374:464–467.CrossRef Frasch M. Induction of visceral and cardiac mesoderm by ectodermal Dpp in the early drosophila embryo. Nature 1995; 374:464–467.CrossRef
83.
Zurück zum Zitat Lough J, Barron M, Brogley M, Sugi Y, Bolender D, Zhu X. Combined BMP-2 and FGF-4 but neither factor alone, induces non-precardiac embryonic mesoderm. Dev Biol. 1996; 178:198–202.CrossRef Lough J, Barron M, Brogley M, Sugi Y, Bolender D, Zhu X. Combined BMP-2 and FGF-4 but neither factor alone, induces non-precardiac embryonic mesoderm. Dev Biol. 1996; 178:198–202.CrossRef
84.
Zurück zum Zitat Mishina Y, Suzuki A, Ueno N, Behringer R. Bmpr encodes a type 1 bone morphogenetic protein receptor that is essential for gastrulation during mouse embryogenesis. Genes Dev. 1995; 9:3027–3037.CrossRef Mishina Y, Suzuki A, Ueno N, Behringer R. Bmpr encodes a type 1 bone morphogenetic protein receptor that is essential for gastrulation during mouse embryogenesis. Genes Dev. 1995; 9:3027–3037.CrossRef
85.
Zurück zum Zitat Yuasa S, Itabashi Y, Koshimizu U, et al. Transient inhibition of BMP signaling by Noggin induces cardiomyocyte differentiation of mouse embryonic stem cells. Nat Biotechnol. 2005; 23:607–611.CrossRef Yuasa S, Itabashi Y, Koshimizu U, et al. Transient inhibition of BMP signaling by Noggin induces cardiomyocyte differentiation of mouse embryonic stem cells. Nat Biotechnol. 2005; 23:607–611.CrossRef
86.
Zurück zum Zitat Barron N, Gao M, Lough J. Requirement for BMP and FGF signaling during cardiogenic induction in non-precardiac mesoderm is specific, transient and cooperative. Dev Dyn. 2000; 218:383–393.CrossRef Barron N, Gao M, Lough J. Requirement for BMP and FGF signaling during cardiogenic induction in non-precardiac mesoderm is specific, transient and cooperative. Dev Dyn. 2000; 218:383–393.CrossRef
87.
Zurück zum Zitat Schlange T, Andree B, Arnold H, Brand T. BMP2 is required for early heart development during a distinct time period. Mech Dev. 2000; 91:259–270.CrossRef Schlange T, Andree B, Arnold H, Brand T. BMP2 is required for early heart development during a distinct time period. Mech Dev. 2000; 91:259–270.CrossRef
88.
Zurück zum Zitat Choi M, Stottmann R, Yang Y, Meyers EN, Klingensmith J. The bone morphogenetic protein antagonist Noggin regulates mammalian cardiac morphogenesis. Circ Res. 2007; 100:220–228.CrossRef Choi M, Stottmann R, Yang Y, Meyers EN, Klingensmith J. The bone morphogenetic protein antagonist Noggin regulates mammalian cardiac morphogenesis. Circ Res. 2007; 100:220–228.CrossRef
89.
Zurück zum Zitat Alsan B, Schultheiss T. Regulation of action cardiogenesis by Fgf8 signaling. Development 2002; 129:1935–1943. Alsan B, Schultheiss T. Regulation of action cardiogenesis by Fgf8 signaling. Development 2002; 129:1935–1943.
90.
Zurück zum Zitat Cohen ED, Wang Z, Lepore J, Lu M, Taketo M, Epstein D, Morrisey EE. Wnt/β-catenin signaling promotes expansion of Isl-1-positive cardiac progenitor cells through regulation of FGF signaling. JCI 2007; 117:1794–1804.CrossRef Cohen ED, Wang Z, Lepore J, Lu M, Taketo M, Epstein D, Morrisey EE. Wnt/β-catenin signaling promotes expansion of Isl-1-positive cardiac progenitor cells through regulation of FGF signaling. JCI 2007; 117:1794–1804.CrossRef
91.
Zurück zum Zitat Gajewski K, Fossett N, Molkentin J, Kim Y, Choi C, Schulz R. The zinc finger proteins pannier and Gata4 function as cardiogenic factors in drosophila. Development 1999; 126:5679–5688. Gajewski K, Fossett N, Molkentin J, Kim Y, Choi C, Schulz R. The zinc finger proteins pannier and Gata4 function as cardiogenic factors in drosophila. Development 1999; 126:5679–5688.
92.
Zurück zum Zitat Kuo C, Morrisey E, Anandappa R, Sigrist K, Lu M, Parmacek M, Soudais C, Leiden J. GATA 4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev. 1997; 11:1048–1060.CrossRef Kuo C, Morrisey E, Anandappa R, Sigrist K, Lu M, Parmacek M, Soudais C, Leiden J. GATA 4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev. 1997; 11:1048–1060.CrossRef
93.
Zurück zum Zitat Narita N, Bielinska M, Wilson D. Wild-type endoderm abrogates GATA-4 deficiency in the mouse. Dev Biol. 1997; 189:270–274.CrossRef Narita N, Bielinska M, Wilson D. Wild-type endoderm abrogates GATA-4 deficiency in the mouse. Dev Biol. 1997; 189:270–274.CrossRef
94.
