Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 4/2016

19-12-2015 | Review

α-Fe2O3 based nanomaterials as gas sensors

Authors: A. Mirzaei, B. Hashemi, K. Janghorban

Published in: Journal of Materials Science: Materials in Electronics | Issue 4/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Interest in detecting and determining concentrations of toxic and flammable gases has constantly been on the increase in recent years due to increase of modernization, industrialization and high standards of life. Detection of such gases is very important in many different fields such as industrial emission control, household and social security, vehicle emission control and environmental monitoring. Metal oxide gas sensors are among most important devices to detect a large variety of gases. α-Fe2O3, an environmental friendly semiconductor (E g = 2.1 eV), is the most stable iron oxide under ambient atmosphere and because of its low cost, high stability, high resistance to corrosion, and its environmentally friendly properties is one of the most important metal oxides for gas sensing applications. This is the first review about gas sensing properties of α-Fe2O3 nanostructures. In this paper gas sensing properties of α-Fe2O3 are extensively reviewed. After a brief explanation about metal oxide gas sensors and α-Fe2O3, sensors based on α-Fe2O3 nanomaterials have been reviewed. Gas sensing section is divided into five subsections: pure α-Fe2O3 gas sensors, metal/α-Fe2O3 gas sensors, metal oxide/α-Fe2O3 gas sensors, polymer/α-Fe2O3 gas sensors and graphene/α-Fe2O3 gas sensors.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. Hjiri, L. El Mir, S.G. Leonardi, A. Pistone, L. Mavilia, G. Neri, Al-doped ZnO for highly sensitive CO gas sensors. Sens. Actuators B Chem. 196, 413–420 (2014)CrossRef M. Hjiri, L. El Mir, S.G. Leonardi, A. Pistone, L. Mavilia, G. Neri, Al-doped ZnO for highly sensitive CO gas sensors. Sens. Actuators B Chem. 196, 413–420 (2014)CrossRef
2.
go back to reference T. Hübert, L. Boon-Brett, G. Black, U. Banach, Hydrogen sensors—a review. Sens. Actuators B Chem. 157, 329–352 (2011)CrossRef T. Hübert, L. Boon-Brett, G. Black, U. Banach, Hydrogen sensors—a review. Sens. Actuators B Chem. 157, 329–352 (2011)CrossRef
3.
go back to reference G. Korotcenkov, S.D. Han, J.R. Stetter, Review of electrochemical hydrogen sensors. Chem. Rev. 109, 1402–1433 (2009)CrossRef G. Korotcenkov, S.D. Han, J.R. Stetter, Review of electrochemical hydrogen sensors. Chem. Rev. 109, 1402–1433 (2009)CrossRef
4.
go back to reference T. Kim, B. Guo, Zn-doped γ-Fe2O3 sensors for flammable gas detection: effect of annealing on sensitivity and stability. J. Ind. Eng. Chem. 17, 158–164 (2011)CrossRef T. Kim, B. Guo, Zn-doped γ-Fe2O3 sensors for flammable gas detection: effect of annealing on sensitivity and stability. J. Ind. Eng. Chem. 17, 158–164 (2011)CrossRef
5.
go back to reference N.D. Hoa, N.V. Duy, S.A. El-Safty, N.V. Hieu, Meso-nanoporous semiconducting metal oxides for gas sensor applications. J. Nanomater. 2015, 972025 (2015). doi:10.1155/2015/972025 N.D. Hoa, N.V. Duy, S.A. El-Safty, N.V. Hieu, Meso-nanoporous semiconducting metal oxides for gas sensor applications. J. Nanomater. 2015, 972025 (2015). doi:10.​1155/​2015/​972025
6.
go back to reference Patrick J. Sabourin, William E. Bechtold, Rogene F. Henderson, A high pressure liquid chromatographic method for the separation and quantitation of water-soluble radiolabeled benzene metabolites. Anal. Biochem. 170, 316–327 (1988)CrossRef Patrick J. Sabourin, William E. Bechtold, Rogene F. Henderson, A high pressure liquid chromatographic method for the separation and quantitation of water-soluble radiolabeled benzene metabolites. Anal. Biochem. 170, 316–327 (1988)CrossRef
7.
go back to reference P. Vesely, L. Lusk, G. Basarova, J. Seabrooks, D. Ryder, Analysis of aldehydes in beer using solid-phase microextraction with on-fiber derivatization and gas chromatography/mass spectrometry. J. Agric. Food Chem. 51, 6941–6944 (2003)CrossRef P. Vesely, L. Lusk, G. Basarova, J. Seabrooks, D. Ryder, Analysis of aldehydes in beer using solid-phase microextraction with on-fiber derivatization and gas chromatography/mass spectrometry. J. Agric. Food Chem. 51, 6941–6944 (2003)CrossRef
8.
go back to reference F. Tavoli, N. Alizadeh, Optical ammonia gas sensor based on nanostructure dye-doped polypyrrole. Sens. Actuators B Chem. 176, 761–767 (2013)CrossRef F. Tavoli, N. Alizadeh, Optical ammonia gas sensor based on nanostructure dye-doped polypyrrole. Sens. Actuators B Chem. 176, 761–767 (2013)CrossRef
9.
go back to reference W.P. Jakubik, Surface acoustic wave-based gas sensors. Thin Solid Films 520, 986–993 (2011)CrossRef W.P. Jakubik, Surface acoustic wave-based gas sensors. Thin Solid Films 520, 986–993 (2011)CrossRef
10.
go back to reference G. Barochi, J. Rossignol, M. Bouvet, Development of microwave gas sensors. Sens. Actuators B Chem. 157, 374–379 (2011)CrossRef G. Barochi, J. Rossignol, M. Bouvet, Development of microwave gas sensors. Sens. Actuators B Chem. 157, 374–379 (2011)CrossRef
11.
go back to reference K. Tajima, F. Qiu, W. Shin, N. Izu, I. Matsubara, N. Murayama, Micromechanical fabrication of low-power thermoelectric hydrogen sensor. Sens. Actuators B 108, 973–978 (2003)CrossRef K. Tajima, F. Qiu, W. Shin, N. Izu, I. Matsubara, N. Murayama, Micromechanical fabrication of low-power thermoelectric hydrogen sensor. Sens. Actuators B 108, 973–978 (2003)CrossRef
12.
go back to reference J.B.W.H. Brattain, Surface properties of germanium. Bell Syst. Tech. J. 32, 1 (1952)CrossRef J.B.W.H. Brattain, Surface properties of germanium. Bell Syst. Tech. J. 32, 1 (1952)CrossRef
13.
go back to reference T. Seiyama, A. Kato, K. Fujiishi, M. Nagatani, A new detector for gaseous components using semiconductive thin films. Anal. Chem. 34, 1502–1503 (1962)CrossRef T. Seiyama, A. Kato, K. Fujiishi, M. Nagatani, A new detector for gaseous components using semiconductive thin films. Anal. Chem. 34, 1502–1503 (1962)CrossRef
14.
go back to reference N Taguchi, Japanese patent application, S45-38200, (1962) N Taguchi, Japanese patent application, S45-38200, (1962)
15.
go back to reference B.T. Raut, P.R. Godse, S.G. Pawar, M.A. Chougule, D.K. Bandgar, V.B. Patil, Novel method for fabrication of polyaniline–CdS sensor for H2S gas detection. Measurement 45, 94–100 (2012)CrossRef B.T. Raut, P.R. Godse, S.G. Pawar, M.A. Chougule, D.K. Bandgar, V.B. Patil, Novel method for fabrication of polyaniline–CdS sensor for H2S gas detection. Measurement 45, 94–100 (2012)CrossRef
16.
go back to reference G. Neri, Better sensors through chemistry: some selected examples. Sens. Microsyst. Lect. Notes Electr. Eng. 91, 19–30 (2011)CrossRef G. Neri, Better sensors through chemistry: some selected examples. Sens. Microsyst. Lect. Notes Electr. Eng. 91, 19–30 (2011)CrossRef
17.
go back to reference W.J. Moon, J.H. Yu, G.M. Choi, Selective CO gas detection of SnO2–Zn2SnO4 composite gas sensor. Sens. Actuators B Chem. 80, 21–27 (2001)CrossRef W.J. Moon, J.H. Yu, G.M. Choi, Selective CO gas detection of SnO2–Zn2SnO4 composite gas sensor. Sens. Actuators B Chem. 80, 21–27 (2001)CrossRef
18.
