Skip to main content
Erschienen in: Soft Computing 13/2018

14.09.2017 | Focus

Emergency vehicle route oriented signal coordinated control model with two-level programming

verfasst von: Jiao Yao, Kaimin Zhang, Yuanyuan Yang, Jin Wang

Erschienen in: Soft Computing | Ausgabe 13/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To minimize travel time of emergency vehicles on the way and improve efficiency of emergency response, an emergency vehicle route oriented signal coordinated control model with two-level programming was proposed based on the different priority types and priority levels of emergency vehicles. The upper level is the dynamic offset model of emergency vehicles, and the lower level is the green wave model of emergency vehicles. At dynamic offset level, latter phase was calculated based on the queue length ahead of the emergency vehicles and their arrival time, in which the former phase was the reference object. At route green wave level, maximum bandwidth of the route of emergency vehicles was calculated, based on the turning movement characteristics and its corresponding capacity reduction. Furthermore, the two-level programming model solution is obtained with genetic algorithm. Finally, simulation results of three control strategies, which are no-signal priority control strategy, isolated control priority strategy and coordinated priority control strategy in this paper, were obtained in micro-traffic simulation software VISSIM, with the case including three intersections in Suzhou roads as the emergency vehicles route. From the simulation results we can conclude that compared to no-signal priority control strategy, coordinated priority strategy can reduce delay, travel time, queue length and stops of emergency vehicles by 27,18, 36 and 38%, respectively, and the average delay of total vehicles at intersection can be reduced by 20%; compared to isolated control priority strategy, these numbers are 14, 6, 12, 21 and 22%, respectively, which means great improvement, and influence on social background traffic was also considered in it.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Finogeev AG, Parygin DS, Finogeev AA (2017) The convergence computing model for big sensor data mining and knowledge discovery. Human Centric Comput Inf Sci 7(1):11CrossRef Finogeev AG, Parygin DS, Finogeev AA (2017) The convergence computing model for big sensor data mining and knowledge discovery. Human Centric Comput Inf Sci 7(1):11CrossRef
Zurück zum Zitat Ghanim MS, Abulebdeh G (2015) Real-time dynamic transit signal priority optimization for coordinated traffic networks using genetic algorithms and artificial neural networks. J Intell Transp Syst 19(4):327–338CrossRef Ghanim MS, Abulebdeh G (2015) Real-time dynamic transit signal priority optimization for coordinated traffic networks using genetic algorithms and artificial neural networks. J Intell Transp Syst 19(4):327–338CrossRef
Zurück zum Zitat Hall T, Box PO, Best M (2007) Evaluation of emergency vehicle preemption strategies on a coordinated actuated signal system using hardware-in-the-loop simulation[C]. In: Transportation research board 86th annual meeting Hall T, Box PO, Best M (2007) Evaluation of emergency vehicle preemption strategies on a coordinated actuated signal system using hardware-in-the-loop simulation[C]. In: Transportation research board 86th annual meeting
Zurück zum Zitat He Q, Head KL, Ding J (2011) Heuristic algorithm for priority traffic signal control. Transp Res Rec J Transp Res Board 2259:1–7CrossRef He Q, Head KL, Ding J (2011) Heuristic algorithm for priority traffic signal control. Transp Res Rec J Transp Res Board 2259:1–7CrossRef
Zurück zum Zitat Jiang G, Liang Y, Guan J, Wei R, Li ZH, Gong YJ (2008) Bus signal and VIP vehicle emergency priority at intersections in Beijing olympic Center. J Transp Syst Eng Inf Technol 06:101–106 Jiang G, Liang Y, Guan J, Wei R, Li ZH, Gong YJ (2008) Bus signal and VIP vehicle emergency priority at intersections in Beijing olympic Center. J Transp Syst Eng Inf Technol 06:101–106
Zurück zum Zitat Lee JK, Jeong YS, Park JH (2015) s-ITSF: a service based intelligent transportation system framework for smart accident management. Human Centric Comput Inf Sci 5(1):34CrossRef Lee JK, Jeong YS, Park JH (2015) s-ITSF: a service based intelligent transportation system framework for smart accident management. Human Centric Comput Inf Sci 5(1):34CrossRef
Zurück zum Zitat Ma W, Ni W, Head L, Zhao J (2013) Effective coordinated optimization model for transit priority control under arterial progression. Transp Res Rec J Transp Res Board 2356:71–83CrossRef Ma W, Ni W, Head L, Zhao J (2013) Effective coordinated optimization model for transit priority control under arterial progression. Transp Res Rec J Transp Res Board 2356:71–83CrossRef
Zurück zum Zitat Mirchandani PB, Lucas DE (2004) Integrated transit priority and rail/emergency preemption in real-time traffic adaptive signal control. Intell Transp Syst J 8(2):101–115CrossRefMATH Mirchandani PB, Lucas DE (2004) Integrated transit priority and rail/emergency preemption in real-time traffic adaptive signal control. Intell Transp Syst J 8(2):101–115CrossRefMATH
