Skip to main content

2024 | OriginalPaper | Buchkapitel

Employee Attrition Prediction using Ensemble Methods

verfasst von : Chayti Saha, Partha Chakraborty, Prince Chandra Talukder, Md. Tofazzal Hosen, Md. Mohi Uddin, Mohammad Abu Yousuf

Erschienen in: Proceedings of Third International Conference on Computing and Communication Networks

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Employee attrition, or employees quitting the firm willingly, is a persistent problem for contemporary businesses. This is a serious issue for businesses, especially when critical personnel like qualified technicians depart for more advantageous positions. Financial losses are incurred to replace the skilled workforce as a result. When employees quit their jobs, they typically carry valuable, unspoken knowledge with them that offers the organization a competitive advantage. A corporation should prioritize reducing personnel attrition with the goal to maintain a persistent competitive advantage over its competitors. This study focuses on this, which will help businesses estimate staff turnover and promote economic growth. This study investigates employee attrition prediction analysis to address the pressing issue of voluntary turnover in contemporary businesses. In this work, four ensemble techniques were used, mainly achieving an accuracy of 88.73% for the MLP, Random Forest, and KNN ensemble. This study emphasizes the value of proactive retention methods for fostering a healthy workplace environment and guaranteeing organizational stability.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cotton, J.L., Tuttle, J.M.: Employee turnover: a meta-analysis and review with implications for research. Acad. Manag. Rev. 55–70 (1986) Cotton, J.L., Tuttle, J.M.: Employee turnover: a meta-analysis and review with implications for research. Acad. Manag. Rev. 55–70 (1986)
2.
Zurück zum Zitat Liu, D., Mitchell, T.R., Lee, T.W., Holtom, B.C., Hinkin, T.R.: When employees are out of step with coworkers: How job satisfaction trajectory and dispersion influence individual-and unit-level voluntary turnover. Acad. Manag. J. 1360–1380 (2012) Liu, D., Mitchell, T.R., Lee, T.W., Holtom, B.C., Hinkin, T.R.: When employees are out of step with coworkers: How job satisfaction trajectory and dispersion influence individual-and unit-level voluntary turnover. Acad. Manag. J. 1360–1380 (2012)
3.
Zurück zum Zitat Heckert, T.M., Farabee, A.M.: Turnover intentions of the faculty at a teaching-focused university. Psychol. Rep. 39–45 (2006) Heckert, T.M., Farabee, A.M.: Turnover intentions of the faculty at a teaching-focused university. Psychol. Rep. 39–45 (2006)
5.
Zurück zum Zitat Alao, D.O., Adeyemo, A.B.: Analyzing employee attrition using decision tree algorithms (2013) Alao, D.O., Adeyemo, A.B.: Analyzing employee attrition using decision tree algorithms (2013)
7.
Zurück zum Zitat Alduay, J., Sarah, S., Rajpoot, K.: Predicting employee attrition using machine learning. In: 2018 International Conference on Innovations in Information Technology (IIT). IEEE (2018) Alduay, J., Sarah, S., Rajpoot, K.: Predicting employee attrition using machine learning. In: 2018 International Conference on Innovations in Information Technology (IIT). IEEE (2018)
8.
Zurück zum Zitat Reddy, S.S., et al.: Prediction of employee attrition using datamining. In: 2018 IEEE International Conference on System, Computation, Automation and Networking (ICSCA), pp. 1–8 (2018) Reddy, S.S., et al.: Prediction of employee attrition using datamining. In: 2018 IEEE International Conference on System, Computation, Automation and Networking (ICSCA), pp. 1–8 (2018)
9.
Zurück zum Zitat Srivastava, D.K., Tiwari, P.K.: An analysis report to reduce the employee attrition within organizations. J. Discrete Math. Sci. Cryptogr. 23, 337–348 (2020) Srivastava, D.K., Tiwari, P.K.: An analysis report to reduce the employee attrition within organizations. J. Discrete Math. Sci. Cryptogr. 23, 337–348 (2020)
10.
Zurück zum Zitat Fallucchi, F., Coladangelo, M., Giuliano, R., William De Luca, E.: Predicting employee attrition using machine learning techniques. Computers 9(4), 86 (2020) Fallucchi, F., Coladangelo, M., Giuliano, R., William De Luca, E.: Predicting employee attrition using machine learning techniques. Computers 9(4), 86 (2020)