Zurück zum Zitat Molkentin J, Tymitz K, Richardson J, Olson E. Abnormalities of the genitourinary tract in female mice lacking GATA5. Mol Cell Biol. 2000; 20:5256–5260.CrossRef Molkentin J, Tymitz K, Richardson J, Olson E. Abnormalities of the genitourinary tract in female mice lacking GATA5. Mol Cell Biol. 2000; 20:5256–5260.CrossRef
95.
Zurück zum Zitat Morrisey EE, Tang Z, Sigrist K, Lu M, Jiang F, Ip H, Parmacek M. Gata6 regulates HNF4 and is required for differentiation of visceral endoderm in the mouse embryo. Genes Dev. 1998; 12:3579–3590.CrossRef Morrisey EE, Tang Z, Sigrist K, Lu M, Jiang F, Ip H, Parmacek M. Gata6 regulates HNF4 and is required for differentiation of visceral endoderm in the mouse embryo. Genes Dev. 1998; 12:3579–3590.CrossRef
96.
Zurück zum Zitat Zhao R, Watt AJ, Li J, Luebke-Wheeler J, Morrisey EE, Duncan SA. GATA6 is essential for embryonic development of the liver but is dispensable for early heart formation. Mol Cell Biol. 2005; 25:2622–2631.CrossRef Zhao R, Watt AJ, Li J, Luebke-Wheeler J, Morrisey EE, Duncan SA. GATA6 is essential for embryonic development of the liver but is dispensable for early heart formation. Mol Cell Biol. 2005; 25:2622–2631.CrossRef
97.
Zurück zum Zitat Zhao R, Watt A, Battle M, Li J, Bondow B, Duncan S. Loss of both GATA4 and GATA6 blocks cardiac myocyte differentiation and results in acardia in mice. Dev Biol. 2008; 317:614–619.CrossRef Zhao R, Watt A, Battle M, Li J, Bondow B, Duncan S. Loss of both GATA4 and GATA6 blocks cardiac myocyte differentiation and results in acardia in mice. Dev Biol. 2008; 317:614–619.CrossRef
98.
Zurück zum Zitat Saga Y, Kitajima S, Miyagawa-Tomita S. Mesp1 expression is the earliest sign of cardiovascular development. Trends Cardiovasc Med. 2000; 10:345–352.CrossRef Saga Y, Kitajima S, Miyagawa-Tomita S. Mesp1 expression is the earliest sign of cardiovascular development. Trends Cardiovasc Med. 2000; 10:345–352.CrossRef
99.
Zurück zum Zitat Kitajima S, Takagi A, Inuoue T, Saga Y. Mesp1 and Mesp2 are essential for the development of cardiac mesoderm. Development 2000; 127:3215–3226. Kitajima S, Takagi A, Inuoue T, Saga Y. Mesp1 and Mesp2 are essential for the development of cardiac mesoderm. Development 2000; 127:3215–3226.
100.
Zurück zum Zitat David R, Brenner C, Stieber J, et al. Mesp1 drives vertebrate cardiovascular differentiation through Dkk-1 mediated blockade of wnt signaling. Nat Cell Biol. 2008; 10:338–345.CrossRef David R, Brenner C, Stieber J, et al. Mesp1 drives vertebrate cardiovascular differentiation through Dkk-1 mediated blockade of wnt signaling. Nat Cell Biol. 2008; 10:338–345.CrossRef
101.
Zurück zum Zitat Lindsley R, Gill J, Murphy T, et al. Mesp1 coordinately regulates cardiovascular fate restriction and epithelial-mesenchymal transition in differentiating ESCs. Cell Stem Cell 2008; 3:55–68.CrossRef Lindsley R, Gill J, Murphy T, et al. Mesp1 coordinately regulates cardiovascular fate restriction and epithelial-mesenchymal transition in differentiating ESCs. Cell Stem Cell 2008; 3:55–68.CrossRef
102.
Zurück zum Zitat Bondue A, Lapouge G, Paulissen C, Semeraro C, Iacovino M, Kyba M, Blanpain C. Mesp1 acts as a master regulator of multipotent cardiovascular progenitor specification. Cell Stem Cell 2008; 3:69–84.CrossRef Bondue A, Lapouge G, Paulissen C, Semeraro C, Iacovino M, Kyba M, Blanpain C. Mesp1 acts as a master regulator of multipotent cardiovascular progenitor specification. Cell Stem Cell 2008; 3:69–84.CrossRef
103.
Zurück zum Zitat Hao J, Daleo MA, Murphy CK, et al. Dorsomorphin, a selective small molecule inhibitor of the BMP signaling, promotes cardiomyogenesis in embryonic stem cells. PLoS One 2008; 3:e2904. Hao J, Daleo MA, Murphy CK, et al. Dorsomorphin, a selective small molecule inhibitor of the BMP signaling, promotes cardiomyogenesis in embryonic stem cells. PLoS One 2008; 3:e2904.
104.
Zurück zum Zitat Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131:861–872.CrossRef Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131:861–872.CrossRef
105.
Zurück zum Zitat Okita K, Ichisaka T, Yamanaka S. Generation of germ-line competent induced pluripotent stem cells. Nature 2007; 448:313–317.CrossRef Okita K, Ichisaka T, Yamanaka S. Generation of germ-line competent induced pluripotent stem cells. Nature 2007; 448:313–317.CrossRef
Metadaten
Titel
Embryonic Stem Cells: A Biological Tool to Translate the Mechanisms of Heart Development
verfasst von
Omonigho A. Aisagbonhi
Antonis K. Hatzopoulos
Copyright-Jahr
2011
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-11865-4_23

Neuer Inhalt