Skip to main content
Erschienen in: Neural Computing and Applications 9/2019

02.08.2018 | S.I. : Emergence in Human-like Intelligence towards Cyber-Physical Systems

Emotion recognition based on physiological signals using brain asymmetry index and echo state network

verfasst von: Fuji Ren, Yindong Dong, Wei Wang

Erschienen in: Neural Computing and Applications | Ausgabe 9/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper proposes a method to evaluate the degree of emotion being motivated in continuous music videos based on asymmetry index (AsI). By collecting two groups of electroencephalogram (EEG) signals from 6 channels (Fp1, Fp2, Fz and AF3, AF4, Fz) in the left and right hemispheres, multidimensional directed information is used to measure the mutual information shared between two frontal lobes, and then, we get AsI to estimate the degree of emotional induction. In order to evaluate the effect of AsI processing on physiological emotion recognition, 32-channel EEG signals, 2-channel EEG signals and 2-channel EMG signals are selected for each subject from the DEAP dataset, and different sub-bands are extracted using wavelet packet transform. k-means algorithm is used to cluster the wavelet packet coefficients of each sub-band, and the probability distribution of the coefficients under each cluster is calculated. Finally, the probability distribution value of each sample is sent as the original features into echo state network for unsupervised intrinsic plasticity training; the reservoir state nodes are selected as the final feature vector and fed into the support vector machine. The experimental results show that the proposed algorithm can achieve an average recognition rate of 70.5% when the subjects are independent. Compared with the case without AsI, the recognition rate is increased by 8.73%. On the other hand, the ESN is adopted for the original physiological feature refinement which can significantly reduce feature dimensions and be more beneficial to the emotion classification. Therefore, this study can effectively improve the performance of human–machine interface systems based on emotion recognition.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Vilar P (2014) Designing the user interface: strategies for effective human–computer interaction (5th edition). Inf Process Manage 61(5):1073–1074 Vilar P (2014) Designing the user interface: strategies for effective human–computer interaction (5th edition). Inf Process Manage 61(5):1073–1074
2.
Zurück zum Zitat Andreasson R, Alenljung B, Billing E et al (2018) Affective touch in human–robot interaction: conveying emotion to the nao robot. Int J Social Robot 3:1–19 Andreasson R, Alenljung B, Billing E et al (2018) Affective touch in human–robot interaction: conveying emotion to the nao robot. Int J Social Robot 3:1–19
3.
Zurück zum Zitat Zhang Z, Tanaka E (2017) Affective computing using clustering method for mapping human’s emotion. In: IEEE international conference on advanced intelligent mechatronics. IEEE, pp 235–240 Zhang Z, Tanaka E (2017) Affective computing using clustering method for mapping human’s emotion. In: IEEE international conference on advanced intelligent mechatronics. IEEE, pp 235–240
4.
Zurück zum Zitat Fragopanagos N, Taylor JG (2005) Emotion recognition in human–computer interaction. Neural Netw 18(4):389CrossRef Fragopanagos N, Taylor JG (2005) Emotion recognition in human–computer interaction. Neural Netw 18(4):389CrossRef
5.
Zurück zum Zitat Hu M, Zheng Y, Ren F et al (2015) Age estimation and gender classification of facial images based on Local Directional Pattern. In: IEEE international conference on cloud computing and intelligence systems. IEEE, pp 103–107 Hu M, Zheng Y, Ren F et al (2015) Age estimation and gender classification of facial images based on Local Directional Pattern. In: IEEE international conference on cloud computing and intelligence systems. IEEE, pp 103–107