go back to reference V. Aroutiounian, Metal oxide hydrogen, oxygen, and carbon monoxide sensors for hydrogen setups and cells. Int. J. Hydrog. Energy 32, 1145–1158 (2007)CrossRef V. Aroutiounian, Metal oxide hydrogen, oxygen, and carbon monoxide sensors for hydrogen setups and cells. Int. J. Hydrog. Energy 32, 1145–1158 (2007)CrossRef
19.
go back to reference S. Singh, A. Singh, B.C. Yadava, P.K. Dwivedi, Fabrication of nanobeads structured perovskite type neodymium iron oxide film: its structural, optical, electrical and LPG sensing investigations. Sens. Actuators B 177, 730–739 (2013)CrossRef S. Singh, A. Singh, B.C. Yadava, P.K. Dwivedi, Fabrication of nanobeads structured perovskite type neodymium iron oxide film: its structural, optical, electrical and LPG sensing investigations. Sens. Actuators B 177, 730–739 (2013)CrossRef
20.
go back to reference R.J. Tan, O. Kiang, Semiconductor Gas Sensors: Woodhead Publishing Group (2013) R.J. Tan, O. Kiang, Semiconductor Gas Sensors: Woodhead Publishing Group (2013)
21.
go back to reference G. Neri, A. Bonavita, G. Micali, G. Rizzo, E. Callone, G. Carturan, Resistive CO gas sensors based on In2O3 and InSnOx nanopowders synthesized via starch-aided sol–gel process for automotive applications. Sens Actuators B 132, 224–233 (2008)CrossRef G. Neri, A. Bonavita, G. Micali, G. Rizzo, E. Callone, G. Carturan, Resistive CO gas sensors based on In2O3 and InSnOx nanopowders synthesized via starch-aided sol–gel process for automotive applications. Sens Actuators B 132, 224–233 (2008)CrossRef
22.
go back to reference S. Das, V. Jayaraman, SnO2: a comprehensive review on structures and gas sensors. Prog. Mater Sci. 66, 112–255 (2014)CrossRef S. Das, V. Jayaraman, SnO2: a comprehensive review on structures and gas sensors. Prog. Mater Sci. 66, 112–255 (2014)CrossRef
23.
go back to reference I.-D. Kim, A. Rothschild, H.L. Tuller, Advances and new directions in gas-sensing devices. Acta Mater. 61, 974–1000 (2013)CrossRef I.-D. Kim, A. Rothschild, H.L. Tuller, Advances and new directions in gas-sensing devices. Acta Mater. 61, 974–1000 (2013)CrossRef
24.
go back to reference A. Wei, L. Pan, W. Huang, Recent progress in the ZnO nanostructure-based sensors. Mater. Sci. Eng. B 176, 1409–1421 (2011)CrossRef A. Wei, L. Pan, W. Huang, Recent progress in the ZnO nanostructure-based sensors. Mater. Sci. Eng. B 176, 1409–1421 (2011)CrossRef
25.
go back to reference J. Bai, B. Zhou, Titanium dioxide nanomaterials for sensor applications. Chem. Rev. 114(19), 10131–10176 (2014)CrossRef J. Bai, B. Zhou, Titanium dioxide nanomaterials for sensor applications. Chem. Rev. 114(19), 10131–10176 (2014)CrossRef
26.
go back to reference N.D. Cuong, D.Q. Khieu, T.T. Hoa, D.T. Quang, P.H. Viet, T.D. Lam, N.D. Hoa, N.V. Hieu, Facile synthesis of α-Fe2O3 nanoparticles for high-performance CO gas sensor. Mater. Res. Bull. 68, 302–307 (2015)CrossRef N.D. Cuong, D.Q. Khieu, T.T. Hoa, D.T. Quang, P.H. Viet, T.D. Lam, N.D. Hoa, N.V. Hieu, Facile synthesis of α-Fe2O3 nanoparticles for high-performance CO gas sensor. Mater. Res. Bull. 68, 302–307 (2015)CrossRef
27.
go back to reference L. Machala, R. Zboril, A. Gedanken, Amorphous iron(III) oxides: a review. J. Phys. Chem. B 111, 4003–4018 (2007)CrossRef L. Machala, R. Zboril, A. Gedanken, Amorphous iron(III) oxides: a review. J. Phys. Chem. B 111, 4003–4018 (2007)CrossRef
28.
go back to reference Z. Wei, X. Wei, S. Wang, D. He, Preparation and visible-light photocatalytic activity of α-Fe2O3/γ-Fe2O3 magnetic heterophase photocatalyst. Mater. Lett. 118, 107–110 (2014)CrossRef Z. Wei, X. Wei, S. Wang, D. He, Preparation and visible-light photocatalytic activity of α-Fe2O3/γ-Fe2O3 magnetic heterophase photocatalyst. Mater. Lett. 118, 107–110 (2014)CrossRef
29.
go back to reference L. Machala, J. Tucek, R. Zboril, Polymorphous transformations of nanometric iron(III) oxide: a review. Chem. Mater. 23, 3255–3272 (2011)CrossRef L. Machala, J. Tucek, R. Zboril, Polymorphous transformations of nanometric iron(III) oxide: a review. Chem. Mater. 23, 3255–3272 (2011)CrossRef
30.
go back to reference S. Sakurai, A. Namai, K. Hashimoto, S. Ohkoshi, First observation of phase transformation of all four Fe2O3 phases (γ → ε f → β → α Phase). J. Am. Chem. Soc. 131, 18299–18303 (2009)CrossRef S. Sakurai, A. Namai, K. Hashimoto, S. Ohkoshi, First observation of phase transformation of all four Fe2O3 phases (γ → ε f → β → α Phase). J. Am. Chem. Soc. 131, 18299–18303 (2009)CrossRef
31.
go back to reference A.S. Teja, P.-Y. Koh, Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog. Cryst. Growth Charact. Mater. 55, 22–45 (2009)CrossRef A.S. Teja, P.-Y. Koh, Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog. Cryst. Growth Charact. Mater. 55, 22–45 (2009)CrossRef
32.
go back to reference S. Radhakrishnan, K. Krishnamoorthy, C. Sekar, J. Wilson, S.J. Kim, A highly sensitive electrochemical sensor for nitrite detection based on Fe2O3 nanoparticles decorated reduced graphene oxide nanosheets. Appl. Catal. B 148–149, 22–28 (2014)CrossRef S. Radhakrishnan, K. Krishnamoorthy, C. Sekar, J. Wilson, S.J. Kim, A highly sensitive electrochemical sensor for nitrite detection based on Fe2O3 nanoparticles decorated reduced graphene oxide nanosheets. Appl. Catal. B 148–149, 22–28 (2014)CrossRef
33.
go back to reference S.K. Sahoo, K. Agarwal, A.K. Singh, B.G. Polke, K.C. Raha, Characterization of γ- and α-Fe2O3 nano powders synthesized by emulsion precipitation-calcination route and rheological behaviour of α-Fe2O3. Int. J. Eng. Sci. Technol. 2, 118–126 (2010) S.K. Sahoo, K. Agarwal, A.K. Singh, B.G. Polke, K.C. Raha, Characterization of γ- and α-Fe2O3 nano powders synthesized by emulsion precipitation-calcination route and rheological behaviour of α-Fe2O3. Int. J. Eng. Sci. Technol. 2, 118–126 (2010)
34.
go back to reference N. Ozer, F. Tepehan, Optical and electrochemical characteristics of sol–gel deposited iron oxide films. Sol. Energy Mater. Sol. Cells 65, 141–152 (1999)CrossRef N. Ozer, F. Tepehan, Optical and electrochemical characteristics of sol–gel deposited iron oxide films. Sol. Energy Mater. Sol. Cells 65, 141–152 (1999)CrossRef
35.
