Skip to main content

2014 | OriginalPaper | Buchkapitel

35. Employing Cytoskeletal Treadmilling in Bio-Actuator

verfasst von : Ken-Ichi Sano, Ryuzo Kawamura, Yoshihito Osada

Erschienen in: Soft Actuators

Verlag: Springer Japan

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, we describe treadmilling bio-actuators. The principle of treadmilling actuator is, filamentous protein complex formation by actin or tubulin accompanying a sequence of nucleotide triphosphate hydrolysis is to alter the critical concentration of polymerization at the two ends of the filament. Recently, we have succeeded in the creation of hydrogels which autonomously oscillate owing to the treadmilling of actin or tubulin. These hydrogels have great potential as bio-actuators because they are easy to make on a centimeter scale.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bray D (2001) Cell movements: from molecules to motility, 2nd edn. Garland Science, New York Bray D (2001) Cell movements: from molecules to motility, 2nd edn. Garland Science, New York
2.
Zurück zum Zitat Alberts B, Johnson A, Lewis J et al (2002) Molecular biology of the cell, 4th edn. Garland Science, New York Alberts B, Johnson A, Lewis J et al (2002) Molecular biology of the cell, 4th edn. Garland Science, New York
3.
Zurück zum Zitat Howard J, Hudspeth AJ, Vale RD (1989) Movement of microtubules by single kinesin molecules. Nature 342:154–158CrossRef Howard J, Hudspeth AJ, Vale RD (1989) Movement of microtubules by single kinesin molecules. Nature 342:154–158CrossRef
4.
Zurück zum Zitat Vale RD, Reese TS, Sheetz MP (1985) Identification of a novel force-generating protein, kinesin, involved in. Cell 42:39–50CrossRef Vale RD, Reese TS, Sheetz MP (1985) Identification of a novel force-generating protein, kinesin, involved in. Cell 42:39–50CrossRef
5.
Zurück zum Zitat Sheetz MP, Spudich JA (1983) Movement of myosin-coated fluorescent beads on actin cables in vitro. Nature 303:31–35CrossRef Sheetz MP, Spudich JA (1983) Movement of myosin-coated fluorescent beads on actin cables in vitro. Nature 303:31–35CrossRef
6.
7.
Zurück zum Zitat Berg HC (2003) The rotary motor of bacterial flagella. Annu Rev Biochem 72:19–54CrossRef Berg HC (2003) The rotary motor of bacterial flagella. Annu Rev Biochem 72:19–54CrossRef
8.
Zurück zum Zitat Valle RB (ed) (1991) Molecular motors and the cytoskeleton. In: methods enzymol, vol 196. Academic, San Diego Valle RB (ed) (1991) Molecular motors and the cytoskeleton. In: methods enzymol, vol 196. Academic, San Diego
9.
Zurück zum Zitat Diehl MR, Zhang K, Lee HJ, Tirrell DA (2006) Engineering cooperativity in biomotor-protein assemblies. Science 311:1468–1471CrossRef Diehl MR, Zhang K, Lee HJ, Tirrell DA (2006) Engineering cooperativity in biomotor-protein assemblies. Science 311:1468–1471CrossRef
10.
Zurück zum Zitat Hess H, Clemmens J, Brunner C et al (2005) Molecular self-assembly of “nanowires” and “nanospools” using active transport. Nano Lett 5:629–633CrossRef Hess H, Clemmens J, Brunner C et al (2005) Molecular self-assembly of “nanowires” and “nanospools” using active transport. Nano Lett 5:629–633CrossRef
11.
Zurück zum Zitat Kakugo A, Shikinaka K, Matsumoto K et al (2003) Growth of large polymer-actin complexes. Bioconjug Chem 14:1185–1190CrossRef Kakugo A, Shikinaka K, Matsumoto K et al (2003) Growth of large polymer-actin complexes. Bioconjug Chem 14:1185–1190CrossRef
12.
Zurück zum Zitat Kawamura R, Kakugo A, Shikinaka K et al (2008) Ring-shaped assembly of microtubules shows preferential conterclockwise motion. Biomacromolecles 9:2277–2282CrossRef Kawamura R, Kakugo A, Shikinaka K et al (2008) Ring-shaped assembly of microtubules shows preferential conterclockwise motion. Biomacromolecles 9:2277–2282CrossRef
13.
Zurück zum Zitat Sheterline P, Clayton J, Sparrow JC (1998) Actin, 4th edn. Oxford University Press, New York Sheterline P, Clayton J, Sparrow JC (1998) Actin, 4th edn. Oxford University Press, New York
14.