6.
Zurück zum Zitat Ren F, Huang Z (2016) Automatic facial expression learning method based on humanoid robot XIN-REN. IEEE Trans Hum Mach Syst 46(6):810–821CrossRef Ren F, Huang Z (2016) Automatic facial expression learning method based on humanoid robot XIN-REN. IEEE Trans Hum Mach Syst 46(6):810–821CrossRef
7.
Zurück zum Zitat Wang K, An N, Li BN et al (2017) Speech emotion recognition using Fourier parameters. IEEE Trans Affect Comput 6(1):69–75CrossRef Wang K, An N, Li BN et al (2017) Speech emotion recognition using Fourier parameters. IEEE Trans Affect Comput 6(1):69–75CrossRef
8.
Zurück zum Zitat Camurri A, Camurri A, Camurri A (2016) Adaptive body gesture representation for automatic emotion recognition. ACM Trans Interact Intell Syst 6(1):6 Camurri A, Camurri A, Camurri A (2016) Adaptive body gesture representation for automatic emotion recognition. ACM Trans Interact Intell Syst 6(1):6
9.
Zurück zum Zitat Ren F (2009) Affective information processing and recognizing human emotion. Elsevier Science Publishers B.V., AmsterdamCrossRef Ren F (2009) Affective information processing and recognizing human emotion. Elsevier Science Publishers B.V., AmsterdamCrossRef
10.
Zurück zum Zitat Ren F, Wang L (2017) Sentiment analysis of text based on three-way decisions. J Intell Fuzzy Syst 33(1):245–254CrossRef Ren F, Wang L (2017) Sentiment analysis of text based on three-way decisions. J Intell Fuzzy Syst 33(1):245–254CrossRef
11.
Zurück zum Zitat Petrantonakis PC, Hadjileontiadis LJ (2012) Adaptive emotional information retrieval from EEG signals in the time–frequency domain. IEEE Trans Signal Process 60(5):2604–2616MathSciNetCrossRef Petrantonakis PC, Hadjileontiadis LJ (2012) Adaptive emotional information retrieval from EEG signals in the time–frequency domain. IEEE Trans Signal Process 60(5):2604–2616MathSciNetCrossRef
12.
Zurück zum Zitat Yoon HJ, Chung SY (2013) EEG-based emotion estimation using Bayesian weighted-log-posterior function and perceptron convergence algorithm. Comput Biol Med 43(12):2230–2237CrossRef Yoon HJ, Chung SY (2013) EEG-based emotion estimation using Bayesian weighted-log-posterior function and perceptron convergence algorithm. Comput Biol Med 43(12):2230–2237CrossRef
13.
Zurück zum Zitat Davidson RJ, Ekman P, Saron CD et al (1990) Approach-withdrawal and cerebral asymmetry: emotional expression and brain physiology: I. J Pers Soc Psychol 58(2):330CrossRef Davidson RJ, Ekman P, Saron CD et al (1990) Approach-withdrawal and cerebral asymmetry: emotional expression and brain physiology: I. J Pers Soc Psychol 58(2):330CrossRef
14.
Zurück zum Zitat Davidson RJ, Schwartz GE, Saron C, Bennett J, Goleman DJ (1979) Frontal versus parietal EEG asymmetry during positive and negative affect. Psychophysiology 16:202–203 Davidson RJ, Schwartz GE, Saron C, Bennett J, Goleman DJ (1979) Frontal versus parietal EEG asymmetry during positive and negative affect. Psychophysiology 16:202–203
15.
Zurück zum Zitat Zheng WL, Lu BL (2015) Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks. IEEE Trans Auton Ment Dev 7(3):162–175CrossRef Zheng WL, Lu BL (2015) Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks. IEEE Trans Auton Ment Dev 7(3):162–175CrossRef
16.
Zurück zum Zitat Daimi SN, Saha G (2014) Classification of emotions induced by music videos and correlation with participants’ rating. Expert Syst Appl 41(13):6057–6065CrossRef Daimi SN, Saha G (2014) Classification of emotions induced by music videos and correlation with participants’ rating. Expert Syst Appl 41(13):6057–6065CrossRef
17.
Zurück zum Zitat Sakata O, Shiina T, Saito Y (2002) Multidimensional directed information and its application. Electron Commun Jpn 85(4):45–55CrossRef Sakata O, Shiina T, Saito Y (2002) Multidimensional directed information and its application. Electron Commun Jpn 85(4):45–55CrossRef