go back to reference P. Xu, G.M. Zeng, D.L. Huang, C.L. Feng, S. Hu, M.H. Zhao, C. Lai, Z. Wei, C. Huang, G.X. Xie, Z.F. Liu, Use of iron oxide nanomaterials in wastewater treatment: a review. Sci. Total Environ. 424, 1–10 (2012)CrossRef P. Xu, G.M. Zeng, D.L. Huang, C.L. Feng, S. Hu, M.H. Zhao, C. Lai, Z. Wei, C. Huang, G.X. Xie, Z.F. Liu, Use of iron oxide nanomaterials in wastewater treatment: a review. Sci. Total Environ. 424, 1–10 (2012)CrossRef
36.
go back to reference U. Schwertmann, R.M. Corne, Iron oxides in the laboratory, preparation and characterization, 2nd edn. (Wiley, New York, 2000)CrossRef U. Schwertmann, R.M. Corne, Iron oxides in the laboratory, preparation and characterization, 2nd edn. (Wiley, New York, 2000)CrossRef
37.
go back to reference W.X. Jin, S.Y. Ma, Z.Z. Tie, X.H. Jiang, W.Q. Li, J. Luo, X.L. Xu, T.T. Wang, Hydrothermal synthesis of monodisperse porous cube, cake andspheroid-like α-Fe2O3 particles and their high gas-sensing properties. Sens. Actuators B 220, 243–254 (2015)CrossRef W.X. Jin, S.Y. Ma, Z.Z. Tie, X.H. Jiang, W.Q. Li, J. Luo, X.L. Xu, T.T. Wang, Hydrothermal synthesis of monodisperse porous cube, cake andspheroid-like α-Fe2O3 particles and their high gas-sensing properties. Sens. Actuators B 220, 243–254 (2015)CrossRef
38.
go back to reference S. Boumaza, A. Boudjemaa, S. Omeiri, R. Bouarab, A. Bouguelia, M. Trari, Physicaland photoelectrochemical characterizations of hematite a-Fe2O3: applicationto photocatalytic oxygen evolution. Sol. Energy 84, 715–721 (2010)CrossRef S. Boumaza, A. Boudjemaa, S. Omeiri, R. Bouarab, A. Bouguelia, M. Trari, Physicaland photoelectrochemical characterizations of hematite a-Fe2O3: applicationto photocatalytic oxygen evolution. Sol. Energy 84, 715–721 (2010)CrossRef
39.
go back to reference Y.Y. Xu, X.F. Rui, Y.Y. Fu, H. Zhang, Magnetic properties of α-Fe2O3 nanowires. Chem. Phys. Lett. 410, 36–38 (2005)CrossRef Y.Y. Xu, X.F. Rui, Y.Y. Fu, H. Zhang, Magnetic properties of α-Fe2O3 nanowires. Chem. Phys. Lett. 410, 36–38 (2005)CrossRef
40.
go back to reference B. Sun, J. Horvat, H.S. Kim, W.S. Kim, J. Ahn, G.X. Wang, Synthesis of mesoporous α-Fe2O3 nanostructures for highly sensitive gas sensors and high capacity anode materials in lithium ion batteries. J. Phys. Chem. C 114, 18753–18761 (2010)CrossRef B. Sun, J. Horvat, H.S. Kim, W.S. Kim, J. Ahn, G.X. Wang, Synthesis of mesoporous α-Fe2O3 nanostructures for highly sensitive gas sensors and high capacity anode materials in lithium ion batteries. J. Phys. Chem. C 114, 18753–18761 (2010)CrossRef
41.
go back to reference H. Yan, X. Su, C. Yang, J. Wang, C. Niu, Improved photocatalytic and gas sensing properties of α-Fe2O3 nanoparticles derived from β-FeOOH nanospindles. Ceram. Int. 40, 1729–1733 (2014)CrossRef H. Yan, X. Su, C. Yang, J. Wang, C. Niu, Improved photocatalytic and gas sensing properties of α-Fe2O3 nanoparticles derived from β-FeOOH nanospindles. Ceram. Int. 40, 1729–1733 (2014)CrossRef
42.
go back to reference M. Nasibi, M.A. Golozar, G. Rashed, Nano ironoxide(Fe2O3)/carbon black electrodes for electrochemical capacitors. Mater. Lett. 85, 40–43 (2012)CrossRef M. Nasibi, M.A. Golozar, G. Rashed, Nano ironoxide(Fe2O3)/carbon black electrodes for electrochemical capacitors. Mater. Lett. 85, 40–43 (2012)CrossRef
43.
go back to reference N. Pailhé, A. Wattiaux, M. Gaudon, A. Demourgues, Impact of structural features on pigment properties of α-Fe2O3 haematite. J. Solid State Chem. 181, 2697–2704 (2008)CrossRef N. Pailhé, A. Wattiaux, M. Gaudon, A. Demourgues, Impact of structural features on pigment properties of α-Fe2O3 haematite. J. Solid State Chem. 181, 2697–2704 (2008)CrossRef
44.
go back to reference Z.Y. Fan, X.G. Wen, S.H. Yang, J.G. Lu, Controlled p- and n-type doping of Fe2O3 nanobelt field effect transistors. Appl. Phys. Lett. 87(87), 0131131–0131133 (2005) Z.Y. Fan, X.G. Wen, S.H. Yang, J.G. Lu, Controlled p- and n-type doping of Fe2O3 nanobelt field effect transistors. Appl. Phys. Lett. 87(87), 0131131–0131133 (2005)
45.
go back to reference Y.H. Chen, F.A. Li, Kinetic study on removal of copper (II) using goethite and hematite nano-photocatalysts. J. Colloid Interface Sci. 347, 277–281 (2010)CrossRef Y.H. Chen, F.A. Li, Kinetic study on removal of copper (II) using goethite and hematite nano-photocatalysts. J. Colloid Interface Sci. 347, 277–281 (2010)CrossRef
46.
go back to reference L. Wang, C.-Y. Lee, P. Schmuki, Influence of annealing temperature on photo-electrochemical water splitting of α-Fe2O3films prepared by anodic deposition. Electrochim. Acta 91, 307–313 (2013)CrossRef L. Wang, C.-Y. Lee, P. Schmuki, Influence of annealing temperature on photo-electrochemical water splitting of α-Fe2O3films prepared by anodic deposition. Electrochim. Acta 91, 307–313 (2013)CrossRef
47.
go back to reference Z. Chen, C. Lu, Humidity sensors: a review of materials and mechanisms. Sensor Lett. 3, 274–295 (2005)CrossRef Z. Chen, C. Lu, Humidity sensors: a review of materials and mechanisms. Sensor Lett. 3, 274–295 (2005)CrossRef
48.
go back to reference A. Gurlo, M. Sahm, A. Oprea, N. Barsan, U. Weimar, A p- to n-transition on-Fe2O3-based thick film sensors studied by conductance and work function change measurements. Sens. Actuators B 102, 291–298 (2004)CrossRef A. Gurlo, M. Sahm, A. Oprea, N. Barsan, U. Weimar, A p- to n-transition on-Fe2O3-based thick film sensors studied by conductance and work function change measurements. Sens. Actuators B 102, 291–298 (2004)CrossRef
49.
go back to reference Z. Fan, X. Wen, S. Yang, J.G. Lu, Controlled p- and n-type doping of Fe2O3 nanobelt field effect transistors. Appl. Phys. Lett. 87, 013113 (2005)CrossRef Z. Fan, X. Wen, S. Yang, J.G. Lu, Controlled p- and n-type doping of Fe2O3 nanobelt field effect transistors. Appl. Phys. Lett. 87, 013113 (2005)CrossRef
50.
go back to reference Xiaoge Wang, Ammonium mediated hydrothermal synthesis of nanostructured hematite (a-Fe2O3) particles. Mater. Res. Bull. 47, 2513–2571 (2012)CrossRef Xiaoge Wang, Ammonium mediated hydrothermal synthesis of nanostructured hematite (a-Fe2O3) particles. Mater. Res. Bull. 47, 2513–2571 (2012)CrossRef
51.
go back to reference Y. Wang, W. Xiufeng, Preparation and characterization of single-phase α-Fe2O3 nano-powders by Pechini sol–gel method. Mater. Lett. 65, 2062–2065 (2011)CrossRef Y. Wang, W. Xiufeng, Preparation and characterization of single-phase α-Fe2O3 nano-powders by Pechini sol–gel method. Mater. Lett. 65, 2062–2065 (2011)CrossRef
52.