11.
Zurück zum Zitat Setiawan, I., et al.: HR analytics: employee attrition analysis using logistic regression. In: IOP Conference Series: Materials Science and Engineering, vol. 830 (2020) Setiawan, I., et al.: HR analytics: employee attrition analysis using logistic regression. In: IOP Conference Series: Materials Science and Engineering, vol. 830 (2020)
12.
Zurück zum Zitat Raja, D.V.A.J., Kumar, R.A.R.: A study to reduce employee attrition in IT industries. Int. J. Mark. Hum. Resour. Manag. (IJMHRM) 7(1), 1–14 (2016) Raja, D.V.A.J., Kumar, R.A.R.: A study to reduce employee attrition in IT industries. Int. J. Mark. Hum. Resour. Manag. (IJMHRM) 7(1), 1–14 (2016)
13.
Zurück zum Zitat Bindra, H., Sehgal, K., Jain, R.: Optimisation of C5.0 using association rules and prediction of employee attrition. In: International Conference on Innovative Computing and Communications. Lecture Notes in Networks and Systems, Singapore (2019) Bindra, H., Sehgal, K., Jain, R.: Optimisation of C5.0 using association rules and prediction of employee attrition. In: International Conference on Innovative Computing and Communications. Lecture Notes in Networks and Systems, Singapore (2019)
14.
Zurück zum Zitat Mishra, S.N., Lama, D.R.: A decision making model for human resource management in organizations using data mining and predictive analytics. Int. J. Comput. Sci. Inform. Secur. 14(5), 217 (2016) Mishra, S.N., Lama, D.R.: A decision making model for human resource management in organizations using data mining and predictive analytics. Int. J. Comput. Sci. Inform. Secur. 14(5), 217 (2016)
15.
Zurück zum Zitat Nagadevara, V.: Early prediction of employee attrition in software companies-application of data mining techniques. Res. Pract. Hum. Resour. Manag. 16, 2020–2032 (2008) Nagadevara, V.: Early prediction of employee attrition in software companies-application of data mining techniques. Res. Pract. Hum. Resour. Manag. 16, 2020–2032 (2008)
16.
Zurück zum Zitat Rombaut, E., Guerry, M.A.: Predicting voluntary turnover through Human Resources database analysis. Manag. Res. Rev. 41, 96–112 (2018)CrossRef Rombaut, E., Guerry, M.A.: Predicting voluntary turnover through Human Resources database analysis. Manag. Res. Rev. 41, 96–112 (2018)CrossRef
17.
Zurück zum Zitat Usha, P., Balaji, N.: Analysing employee attrition using machine learning. Karpagam J. Comput. Sci. 13, 277–282 (2019) Usha, P., Balaji, N.: Analysing employee attrition using machine learning. Karpagam J. Comput. Sci. 13, 277–282 (2019)
18.
Zurück zum Zitat Ponnuru, S., Merugumala, G., Padigala, S., Vanga, R., Kantapalli, B.: Employee attrition prediction using logistic regression. Int. J. Res. Appl. Sci. Eng. Technol. 8, 2871–2875 (2020)CrossRef Ponnuru, S., Merugumala, G., Padigala, S., Vanga, R., Kantapalli, B.: Employee attrition prediction using logistic regression. Int. J. Res. Appl. Sci. Eng. Technol. 8, 2871–2875 (2020)CrossRef
19.
Zurück zum Zitat Garigipati, R.K., Raghu, K., Saikumar, K.: Detection and identification of employee attrition using a machine learning algorithm. In: Handbook of Research on Technologies and Systems for e-Collaboration During Global Crises, pp. 120–131. IGI Global (2022) Garigipati, R.K., Raghu, K., Saikumar, K.: Detection and identification of employee attrition using a machine learning algorithm. In: Handbook of Research on Technologies and Systems for e-Collaboration During Global Crises, pp. 120–131. IGI Global (2022)
20.
Zurück zum Zitat Darapaneni, N., et al.: A detailed analysis of AI models for predicting employee attrition risk. In: 2022 IEEE 10th Region 10 Humanitarian Technology Conference (R10-HTC). IEEE (2022) Darapaneni, N., et al.: A detailed analysis of AI models for predicting employee attrition risk. In: 2022 IEEE 10th Region 10 Humanitarian Technology Conference (R10-HTC). IEEE (2022)
Metadaten
Titel
Employee Attrition Prediction using Ensemble Methods
verfasst von
Chayti Saha
Partha Chakraborty
Prince Chandra Talukder
Md. Tofazzal Hosen
Md. Mohi Uddin
Mohammad Abu Yousuf
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-0892-5_38