18.
Zurück zum Zitat Petrantonakis PC, Hadjileontiadis LJ (2011) A novel emotion elicitation index using frontal brain asymmetry for enhanced EEG-based emotion recognition. IEEE Trans Inf Technol Biomed 15(5):737–746CrossRef Petrantonakis PC, Hadjileontiadis LJ (2011) A novel emotion elicitation index using frontal brain asymmetry for enhanced EEG-based emotion recognition. IEEE Trans Inf Technol Biomed 15(5):737–746CrossRef
19.
Zurück zum Zitat Sakata O, Shiina T, Satake T et al (2006) Short-time multidimensional directed coherence for EEG analysis. IEEJ Trans Electr Electron Eng 1(4):408–416CrossRef Sakata O, Shiina T, Satake T et al (2006) Short-time multidimensional directed coherence for EEG analysis. IEEJ Trans Electr Electron Eng 1(4):408–416CrossRef
20.
Zurück zum Zitat Deshpande G, Laconte S, Peltier S et al (2006) Directed transfer function analysis of fMRI data to investigate network dynamics. In: International conference of the IEEE engineering in medicine and biology society, p 671 Deshpande G, Laconte S, Peltier S et al (2006) Directed transfer function analysis of fMRI data to investigate network dynamics. In: International conference of the IEEE engineering in medicine and biology society, p 671
21.
Zurück zum Zitat Xu X, Ye Z, Peng J (2007) Method of direction-of-arrival estimation for uncorrelated, partially correlated and coherent sources. Microw Antennas Propag IET 1(4):949–954CrossRef Xu X, Ye Z, Peng J (2007) Method of direction-of-arrival estimation for uncorrelated, partially correlated and coherent sources. Microw Antennas Propag IET 1(4):949–954CrossRef
22.
Zurück zum Zitat Roebroeck A, Formisano E, Goebel R (2005) Mapping directed influence over the brain using Granger causality and fMRI. Neuroimage 25(1):230–242CrossRef Roebroeck A, Formisano E, Goebel R (2005) Mapping directed influence over the brain using Granger causality and fMRI. Neuroimage 25(1):230–242CrossRef
23.
Zurück zum Zitat Jaeger H (2001) The “echo state” approach to analysing and training recurrent neural networks. Technical report GMD Report 148. German National Research Center for Information Technology Jaeger H (2001) The “echo state” approach to analysing and training recurrent neural networks. Technical report GMD Report 148. German National Research Center for Information Technology
24.
Zurück zum Zitat Jaeger H (2002) Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the echo state network approach. GMD-Forschungszentrum Informationstechnik, Bonn Jaeger H (2002) Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the echo state network approach. GMD-Forschungszentrum Informationstechnik, Bonn
25.
Zurück zum Zitat Han M, Xu M (2018) Subspace echo state network for multivariate time series prediction. IEEE Trans Neural Netw Learn Syst 29(1):238–244MathSciNetCrossRef Han M, Xu M (2018) Subspace echo state network for multivariate time series prediction. IEEE Trans Neural Netw Learn Syst 29(1):238–244MathSciNetCrossRef
26.
Zurück zum Zitat Koprinkova Hristova P, Tontchev N (2012) Echo state networks for multi-dimensional data clustering. In: International conference on artificial neural networks and machine learning. Springer-Verlag, pp 571–578 Koprinkova Hristova P, Tontchev N (2012) Echo state networks for multi-dimensional data clustering. In: International conference on artificial neural networks and machine learning. Springer-Verlag, pp 571–578
27.
Zurück zum Zitat Fourati R, Ammar B, Aouiti C et al (2017) Optimized echo state network with intrinsic plasticity for EEG-based emotion recognition. In: International conference on neural information processing. Springer, Cham, pp 718–727CrossRef Fourati R, Ammar B, Aouiti C et al (2017) Optimized echo state network with intrinsic plasticity for EEG-based emotion recognition. In: International conference on neural information processing. Springer, Cham, pp 718–727CrossRef