Zurück zum Zitat Pollard TD (2007) Regulation of actin filament assembly by Arp2/3 complex and formins. Annu Rev Biophys Biomol Struct 36:451–477CrossRef Pollard TD (2007) Regulation of actin filament assembly by Arp2/3 complex and formins. Annu Rev Biophys Biomol Struct 36:451–477CrossRef
15.
Zurück zum Zitat Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453–465CrossRef Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453–465CrossRef
16.
Zurück zum Zitat Frederiksen DW, Cunnungham LW (eds) (1982) Structural and contractile proteins Part B, the contractile apparatus and the cytoskeleton. In: methods enzymol, vol 85. Academic, San Diego Frederiksen DW, Cunnungham LW (eds) (1982) Structural and contractile proteins Part B, the contractile apparatus and the cytoskeleton. In: methods enzymol, vol 85. Academic, San Diego
17.
Zurück zum Zitat Pollard TD (1986) Rate constants for the reactions of ATP- and ADP-actin with the ends of actin filaments. J Cell Biol 103:2747–2754CrossRef Pollard TD (1986) Rate constants for the reactions of ATP- and ADP-actin with the ends of actin filaments. J Cell Biol 103:2747–2754CrossRef
18.
Zurück zum Zitat Pollard TD, Cooper JA (2009) Actin, a central player in cell shape and movement. Science 326:1208–1212CrossRef Pollard TD, Cooper JA (2009) Actin, a central player in cell shape and movement. Science 326:1208–1212CrossRef
19.
Zurück zum Zitat Mahadevan L, Matsudaira P (2000) Motility powered by supramolecular springs and ratchets. Science 288:95–100CrossRef Mahadevan L, Matsudaira P (2000) Motility powered by supramolecular springs and ratchets. Science 288:95–100CrossRef
20.
Zurück zum Zitat Horio T, Hotani H (1986) Visualization of the dynamic instability of individual microtubules by dark-field microscopy. Nature 321:605–607CrossRef Horio T, Hotani H (1986) Visualization of the dynamic instability of individual microtubules by dark-field microscopy. Nature 321:605–607CrossRef
21.
Zurück zum Zitat Tanaka-Takiguchi Y, Kakei T, Tanimura A et al (2004) The elongation and contraction of actin bundles are induced by double-headed myosins in a motor concentration-dependent manner. J Mol Biol 341:467–476CrossRef Tanaka-Takiguchi Y, Kakei T, Tanimura A et al (2004) The elongation and contraction of actin bundles are induced by double-headed myosins in a motor concentration-dependent manner. J Mol Biol 341:467–476CrossRef
22.
Zurück zum Zitat Pantaloni D, Le Clainche C, Carlier MF (2001) Mechanism of actin-based motility. Science 292:1502–1506CrossRef Pantaloni D, Le Clainche C, Carlier MF (2001) Mechanism of actin-based motility. Science 292:1502–1506CrossRef
23.
Zurück zum Zitat Tilney LG, Portnoy DA (1989) Actin filaments and the growth, movement, and spread of the intracellular. J Cell Biol 109:1597–1608CrossRef Tilney LG, Portnoy DA (1989) Actin filaments and the growth, movement, and spread of the intracellular. J Cell Biol 109:1597–1608CrossRef
24.
Zurück zum Zitat Sano K, Kawamura R, Tominaga T et al (2011) Self-repairing filamentous actin hydrogel with hierarchical structure. Biomacromolecules 12:4173–4177CrossRef Sano K, Kawamura R, Tominaga T et al (2011) Self-repairing filamentous actin hydrogel with hierarchical structure. Biomacromolecules 12:4173–4177CrossRef
25.
Zurück zum Zitat Sano K, Kawamura R, Tominaga T et al (2011) Thermoresponsive microtubule hydrogel with high hierarchical structure. Biomacromolecules 12:1409–1413CrossRef Sano K, Kawamura R, Tominaga T et al (2011) Thermoresponsive microtubule hydrogel with high hierarchical structure. Biomacromolecules 12:1409–1413CrossRef
26.
Zurück zum Zitat Kawamura R, Sano K, Ijiro K, Osada Y (2014) Chemically cross-linked microtubule assembly shows enhanced dynamic motions on kinesins. RSC Adv DOI: 10.1039/C4RA04491F Kawamura R, Sano K, Ijiro K, Osada Y (2014) Chemically cross-linked microtubule assembly shows enhanced dynamic motions on kinesins. RSC Adv DOI: 10.1039/C4RA04491F
Metadaten
Titel
Employing Cytoskeletal Treadmilling in Bio-Actuator
verfasst von
Ken-Ichi Sano
Ryuzo Kawamura
Yoshihito Osada
Copyright-Jahr
2014
Verlag
Springer Japan
DOI
https://doi.org/10.1007/978-4-431-54767-9_35

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.