Skip to main content

2024 | OriginalPaper | Buchkapitel

Empirical Evaluation of Evolutionary Algorithms with Power-Law Ranking Selection

verfasst von : Duc-Cuong Dang, Anton V. Eremeev, Xiaoyu Qin

Erschienen in: Intelligent Information Processing XII

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

It has been proven that non-elitist evolutionary algorithms (EAs) with proper selection mechanisms, including the recently proposed power-law ranking selection, can efficiently escape local optima on a broad class of problems called SparseLocalOpt \(_{\alpha ,\varepsilon }\), where elitist EAs fail. However, those theoretical upper bounds on the runtime are not tight as they require large populations and a tight balance between mutation rates and selection pressure to keep the algorithms operating near the so-called “error threshold”. This paper empirically clarifies the significance of these theoretical requirements and makes a series of performance comparisons between the non-elitist EA using power-law ranking selection and other EAs on various benchmark problems.
Our experimental results show that non-elitist EAs optimise the Funnel problem with deceptive local optimum significantly faster with power-law ranking selection than with tournament selection. Furthermore, power-law selection outperforms UMDA and the (1+1) EA in our experiments on the NK-Landscape and Max k-Sat problems, but yields to the \((\mu ,\lambda )\)-selection, tournament selection, and the self-adaptive MOSA-EA. On the unicost set cover problems, the EA with power-law selection shows competitive results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Baker, J.E.: An analysis of the effects of selection in genetic algorithms. Ph.D. thesis, Vanderbilt University (1989) Baker, J.E.: An analysis of the effects of selection in genetic algorithms. Ph.D. thesis, Vanderbilt University (1989)
2.
Zurück zum Zitat Beasley, J.E.: OR-Library: distributing test problems by electronic mail. J. Oper. Res. Soc. 41(11), 1069–1072 (1990)CrossRef Beasley, J.E.: OR-Library: distributing test problems by electronic mail. J. Oper. Res. Soc. 41(11), 1069–1072 (1990)CrossRef
3.
Zurück zum Zitat Buzdalov, M., Doerr, B.: Runtime analysis of the \((1 + (\lambda ,\lambda ))\) genetic algorithm on random satisfiable 3-CNF formulas. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1343–1350. ACM, Berlin Germany (2017) Buzdalov, M., Doerr, B.: Runtime analysis of the \((1 + (\lambda ,\lambda ))\) genetic algorithm on random satisfiable 3-CNF formulas. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1343–1350. ACM, Berlin Germany (2017)
4.
Zurück zum Zitat Corus, D., Dang, D.C., Eremeev, A.V., Lehre, P.K.: Level-based analysis of genetic algorithms and other search processes. IEEE Trans. Evol. Comput. 22(5), 707–719 (2018)CrossRef Corus, D., Dang, D.C., Eremeev, A.V., Lehre, P.K.: Level-based analysis of genetic algorithms and other search processes. IEEE Trans. Evol. Comput. 22(5), 707–719 (2018)CrossRef
5.
Zurück zum Zitat Dang, D.C., Eremeev, A., Lehre, P.K.: escaping local optima with non-elitist evolutionary algorithms. In: Proceedings of AAAI 2021. AAAI Press, Palo Alto, California USA (2020) Dang, D.C., Eremeev, A., Lehre, P.K.: escaping local optima with non-elitist evolutionary algorithms. In: Proceedings of AAAI 2021. AAAI Press, Palo Alto, California USA (2020)
6.
Zurück zum Zitat Dang, D.C., Eremeev, A., Lehre, P.K.: Non-elitist evolutionary algorithms excel in fitness landscapes with sparse deceptive regions and dense valleys. In: Proceedings of the GECCO, pp. 1133–1141. GECCO ’21, ACM, New York, NY, USA (2021) Dang, D.C., Eremeev, A., Lehre, P.K.: Non-elitist evolutionary algorithms excel in fitness landscapes with sparse deceptive regions and dense valleys. In: Proceedings of the GECCO, pp. 1133–1141. GECCO ’21, ACM, New York, NY, USA (2021)
7.
Zurück zum Zitat Dang, D.C., Eremeev, A., Lehre, P.K., Qin, X.: Fast non-elitist evolutionary algorithms with power-law ranking selection. In: Proceedings of GECCO, pp. 1372–1380. GECCO ’22, ACM, New York, NY, USA (2022) Dang, D.C., Eremeev, A., Lehre, P.K., Qin, X.: Fast non-elitist evolutionary algorithms with power-law ranking selection. In: Proceedings of GECCO, pp. 1372–1380. GECCO ’22, ACM, New York, NY, USA (2022)
9.