28.
Zurück zum Zitat Koelstra S, Muhl C, Soleymani M et al (2012) DEAP: a database for emotion analysis; using physiological signals. IEEE Trans Affect Comput 3(1):18–31CrossRef Koelstra S, Muhl C, Soleymani M et al (2012) DEAP: a database for emotion analysis; using physiological signals. IEEE Trans Affect Comput 3(1):18–31CrossRef
29.
Zurück zum Zitat Kanungo T, Mount DM, Netanyahu NS et al (2002) An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans Pattern Anal Mach Intell 24(7):881–892CrossRef Kanungo T, Mount DM, Netanyahu NS et al (2002) An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans Pattern Anal Mach Intell 24(7):881–892CrossRef
30.
Zurück zum Zitat Hartigan JA (1979) A k-means clustering algorithm. Appl Stat 28(1):100–108CrossRef Hartigan JA (1979) A k-means clustering algorithm. Appl Stat 28(1):100–108CrossRef
31.
Zurück zum Zitat Huang Z (1998) Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Min Knowl Disc 2(3):283–304CrossRef Huang Z (1998) Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Min Knowl Disc 2(3):283–304CrossRef
33.
Zurück zum Zitat Lin YP, Wang CH, Jung TP et al (2010) EEG-based emotion recognition in music listening. IEEE Trans Biomed Eng 57(7):1798–1806CrossRef Lin YP, Wang CH, Jung TP et al (2010) EEG-based emotion recognition in music listening. IEEE Trans Biomed Eng 57(7):1798–1806CrossRef
34.
Zurück zum Zitat Jenke R, Peer A, Buss M (2017) Feature extraction and selection for emotion recognition from EEG. IEEE Trans Affect Comput 5(3):327–339CrossRef Jenke R, Peer A, Buss M (2017) Feature extraction and selection for emotion recognition from EEG. IEEE Trans Affect Comput 5(3):327–339CrossRef
35.
Zurück zum Zitat Yin Z, Wang Y, Liu L et al (2017) Cross-subject EEG feature selection for emotion recognition using transfer recursive feature elimination. Front Neurorobot 11:19CrossRef Yin Z, Wang Y, Liu L et al (2017) Cross-subject EEG feature selection for emotion recognition using transfer recursive feature elimination. Front Neurorobot 11:19CrossRef
36.
Zurück zum Zitat Schrauwen B, Wardermann M, Verstraeten D et al (2008) Improving reservoirs using intrinsic plasticity. Neurocomputing 71(7–9):1159–1171CrossRef Schrauwen B, Wardermann M, Verstraeten D et al (2008) Improving reservoirs using intrinsic plasticity. Neurocomputing 71(7–9):1159–1171CrossRef
37.
Zurück zum Zitat Skowronski MD, Harris JG (2007) Special issue: automatic speech recognition using a predictive echo state network classifier. Elsevier Science Ltd, AmsterdamMATH Skowronski MD, Harris JG (2007) Special issue: automatic speech recognition using a predictive echo state network classifier. Elsevier Science Ltd, AmsterdamMATH
38.
Zurück zum Zitat Chen J, Hu B, Wang Y et al (2017) A three-stage decision framework for multi-subject emotion recognition using physiological signals. In: IEEE international conference on bioinformatics and biomedicine. IEEE, pp 470–474 Chen J, Hu B, Wang Y et al (2017) A three-stage decision framework for multi-subject emotion recognition using physiological signals. In: IEEE international conference on bioinformatics and biomedicine. IEEE, pp 470–474
Metadaten
Titel
Emotion recognition based on physiological signals using brain asymmetry index and echo state network
verfasst von
Fuji Ren
Yindong Dong
Wei Wang
Publikationsdatum
02.08.2018
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 9/2019
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-018-3664-1

Weitere Artikel der Ausgabe 9/2019

Neural Computing and Applications 9/2019 Zur Ausgabe

S.I. : Emergence in Human-like Intelligence towards Cyber-Physical Systems

Research on partial fingerprint recognition algorithm based on deep learning