Zurück zum Zitat Mu K, Hui F, Zhao X (2016) Multiple vehicle detection and tracking in highway traffic surveillance video based on SIFT feature matching[J]. J Inf Process Syst 12(2):183–195 Mu K, Hui F, Zhao X (2016) Multiple vehicle detection and tracking in highway traffic surveillance video based on SIFT feature matching[J]. J Inf Process Syst 12(2):183–195
Zurück zum Zitat Nelson EJ, Bullock D (2000) Impact evaluation of emergency vehicle preemption on signalized corridor operation: an evalution. Transp Res Rec J Transp Res Board 1727:1–11CrossRef Nelson EJ, Bullock D (2000) Impact evaluation of emergency vehicle preemption on signalized corridor operation: an evalution. Transp Res Rec J Transp Res Board 1727:1–11CrossRef
Zurück zum Zitat Qin X, Khan AM (2012) Control strategies of traffic signal timing transition for emergency vehicle preemption. Transp Res Part C Emerg Technol 25(25):1–17CrossRef Qin X, Khan AM (2012) Control strategies of traffic signal timing transition for emergency vehicle preemption. Transp Res Part C Emerg Technol 25(25):1–17CrossRef
Zurück zum Zitat Wang D, Zhu H, Yiming B (2011) Bus signal priority method at arterial signal progression. J Southeast Univ (Natural Science Edition) 41(4):859–865 Wang D, Zhu H, Yiming B (2011) Bus signal priority method at arterial signal progression. J Southeast Univ (Natural Science Edition) 41(4):859–865
Zurück zum Zitat Wu E, Xiaoguang Y, Zhen W et al (2008) Parameters co-optimization for artery coordinated control based on genetic algorithm[J]. J TongJi Univ (Natural Science) 36(7):921–926 Wu E, Xiaoguang Y, Zhen W et al (2008) Parameters co-optimization for artery coordinated control based on genetic algorithm[J]. J TongJi Univ (Natural Science) 36(7):921–926
Zurück zum Zitat Xie B, Hu Z, Zhao H (2011) Two-phase model of emergency vehicle signal preemption at intersection. J Syst Eng 04:492–499 Xie B, Hu Z, Zhao H (2011) Two-phase model of emergency vehicle signal preemption at intersection. J Syst Eng 04:492–499
Zurück zum Zitat Yang Z, Sun X, Sun P (2011) Signal priority control strategy and implementation for emergency vehicle an single intersection under traffic accidents. J Jilin Univ 03:640–644 Yang Z, Sun X, Sun P (2011) Signal priority control strategy and implementation for emergency vehicle an single intersection under traffic accidents. J Jilin Univ 03:640–644
Zurück zum Zitat Han Y, Xing B, Yao J et al (2015) Optimal model of regional traffic signal control under mixed traffic flow condition. J Traffic Transp Eng 15(1):119–126 Han Y, Xing B, Yao J et al (2015) Optimal model of regional traffic signal control under mixed traffic flow condition. J Traffic Transp Eng 15(1):119–126
Zurück zum Zitat Yun I, Park BB, Lee CK et al (2012) Comparison of emergency vehicle preemption methods using a hardware-in-the-loop simulation. Ksce J Civ Eng 16(6):1057–1063CrossRef Yun I, Park BB, Lee CK et al (2012) Comparison of emergency vehicle preemption methods using a hardware-in-the-loop simulation. Ksce J Civ Eng 16(6):1057–1063CrossRef
Zurück zum Zitat Zhang X, He B (2016) Emergency vehicles signal priority control based on loop to progressively phase coordination. Appl Res Comput 33(7):1983–1986 Zhang X, He B (2016) Emergency vehicles signal priority control based on loop to progressively phase coordination. Appl Res Comput 33(7):1983–1986
Zurück zum Zitat Zhang D, Han J, Li C, Wang J, Li X (2016) Detection of co-salient objects by looking deep and wide. Int J Comput Vis 120(2):215–232MathSciNetCrossRef Zhang D, Han J, Li C, Wang J, Li X (2016) Detection of co-salient objects by looking deep and wide. Int J Comput Vis 120(2):215–232MathSciNetCrossRef
Zurück zum Zitat Zhao Y, Ding D, Chen R (2016) A discontinuous Galerkin time domain integral equation method for electromagnetic scattering from PEC objects. IEEE Trans Antennas Propag 64(6):2410–2417MathSciNetCrossRef Zhao Y, Ding D, Chen R (2016) A discontinuous Galerkin time domain integral equation method for electromagnetic scattering from PEC objects. IEEE Trans Antennas Propag 64(6):2410–2417MathSciNetCrossRef
Zurück zum Zitat Zheng Y, Jeon B, Xu D, Wu QMJ, Zhang Hui (2015) Image segmentation by generalized hierarchical fuzzy C-means algorithm. J Intell Fuzzy Syst 28(2):4024–4028 Zheng Y, Jeon B, Xu D, Wu QMJ, Zhang Hui (2015) Image segmentation by generalized hierarchical fuzzy C-means algorithm. J Intell Fuzzy Syst 28(2):4024–4028
Zurück zum Zitat Zhengi Y, Jeon B, Zhang J, Chen Y (2015) Adaptively determining regularisation parameters in non-local total variation regularisation for image denoising. Electron Lett 51(2):144–145CrossRef Zhengi Y, Jeon B, Zhang J, Chen Y (2015) Adaptively determining regularisation parameters in non-local total variation regularisation for image denoising. Electron Lett 51(2):144–145CrossRef
Metadaten
Titel
Emergency vehicle route oriented signal coordinated control model with two-level programming
verfasst von
Jiao Yao
Kaimin Zhang
Yuanyuan Yang
Jin Wang
Publikationsdatum
14.09.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Soft Computing / Ausgabe 13/2018
Print ISSN: 1432-7643
Elektronische ISSN: 1433-7479
DOI
https://doi.org/10.1007/s00500-017-2826-x

Weitere Artikel der Ausgabe 13/2018

Soft Computing 13/2018 Zur Ausgabe