go back to reference S.M. Reda, Synthesis of ZnO and Fe2O3 nanoparticles by sol–gel method and their application in dye-sensitized solar cells. Mater. Sci. Semicond. Process. 13, 417–425 (2010)CrossRef S.M. Reda, Synthesis of ZnO and Fe2O3 nanoparticles by sol–gel method and their application in dye-sensitized solar cells. Mater. Sci. Semicond. Process. 13, 417–425 (2010)CrossRef
53.
go back to reference L. Vayssieres, N. Beermann, S.E. Lindquist, A. Hagfeldt, Controlled aqueous chemical growth of oriented threedimensional crystalline nanorod arrays: application to iron(III) oxides. Chem. Mater. 13, 233–235 (2000)CrossRef L. Vayssieres, N. Beermann, S.E. Lindquist, A. Hagfeldt, Controlled aqueous chemical growth of oriented threedimensional crystalline nanorod arrays: application to iron(III) oxides. Chem. Mater. 13, 233–235 (2000)CrossRef
54.
go back to reference L.H. Han, H. Liu, Y. Wei, In situ synthesis of hematite nanoparticles using a low-temperature microemulsion method. Powder Technol. 207, 42–46 (2011)CrossRef L.H. Han, H. Liu, Y. Wei, In situ synthesis of hematite nanoparticles using a low-temperature microemulsion method. Powder Technol. 207, 42–46 (2011)CrossRef
55.
go back to reference B.K. Pandey, A.K. Shahi, J. Shah, R.K. Kotnala, R. Gopala, Optical and magnetic properties of Fe2O3 nanoparticles synthesizedby laser ablation/fragmentation technique in different liquid media. Appl. Surf. Sci. 289, 462–471 (2014)CrossRef B.K. Pandey, A.K. Shahi, J. Shah, R.K. Kotnala, R. Gopala, Optical and magnetic properties of Fe2O3 nanoparticles synthesizedby laser ablation/fragmentation technique in different liquid media. Appl. Surf. Sci. 289, 462–471 (2014)CrossRef
56.
go back to reference M. Lie, H. Fjellvag, A. Kjekshus, Growth of Fe2O3 thin films by atomic layer deposition. Thin Solid Films 488, 74–81 (2005)CrossRef M. Lie, H. Fjellvag, A. Kjekshus, Growth of Fe2O3 thin films by atomic layer deposition. Thin Solid Films 488, 74–81 (2005)CrossRef
57.
go back to reference Y. Wang, J. Cao, S. Wang, X. Guo, J. Zhang, H. Xia, S. Zhang, S. Wu, Facile synthesis of porous α-Fe2O3 nanorods and their application in ethanol sensors. J. Phys. Chem. C 112, 17804–17808 (2008)CrossRef Y. Wang, J. Cao, S. Wang, X. Guo, J. Zhang, H. Xia, S. Zhang, S. Wu, Facile synthesis of porous α-Fe2O3 nanorods and their application in ethanol sensors. J. Phys. Chem. C 112, 17804–17808 (2008)CrossRef
58.
go back to reference L. Suber, P. Imperatori, G. Ausanio, F. Fabbri, H. Hofmeister, Synthesis, morphology, and magnetic characterization of iron oxide nanowires and nanotubes. J. Phys. Chem. B 109, 7103–7109 (2005)CrossRef L. Suber, P. Imperatori, G. Ausanio, F. Fabbri, H. Hofmeister, Synthesis, morphology, and magnetic characterization of iron oxide nanowires and nanotubes. J. Phys. Chem. B 109, 7103–7109 (2005)CrossRef
59.
go back to reference Z. Sun, H. Yuan, Z. Liu, B. Han, X. Zhang, A highly efficient chemical sensor material for H2S: α-Fe2O3 nanotubes fabricated using carbon nanotube templates. Adv. Mater. 17, 2993–2997 (2005)CrossRef Z. Sun, H. Yuan, Z. Liu, B. Han, X. Zhang, A highly efficient chemical sensor material for H2S: α-Fe2O3 nanotubes fabricated using carbon nanotube templates. Adv. Mater. 17, 2993–2997 (2005)CrossRef
60.
go back to reference Z. Zheng, L. Liao, B. Yan, J.X. Zhang, H. Gong, Z.X. Shen, T. Yu, Enhanced field emission from argon plasmatreated ultra-sharp α-Fe2O3 nanoflakes. Nanoscale Res. Lett. 4, 1115–1119 (2009)CrossRef Z. Zheng, L. Liao, B. Yan, J.X. Zhang, H. Gong, Z.X. Shen, T. Yu, Enhanced field emission from argon plasmatreated ultra-sharp α-Fe2O3 nanoflakes. Nanoscale Res. Lett. 4, 1115–1119 (2009)CrossRef
61.
go back to reference J. Huang, M. Yang, C. Gu, M. Zhai, Y. Sun, J. Liu, Hematite solid and hollow spindles: selective synthesis and application in gas sensor and photocatalysis. Mater. Res. Bull. 46, 1211–1221 (2011)CrossRef J. Huang, M. Yang, C. Gu, M. Zhai, Y. Sun, J. Liu, Hematite solid and hollow spindles: selective synthesis and application in gas sensor and photocatalysis. Mater. Res. Bull. 46, 1211–1221 (2011)CrossRef
62.
go back to reference M. Mishra, D.M. Chun, α-Fe2O3 as a photocatalytic material: a review. Appl. Catal. A 498, 126–141 (2015)CrossRef M. Mishra, D.M. Chun, α-Fe2O3 as a photocatalytic material: a review. Appl. Catal. A 498, 126–141 (2015)CrossRef
63.
go back to reference J. Ouyang, J. Pei, Q. Kuang, Z. Xie, L. Zheng, Supersaturation-controlled shape evolution of α-Fe2O3 nanocrystals and their facet-dependent catalytic and sensing properties. Appl. Mater. Interfaces 6(15), 12505–12514 (2014)CrossRef J. Ouyang, J. Pei, Q. Kuang, Z. Xie, L. Zheng, Supersaturation-controlled shape evolution of α-Fe2O3 nanocrystals and their facet-dependent catalytic and sensing properties. Appl. Mater. Interfaces 6(15), 12505–12514 (2014)CrossRef
64.
go back to reference R.C. Biswal, Pure and Pt-loaded gamma iron oxide as sensor for detection of sub ppm level of acetone. Sens. Actuators B Chem. 157, 183–188 (2011)CrossRef R.C. Biswal, Pure and Pt-loaded gamma iron oxide as sensor for detection of sub ppm level of acetone. Sens. Actuators B Chem. 157, 183–188 (2011)CrossRef
65.
go back to reference N.M. Li, K.M. Li, S. Wang, K.Q. Yang, L.J. Zhang, Q. Chen, W.M. Zhang, Gold embedded maghemite hybrid nanowires and their gas sensing properties. Appl. Mater. Interfaces 7, 10534–10540 (2015)CrossRef N.M. Li, K.M. Li, S. Wang, K.Q. Yang, L.J. Zhang, Q. Chen, W.M. Zhang, Gold embedded maghemite hybrid nanowires and their gas sensing properties. Appl. Mater. Interfaces 7, 10534–10540 (2015)CrossRef
66.
go back to reference T. Belin, N. Millot, F. Villieras, O. Bertrand, J.P. Bellat, Structural variations as a function of surface adsorption in nanostructured particles. J. Phys. Chem. B 108, 5333–5340 (2004)CrossRef T. Belin, N. Millot, F. Villieras, O. Bertrand, J.P. Bellat, Structural variations as a function of surface adsorption in nanostructured particles. J. Phys. Chem. B 108, 5333–5340 (2004)CrossRef
67.
go back to reference S. Tao, X. Liu, X. Chu, Y. Shen, Preparation and properties of γ-Fe2O3 and Y2O3 doped γ-Fe2O3 by a sol–gel process. Sens. Actuators B Chem. 61, 33–38 (1999)CrossRef S. Tao, X. Liu, X. Chu, Y. Shen, Preparation and properties of γ-Fe2O3 and Y2O3 doped γ-Fe2O3 by a sol–gel process. Sens. Actuators B Chem. 61, 33–38 (1999)CrossRef
68.