Zurück zum Zitat Doerr, B., Doerr, C., Ebel, F.: From black-box complexity to designing new genetic algorithms. Theoret. Comput. Sci. 567, 87–104 (2015)MathSciNetCrossRef Doerr, B., Doerr, C., Ebel, F.: From black-box complexity to designing new genetic algorithms. Theoret. Comput. Sci. 567, 87–104 (2015)MathSciNetCrossRef
10.
Zurück zum Zitat Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In: Proceedings of the GECCO, pp. 777–784. ACM, Berlin Germany (2017) Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In: Proceedings of the GECCO, pp. 777–784. ACM, Berlin Germany (2017)
11.
Zurück zum Zitat Gao, C., Yao, X., Weise, T., Li, J.: An efficient local search heuristic with row weighting for the unicost set covering problem. Eur. J. Oper. Res. 246(3), 750–761 (2015)MathSciNetCrossRef Gao, C., Yao, X., Weise, T., Li, J.: An efficient local search heuristic with row weighting for the unicost set covering problem. Eur. J. Oper. Res. 246(3), 750–761 (2015)MathSciNetCrossRef
12.
Zurück zum Zitat Goldberg, D.E., Deb, K.: A comparative analysis of selection schemes used in genetic algorithms. In: Proceedings of the First Workshop on Foundations of Genetic Algorithms, pp. 69–93. Morgan Kaufmann (1990) Goldberg, D.E., Deb, K.: A comparative analysis of selection schemes used in genetic algorithms. In: Proceedings of the First Workshop on Foundations of Genetic Algorithms, pp. 69–93. Morgan Kaufmann (1990)
13.
Zurück zum Zitat Harik, G., Lobo, F., Goldberg, D.: The compact genetic algorithm. IEEE Trans. Evol. Comput. 3(4), 287–297 (1999)CrossRef Harik, G., Lobo, F., Goldberg, D.: The compact genetic algorithm. IEEE Trans. Evol. Comput. 3(4), 287–297 (1999)CrossRef
14.
Zurück zum Zitat Hevia Fajardo, M.A.H., Sudholt, D.: Self-adjusting population sizes for non-elitist evolutionary algorithms: why success rates matter. In: Proceedings of GECCO, pp. 1151–1159. ACM, Lille France (2021) Hevia Fajardo, M.A.H., Sudholt, D.: Self-adjusting population sizes for non-elitist evolutionary algorithms: why success rates matter. In: Proceedings of GECCO, pp. 1151–1159. ACM, Lille France (2021)
16.
Zurück zum Zitat Lehre, P.K., Qin, X.: Self-adaptation via Multi-objectivisation: a theoretical study. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1417–1425. ACM, Boston, USA (2022) Lehre, P.K., Qin, X.: Self-adaptation via Multi-objectivisation: a theoretical study. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1417–1425. ACM, Boston, USA (2022)
17.
Zurück zum Zitat Lehre, P.K., Yao, X.: On the impact of mutation-selection balance on the runtime of evolutionary algorithms. IEEE Trans. Evol. Comput. 16(2), 225–241 (2012)CrossRef Lehre, P.K., Yao, X.: On the impact of mutation-selection balance on the runtime of evolutionary algorithms. IEEE Trans. Evol. Comput. 16(2), 225–241 (2012)CrossRef
18.
19.
Zurück zum Zitat Ochoa, G.: Error thresholds in genetic algorithms. Evol. Comput. 14(2), 157–182 (2006)CrossRef Ochoa, G.: Error thresholds in genetic algorithms. Evol. Comput. 14(2), 157–182 (2006)CrossRef
21.
Zurück zum Zitat Sudholt, D., Witt, C.: Update Strength in EDAs and ACO: how to avoid genetic drift. In: Proceedings of the Genetic and Evolutionary Computation Conference 2016, pp. 61–68. ACM, Denver Colorado USA (2016) Sudholt, D., Witt, C.: Update Strength in EDAs and ACO: how to avoid genetic drift. In: Proceedings of the Genetic and Evolutionary Computation Conference 2016, pp. 61–68. ACM, Denver Colorado USA (2016)
22.
Zurück zum Zitat Vose, M.D.: A linear algorithm for generating random numbers with a given distribution. IEEE Trans. Softw. Eng. 17(9), 972–975 (1991)MathSciNetCrossRef Vose, M.D.: A linear algorithm for generating random numbers with a given distribution. IEEE Trans. Softw. Eng. 17(9), 972–975 (1991)MathSciNetCrossRef
23.
Zurück zum Zitat Walker, A.J.: New fast method for generating discrete random numbers with arbitrary frequency distributions. Electron. Lett. 10(8), 127–128 (1974)CrossRef Walker, A.J.: New fast method for generating discrete random numbers with arbitrary frequency distributions. Electron. Lett. 10(8), 127–128 (1974)CrossRef
Metadaten
Titel
Empirical Evaluation of Evolutionary Algorithms with Power-Law Ranking Selection
verfasst von
Duc-Cuong Dang
Anton V. Eremeev
Xiaoyu Qin
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-57808-3_16