go back to reference H.I. Hsiang, F.S. Yen, Effects of mechanical treatment on phase transformation and sintering of nano-sized γ-Fe2O3 powder. Ceram. Int. 29, 1–6 (2003)CrossRef H.I. Hsiang, F.S. Yen, Effects of mechanical treatment on phase transformation and sintering of nano-sized γ-Fe2O3 powder. Ceram. Int. 29, 1–6 (2003)CrossRef
69.
go back to reference C.J. Belle, A. Bonamin, U. Simon, J. Santoyo-Salazar, M. Pauly, S. Bégin-Colinb, G. Pourroy, Size dependent gas sensing properties of spinel iron oxide nanoparticles. Sens. Actuators B 160, 942–950 (2011)CrossRef C.J. Belle, A. Bonamin, U. Simon, J. Santoyo-Salazar, M. Pauly, S. Bégin-Colinb, G. Pourroy, Size dependent gas sensing properties of spinel iron oxide nanoparticles. Sens. Actuators B 160, 942–950 (2011)CrossRef
70.
go back to reference Z. Ai, K. Deng, Q. Wan, L. Zhang, S. Lee, Facile microwave-assisted synthesis and magnetic and gas sensing properties of Fe3O4 nanoroses. J. Phys. Chem. C 114, 6237–6242 (2010)CrossRef Z. Ai, K. Deng, Q. Wan, L. Zhang, S. Lee, Facile microwave-assisted synthesis and magnetic and gas sensing properties of Fe3O4 nanoroses. J. Phys. Chem. C 114, 6237–6242 (2010)CrossRef
71.
go back to reference S.O. Hwang, C.H. Kim, Y. Myung, S.H. Park, J. Park, J. Kim, C.S. Han, J.Y. Kim, Synthesis of vertically aligned manganese-doped Fe3O4 nanowire arrays and their excellent room-temperature gas sensing ability. J. Phys. Chem. C 112, 13911–13916 (2008)CrossRef S.O. Hwang, C.H. Kim, Y. Myung, S.H. Park, J. Park, J. Kim, C.S. Han, J.Y. Kim, Synthesis of vertically aligned manganese-doped Fe3O4 nanowire arrays and their excellent room-temperature gas sensing ability. J. Phys. Chem. C 112, 13911–13916 (2008)CrossRef
72.
go back to reference D. Peeters, D. Barreca, G. Carraro, E. Comini, A. Gasparotto, C. Maccato, C. Sada, G. Sberveglieri, Au/ε-Fe2O3 nanocomposites as selective NO2 gas sensors. J. Phys. Chem. C 118, 11813–11819 (2014)CrossRef D. Peeters, D. Barreca, G. Carraro, E. Comini, A. Gasparotto, C. Maccato, C. Sada, G. Sberveglieri, Au/ε-Fe2O3 nanocomposites as selective NO2 gas sensors. J. Phys. Chem. C 118, 11813–11819 (2014)CrossRef
73.
go back to reference H.-J. Kim, J.-H. Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens. Actuators B Chem. 192, 607–627 (2014)CrossRef H.-J. Kim, J.-H. Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens. Actuators B Chem. 192, 607–627 (2014)CrossRef
74.
go back to reference G. Errana, Metal oxide nanostructures as gas sensing devices (CRC Press, Boca Raton, 2012) G. Errana, Metal oxide nanostructures as gas sensing devices (CRC Press, Boca Raton, 2012)
75.
go back to reference G. Korotcenkov, Metal oxides for solid-state gas sensors: What determines our choice? Mater. Sci. Eng. B 139, 1–23 (2007)CrossRef G. Korotcenkov, Metal oxides for solid-state gas sensors: What determines our choice? Mater. Sci. Eng. B 139, 1–23 (2007)CrossRef
76.
go back to reference S. Yamaguchi, Gold collold as applied to the H2S gas sensor. Mater. Chem. 6, 505–508 (1981)CrossRef S. Yamaguchi, Gold collold as applied to the H2S gas sensor. Mater. Chem. 6, 505–508 (1981)CrossRef
77.
go back to reference G. Neri, A.M. Visco, S. Galvagno, A. Donato, M. Panzalorto, Au/iron oxide catalysts: temperature programmed reduction and X-ray diffraction characterization. Thermochim. Acta 329, 39–46 (1999)CrossRef G. Neri, A.M. Visco, S. Galvagno, A. Donato, M. Panzalorto, Au/iron oxide catalysts: temperature programmed reduction and X-ray diffraction characterization. Thermochim. Acta 329, 39–46 (1999)CrossRef
78.
go back to reference T.Y. Huang, W. Chen, S. Zhang, Z. Kuang, D. Ao, N.R. Alkurd, W. Zhou, W. Liu, W. Shen, Z. Li, A high performance hydrogen sulfide gas sensor based on porous α-Fe2O3 operates at room-temperature. Appl. Surf. Sci. 351, 1025–1033 (2015)CrossRef T.Y. Huang, W. Chen, S. Zhang, Z. Kuang, D. Ao, N.R. Alkurd, W. Zhou, W. Liu, W. Shen, Z. Li, A high performance hydrogen sulfide gas sensor based on porous α-Fe2O3 operates at room-temperature. Appl. Surf. Sci. 351, 1025–1033 (2015)CrossRef
79.
go back to reference R. Srivastava, S. Singh, U.D. Misra, B.C. Yadav, S. Singh, A. Yadav, Humidity sensor based on nanostructured ferric oxide thick film. Int. J. Green Nanotechnol. 4, 215–218 (2012)CrossRef R. Srivastava, S. Singh, U.D. Misra, B.C. Yadav, S. Singh, A. Yadav, Humidity sensor based on nanostructured ferric oxide thick film. Int. J. Green Nanotechnol. 4, 215–218 (2012)CrossRef
80.
go back to reference R. Srivastava, B.C. Yadav, Humidity sensor based on NiFe2O4-Fe2O3 nanocomposite. J. Sci. Tech. Res. 3, 43–45 (2013) R. Srivastava, B.C. Yadav, Humidity sensor based on NiFe2O4-Fe2O3 nanocomposite. J. Sci. Tech. Res. 3, 43–45 (2013)
81.
go back to reference G. Neri, A. Bonavita, S. Galvagno, N. Donato, A. Caddemi, Electrical characterization of Fe2O3 humidity sensors doped with Li+, Zn2+ and Au3+ ions. Sens. Actuators B 111–112, 71–77 (2005)CrossRef G. Neri, A. Bonavita, S. Galvagno, N. Donato, A. Caddemi, Electrical characterization of Fe2O3 humidity sensors doped with Li+, Zn2+ and Au3+ ions. Sens. Actuators B 111–112, 71–77 (2005)CrossRef
82.
go back to reference V. Balouria, A. Kumar, S. Samanta, A. Singh, A.K. Debnath, A. Mahajan, R.K. Bedi, D.K. Aswal, S.K. Gupta, Nano-crystalline Fe2O3 thin films for ppm level detection of H2S. Sens. Actuators B Chem. 181, 471–478 (2013)CrossRef V. Balouria, A. Kumar, S. Samanta, A. Singh, A.K. Debnath, A. Mahajan, R.K. Bedi, D.K. Aswal, S.K. Gupta, Nano-crystalline Fe2O3 thin films for ppm level detection of H2S. Sens. Actuators B Chem. 181, 471–478 (2013)CrossRef
83.
go back to reference Dewyani Patil, Virendra Patil, Pradip Patil, Highly sensitive and selective LPG sensor based on α-Fe2O3 nanorods. Sens. Actuators B Chem. 152, 299–306 (2011)CrossRef Dewyani Patil, Virendra Patil, Pradip Patil, Highly sensitive and selective LPG sensor based on α-Fe2O3 nanorods. Sens. Actuators B Chem. 152, 299–306 (2011)CrossRef
84.
go back to reference X. Gou, G. Wang, J. Park, H. Liu, J. Yang, Monodisperse hematite porous nanospheres: synthesis, characterization, and applications for gas sensors. Nanotechnology 19, 125606–125613 (2008)CrossRef X. Gou, G. Wang, J. Park, H. Liu, J. Yang, Monodisperse hematite porous nanospheres: synthesis, characterization, and applications for gas sensors. Nanotechnology 19, 125606–125613 (2008)CrossRef
85.
go back to reference L. Huo, Q. Li, H. Zhao, L. Yu, S. Gao, J. Zhao, Sol–gel route to pseudocubic shaped α-Fe2O3 alcohol sensor: preparation and characterization. Sens. Actuators B 107, 915–920 (2005)CrossRef L. Huo, Q. Li, H. Zhao, L. Yu, S. Gao, J. Zhao, Sol–gel route to pseudocubic shaped α-Fe2O3 alcohol sensor: preparation and characterization. Sens. Actuators B 107, 915–920 (2005)CrossRef
86.
go back to reference P. Sun, L. You, D. Wang, Y. Sun, J. Ma, G. Lu, Synthesis and gas sensing properties of bundle-like α-Fe2O3 nanorods. Sens. Actuators B Chem. 156, 368–374 (2011)CrossRef P. Sun, L. You, D. Wang, Y. Sun, J. Ma, G. Lu, Synthesis and gas sensing properties of bundle-like α-Fe2O3 nanorods. Sens. Actuators B Chem. 156, 368–374 (2011)CrossRef
87.
go back to reference F.H. Zhang, H.Q. Yang, X.L. Xie, L. Li, L.H. Zhang, J. Yu, H. Zhang, B. Liu, Controlled synthesis and gas sensing properties of hollow sea urchin-like α-Fe2O3 nanostructures and α-Fe2O3 nanocubes. Sens. Actuators B Chem. 141, 381–389 (2009)CrossRef F.H. Zhang, H.Q. Yang, X.L. Xie, L. Li, L.H. Zhang, J. Yu, H. Zhang, B. Liu, Controlled synthesis and gas sensing properties of hollow sea urchin-like α-Fe2O3 nanostructures and α-Fe2O3 nanocubes. Sens. Actuators B Chem. 141, 381–389 (2009)CrossRef
88.
go back to reference P. Sun, W. Wang, Y. Liu, Y. Sun, J. Ma, G. Lu, Hydrothermal synthesis of 3D urchin-like α-Fe2O3 nanostructure for gas sensor. Sens. Actuators B 173, 52–57 (2012)CrossRef P. Sun, W. Wang, Y. Liu, Y. Sun, J. Ma, G. Lu, Hydrothermal synthesis of 3D urchin-like α-Fe2O3 nanostructure for gas sensor. Sens. Actuators B 173, 52–57 (2012)CrossRef
89.
go back to reference Y. Cao, H. Luo, D. Jia, Low-heating solid-state synthesis and excellent gas-sensing properties of α-Fe2O3 nanoparticles. Sens. Actuators B 176, 618–624 (2013)CrossRef Y. Cao, H. Luo, D. Jia, Low-heating solid-state synthesis and excellent gas-sensing properties of α-Fe2O3 nanoparticles. Sens. Actuators B 176, 618–624 (2013)CrossRef
90.
go back to reference P. Gunawan, L. Mei, J. Teo, J. Ma, J. Highfield, Q. Li, Z. Zhong, Ultrahigh sensitivity of Au/1D α-Fe2O3 to acetone and the sensing mechanism. Langmuir 28, 14090–14099 (2012)CrossRef P. Gunawan, L. Mei, J. Teo, J. Ma, J. Highfield, Q. Li, Z. Zhong, Ultrahigh sensitivity of Au/1D α-Fe2O3 to acetone and the sensing mechanism. Langmuir 28, 14090–14099 (2012)CrossRef
91.
go back to reference S. Liang, H. Bin, J. Ding, J. Zhun, Q. Han, X. Wang, Synthesis of α-Fe2O3 with the aid of graphene and its gas-sensing property to ethanol. Ceram. Int. 41(5), 6978–6984 (2015)CrossRef S. Liang, H. Bin, J. Ding, J. Zhun, Q. Han, X. Wang, Synthesis of α-Fe2O3 with the aid of graphene and its gas-sensing property to ethanol. Ceram. Int. 41(5), 6978–6984 (2015)CrossRef
92.
go back to reference C. Wu, P. Yin, X. Zhu, C.O. Yang, Y. Xie, Synthesis of hematite (α-Fe2O3) nanorods: diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors. J. Phys. Chem. B 110, 17806–17812 (2006)CrossRef C. Wu, P. Yin, X. Zhu, C.O. Yang, Y. Xie, Synthesis of hematite (α-Fe2O3) nanorods: diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors. J. Phys. Chem. B 110, 17806–17812 (2006)CrossRef
93.
go back to reference X. Hu, J.C. Yu, J. Gong, Q. Li, G. Li, α-Fe2O3 nanorings prepared by a microwave-assisted hydrothermal process and their sensing properties. Adv. Mater. 19, 2324–2329 (2007)CrossRef X. Hu, J.C. Yu, J. Gong, Q. Li, G. Li, α-Fe2O3 nanorings prepared by a microwave-assisted hydrothermal process and their sensing properties. Adv. Mater. 19, 2324–2329 (2007)CrossRef
94.
go back to reference L. Wang, Z. Lou, J. Deng, R. Zhang, T. Zhang, Ethanol gas detection using a yolk–shell (core–shell) α-Fe2O3 nanospheres as sensing material. ACS Appl. Mater. Interfaces 7(23), 13098–13104 (2015)CrossRef L. Wang, Z. Lou, J. Deng, R. Zhang, T. Zhang, Ethanol gas detection using a yolk–shell (core–shell) α-Fe2O3 nanospheres as sensing material. ACS Appl. Mater. Interfaces 7(23), 13098–13104 (2015)CrossRef
95.
go back to reference G. Wang, X. Gou, J. Horvat, J. Park, Facile synthesis and characterization of iron oxide semiconductor nanowires for gas sensing application. J. Phys. Chem. C 112, 15220–15225 (2008)CrossRef G. Wang, X. Gou, J. Horvat, J. Park, Facile synthesis and characterization of iron oxide semiconductor nanowires for gas sensing application. J. Phys. Chem. C 112, 15220–15225 (2008)CrossRef
96.
go back to reference Z. Wu, K. Yu, S. Zhang, Y. Xie, Hematite hollow spheres with a mesoporous shell: controlled synthesis and applications in gas sensor and lithium ion batteries. J. Phys. Chem. C 112, 11307–11313 (2008)CrossRef Z. Wu, K. Yu, S. Zhang, Y. Xie, Hematite hollow spheres with a mesoporous shell: controlled synthesis and applications in gas sensor and lithium ion batteries. J. Phys. Chem. C 112, 11307–11313 (2008)CrossRef
97.
go back to reference Y. Yang, H. Ma, J. Zhuang, X. Wang, Morphology-controlled synthesis of hematite nanocrystals and their facet effects on gas-sensing properties. Inorg. Chem. 50, 10143–10151 (2011)CrossRef Y. Yang, H. Ma, J. Zhuang, X. Wang, Morphology-controlled synthesis of hematite nanocrystals and their facet effects on gas-sensing properties. Inorg. Chem. 50, 10143–10151 (2011)CrossRef
98.
go back to reference D.H. Kim, Y.S. Shim, J.M. Jeon, H.Y. Jeong, S.S. Park, Y.W. Kim, J.S. Kim, J.H. Lee, H.W. Jang, Vertically ordered hematite nanotube array as an ultrasensitive and rapid response acetone sensor. Appl. Mater. Interfaces 6(17), 14779–14784 (2014)CrossRef D.H. Kim, Y.S. Shim, J.M. Jeon, H.Y. Jeong, S.S. Park, Y.W. Kim, J.S. Kim, J.H. Lee, H.W. Jang, Vertically ordered hematite nanotube array as an ultrasensitive and rapid response acetone sensor. Appl. Mater. Interfaces 6(17), 14779–14784 (2014)CrossRef
99.
go back to reference H.J. Song, X.H. Jia, X.Q. Zhang, Controllable fabrication, growth mechanism, and gas sensing properties of hollow hematite polyhedra. J. Mater. Chem. 22, 22699–22705 (2012)CrossRef H.J. Song, X.H. Jia, X.Q. Zhang, Controllable fabrication, growth mechanism, and gas sensing properties of hollow hematite polyhedra. J. Mater. Chem. 22, 22699–22705 (2012)CrossRef
100.
go back to reference H.M. Chen, Y.Q. Zhao, M.Q. Yang, J.H. He, P.K. Chu, J. Zhang, S.H. Wu, Glycine-assisted hydrothermal synthesis of peculiar porous alpha-Fe2O3 nanospheres with excellent gas-sensing properties. Anal. Chim. Acta 659, 266–273 (2010)CrossRef H.M. Chen, Y.Q. Zhao, M.Q. Yang, J.H. He, P.K. Chu, J. Zhang, S.H. Wu, Glycine-assisted hydrothermal synthesis of peculiar porous alpha-Fe2O3 nanospheres with excellent gas-sensing properties. Anal. Chim. Acta 659, 266–273 (2010)CrossRef
101.
go back to reference Y.R. Tao, Q.X. Gao, J.L. Di, X.C. Wu, Gas sensors based on alpha-Fe2O3 nanorods, nanotubes and nanocubes. J. Nanosci. Nanotechnol. 13, 5654–5660 (2013)CrossRef Y.R. Tao, Q.X. Gao, J.L. Di, X.C. Wu, Gas sensors based on alpha-Fe2O3 nanorods, nanotubes and nanocubes. J. Nanosci. Nanotechnol. 13, 5654–5660 (2013)CrossRef
102.
go back to reference B.C. Yadav, S. Singh, A. Yadav, T. Shukla, Experimental investigations on nanosized ferric oxide and its LPG sensing. Int. J. Nanosci. 10, 135–139 (2011)CrossRef B.C. Yadav, S. Singh, A. Yadav, T. Shukla, Experimental investigations on nanosized ferric oxide and its LPG sensing. Int. J. Nanosci. 10, 135–139 (2011)CrossRef
103.
go back to reference B.C. Yadav, S. Singh, A. Yadav, Nanonails structured ferric oxide thick film as room temperature liquefied petroleum gas (LPG) sensor. Appl. Surf. Sci. 257, 1960–1966 (2011)CrossRef B.C. Yadav, S. Singh, A. Yadav, Nanonails structured ferric oxide thick film as room temperature liquefied petroleum gas (LPG) sensor. Appl. Surf. Sci. 257, 1960–1966 (2011)CrossRef
104.
go back to reference S. Singha, N. Vermaa, B.C. Yadava, R. Prakashc, A comparative study on surface morphological investigations of ferric oxide for LPG and opto-electronic humidity sensors. Appl. Surf. Sci. 258, 8780–8789 (2012)CrossRef S. Singha, N. Vermaa, B.C. Yadava, R. Prakashc, A comparative study on surface morphological investigations of ferric oxide for LPG and opto-electronic humidity sensors. Appl. Surf. Sci. 258, 8780–8789 (2012)CrossRef
105.
go back to reference Q. Hao, L. Li, X. Yin, S. Liu, Q. Li, T. Wang, Anomalous conductivity-type transition sensing behaviors of n-type porous α-Fe2O3 nanostructures toward H2S. Mater. Sci. Eng. B 176, 600–605 (2011)CrossRef Q. Hao, L. Li, X. Yin, S. Liu, Q. Li, T. Wang, Anomalous conductivity-type transition sensing behaviors of n-type porous α-Fe2O3 nanostructures toward H2S. Mater. Sci. Eng. B 176, 600–605 (2011)CrossRef
106.
go back to reference N.V. Long, Y. Yang, M. Yuas, C.M. Thi, Y. Cao, T. Nanng, M. Nogami, Gas-sensing properties of p-type α-Fe2O3 polyhedral particles synthesized via a modified polyol method. RSC Adv. 4, 8250–8255 (2014)CrossRef N.V. Long, Y. Yang, M. Yuas, C.M. Thi, Y. Cao, T. Nanng, M. Nogami, Gas-sensing properties of p-type α-Fe2O3 polyhedral particles synthesized via a modified polyol method. RSC Adv. 4, 8250–8255 (2014)CrossRef
107.
go back to reference Zhengfei Dai, Chul-Soon Lee, Yahui Tian, Il-Doo Kimb, Jong-Heun Lee, Highly reversible switching from P- to N-type NO2 sensing in a monolayer Fe2O3 inverse opal film and the associated P–N transition phase diagram. J. Mater. Chem. A 3, 3372–3381 (2015)CrossRef Zhengfei Dai, Chul-Soon Lee, Yahui Tian, Il-Doo Kimb, Jong-Heun Lee, Highly reversible switching from P- to N-type NO2 sensing in a monolayer Fe2O3 inverse opal film and the associated P–N transition phase diagram. J. Mater. Chem. A 3, 3372–3381 (2015)CrossRef
108.
go back to reference Peng Sun, Chen Wang, Xin Zhou, Pengfei Cheng, Kengo Shimanoe, Geyu Lua, Noboru Yamazoe, Cu-doped α-Fe2O3 hierarchical microcubes: synthesis and gassensing properties. Sens. Actuators B Chem. 193, 616–622 (2014)CrossRef Peng Sun, Chen Wang, Xin Zhou, Pengfei Cheng, Kengo Shimanoe, Geyu Lua, Noboru Yamazoe, Cu-doped α-Fe2O3 hierarchical microcubes: synthesis and gassensing properties. Sens. Actuators B Chem. 193, 616–622 (2014)CrossRef
109.
go back to reference G. Neri, A. Bonavita, G. Rizzo, S. Galvagno, N. Donato, L.S. Caputi, A study of water influence on CO response on gold-doped iron oxide sensors. Sens. Actuators B Chem. 101, 90–96 (2004)CrossRef G. Neri, A. Bonavita, G. Rizzo, S. Galvagno, N. Donato, L.S. Caputi, A study of water influence on CO response on gold-doped iron oxide sensors. Sens. Actuators B Chem. 101, 90–96 (2004)CrossRef
110.
go back to reference G. Neri, A. Bonavita, S. Galvagno, P. Siciliano, S. Capone, CO and NO2 sensing properties of doped-Fe2O3 thin films prepared by LPD. Sens. Actuators B Chem. 82, 40–47 (2002)CrossRef G. Neri, A. Bonavita, S. Galvagno, P. Siciliano, S. Capone, CO and NO2 sensing properties of doped-Fe2O3 thin films prepared by LPD. Sens. Actuators B Chem. 82, 40–47 (2002)CrossRef
111.
go back to reference G. Neri, A. Bonavita, G. Micali, N. Donato, F.A. Deorsola, P. Mossino, I. Amato, B. De Benedetti, Ethanol sensors based on Pt-doped tin oxide nanopowders synthesised by gel-combustion. Sens. Actuators B Chem. 117, 196–204 (2006)CrossRef G. Neri, A. Bonavita, G. Micali, N. Donato, F.A. Deorsola, P. Mossino, I. Amato, B. De Benedetti, Ethanol sensors based on Pt-doped tin oxide nanopowders synthesised by gel-combustion. Sens. Actuators B Chem. 117, 196–204 (2006)CrossRef
112.
go back to reference G. Neri, A. Bonavita, G. Micali, G. Rizzo, N. Pinna, M. Niederberger, In2O3 and Pt-In2O3 nanopowders for low temperature oxygen sensors. Sens. Actuators B Chem. 127, 455–462 (2007)CrossRef G. Neri, A. Bonavita, G. Micali, G. Rizzo, N. Pinna, M. Niederberger, In2O3 and Pt-In2O3 nanopowders for low temperature oxygen sensors. Sens. Actuators B Chem. 127, 455–462 (2007)CrossRef
113.
go back to reference G. Neri, A. Bonavita, S. Ipsale, G. Rizzo, C. Baratto, G. Faglia, G. Sberveglieri, Pd- and Ca-doped iron oxide for ethanol vapor sensing. Mater. Sci. Eng. B 139, 41–47 (2007)CrossRef G. Neri, A. Bonavita, S. Ipsale, G. Rizzo, C. Baratto, G. Faglia, G. Sberveglieri, Pd- and Ca-doped iron oxide for ethanol vapor sensing. Mater. Sci. Eng. B 139, 41–47 (2007)CrossRef
114.
go back to reference Y. Wang, F. Kong, B. Zhu, S. Wang, S. Wu, W. Huang, Synthesis and characterization of Pd-doped α-Fe2O3 H2S sensor with low power consumption. Mater. Sci. Eng. B 140, 98–102 (2007)CrossRef Y. Wang, F. Kong, B. Zhu, S. Wang, S. Wu, W. Huang, Synthesis and characterization of Pd-doped α-Fe2O3 H2S sensor with low power consumption. Mater. Sci. Eng. B 140, 98–102 (2007)CrossRef
115.
go back to reference A.S.M.I. Uddin, D.-T. Phan, G.-S. Chung, Low temperature acetylene gas sensor based on Ag nanoparticles-loaded ZnO-reduced graphene oxide hybrid. Sens. Actuators B Chem. 207, 362–369 (2015)CrossRef A.S.M.I. Uddin, D.-T. Phan, G.-S. Chung, Low temperature acetylene gas sensor based on Ag nanoparticles-loaded ZnO-reduced graphene oxide hybrid. Sens. Actuators B Chem. 207, 362–369 (2015)CrossRef
116.
go back to reference G. Neri, A. Bonavita, G. Micali, G. Rizzo, N. Pinn, M. Niederberger, In2O3 and Pt-In2O3 nanopowders for low temperature oxygen sensors. Sens. Actuators B 127, 455–462 (2007)CrossRef G. Neri, A. Bonavita, G. Micali, G. Rizzo, N. Pinn, M. Niederberger, In2O3 and Pt-In2O3 nanopowders for low temperature oxygen sensors. Sens. Actuators B 127, 455–462 (2007)CrossRef
117.
go back to reference M.E. Franke, T.J. Koplin, U. Simon, Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? Small 2, 36–50 (2006)CrossRef M.E. Franke, T.J. Koplin, U. Simon, Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? Small 2, 36–50 (2006)CrossRef
118.
go back to reference P. Rai, Y.-S. Kim, H.-M. Song, M.-K. Song, Y.-T. Yu, The role of gold catalyst on the sensing behavior of ZnO nanorods for CO and NO2 gases. Sens. Actuators B Chem. 165, 133–142 (2012)CrossRef P. Rai, Y.-S. Kim, H.-M. Song, M.-K. Song, Y.-T. Yu, The role of gold catalyst on the sensing behavior of ZnO nanorods for CO and NO2 gases. Sens. Actuators B Chem. 165, 133–142 (2012)CrossRef
119.
go back to reference A. Cabot, J. Arbiol, J.R. Morante, U. Weimar, N. Bârsan, W. Göpel, Analysis of the noble metal catalytic additives introduced by impregnation of as obtained SnO2 sol–gel nanocrystals for gas sensors. Sens. Actuators B Chem. 70, 87–100 (2000)CrossRef A. Cabot, J. Arbiol, J.R. Morante, U. Weimar, N. Bârsan, W. Göpel, Analysis of the noble metal catalytic additives introduced by impregnation of as obtained SnO2 sol–gel nanocrystals for gas sensors. Sens. Actuators B Chem. 70, 87–100 (2000)CrossRef
121.
go back to reference M. Zhang, Z. Yuan, J. Song, C. Zheng, Improvement and mechanism for the fast response of a Pt/TiO2 gas sensor. Sens. Actuators B Chem. 148, 87–92 (2010)CrossRef M. Zhang, Z. Yuan, J. Song, C. Zheng, Improvement and mechanism for the fast response of a Pt/TiO2 gas sensor. Sens. Actuators B Chem. 148, 87–92 (2010)CrossRef
122.
go back to reference H. Shan, C. Liu, L. Liua, S. Li, L. Wanga, X. Zhanga, X. Boa, X. Chia, Highly sensitive acetone sensors based on La-doped α-Fe2O3 nanotubes. Sens. Actuators B 184, 243–247 (2013)CrossRef H. Shan, C. Liu, L. Liua, S. Li, L. Wanga, X. Zhanga, X. Boa, X. Chia, Highly sensitive acetone sensors based on La-doped α-Fe2O3 nanotubes. Sens. Actuators B 184, 243–247 (2013)CrossRef
123.
go back to reference Yan Wang, Yanmei Wang, Jianliang Cao, Fanhong Kong, Huijuan Xia, Jun Zhang, Baolin Zhu, Shurong Wang, Wu Shihua, Low-temperature H2S sensors based on Ag-doped α-Fe2O3 nanoparticles. Sens. Actuators B 131, 183–189 (2008)CrossRef Yan Wang, Yanmei Wang, Jianliang Cao, Fanhong Kong, Huijuan Xia, Jun Zhang, Baolin Zhu, Shurong Wang, Wu Shihua, Low-temperature H2S sensors based on Ag-doped α-Fe2O3 nanoparticles. Sens. Actuators B 131, 183–189 (2008)CrossRef
124.
go back to reference X.H. Liu, J. Zhang, X.Z. Guo, S.H. Wu, S.R. Wang, Porous α-Fe2O3 decorated by Au nanoparticles and their enhanced sensor performance. Nanotechnology 21, 095501 (2010)CrossRef X.H. Liu, J. Zhang, X.Z. Guo, S.H. Wu, S.R. Wang, Porous α-Fe2O3 decorated by Au nanoparticles and their enhanced sensor performance. Nanotechnology 21, 095501 (2010)CrossRef
125.
go back to reference C. Liu, H. Shan, L. Liu, S. Li, H. Li, High sensing properties of Ce-doped α-Fe2O3 nanotubes to acetone. Ceram. Int. 40, 2395–2399 (2014)CrossRef C. Liu, H. Shan, L. Liu, S. Li, H. Li, High sensing properties of Ce-doped α-Fe2O3 nanotubes to acetone. Ceram. Int. 40, 2395–2399 (2014)CrossRef
126.
go back to reference Yan Wang, Shurong Wang, Yingqiang Zhao, Baolin Zhu, Fanhong Kong, Da Wang, Wu Shihua, Weiping Huang, Shoumin Zhang, H2S sensing characteristics of Pt-doped α-Fe2O3 thick film sensors. Sens. Actuators B 125, 79–84 (2007)CrossRef Yan Wang, Shurong Wang, Yingqiang Zhao, Baolin Zhu, Fanhong Kong, Da Wang, Wu Shihua, Weiping Huang, Shoumin Zhang, H2S sensing characteristics of Pt-doped α-Fe2O3 thick film sensors. Sens. Actuators B 125, 79–84 (2007)CrossRef
127.
go back to reference G. Neri, A. Bonavita, C. Milone, S. Galvagno, Role of the Au oxidation state in the CO sensing mechanism of Au/iron oxide-based gas sensors. Sens. Actuators B Chem. 93, 402–408 (2003)CrossRef G. Neri, A. Bonavita, C. Milone, S. Galvagno, Role of the Au oxidation state in the CO sensing mechanism of Au/iron oxide-based gas sensors. Sens. Actuators B Chem. 93, 402–408 (2003)CrossRef
128.
go back to reference G. Picasso, M.R.S. Kou, O. Vargasmachuca, J. Rojas, C. Zavala, A. Lopez, S. Irusta, Sensors based on porous Pd-doped hematite (a-Fe2O3) for LPG detection. Microporous Mesoporous Mater. 185, 79–85 (2014)CrossRef G. Picasso, M.R.S. Kou, O. Vargasmachuca, J. Rojas, C. Zavala, A. Lopez, S. Irusta, Sensors based on porous Pd-doped hematite (a-Fe2O3) for LPG detection. Microporous Mesoporous Mater. 185, 79–85 (2014)CrossRef
129.
go back to reference A. Mirzaei, K. Janghorban, B. Hashemi, A. Bonavita, M. Bonyani, S.G. Leonardi, G. Neri, Synthesis, characterization and gas sensing properties of Ag@α-Fe2O3 core–shell nanocomposites. Nanomaterials 5, 737 (2015)CrossRef A. Mirzaei, K. Janghorban, B. Hashemi, A. Bonavita, M. Bonyani, S.G. Leonardi, G. Neri, Synthesis, characterization and gas sensing properties of Ag@α-Fe2O3 core–shell nanocomposites. Nanomaterials 5, 737 (2015)CrossRef
130.
go back to reference J. Zhang, X. Liu, L. Wang, T. Yang, X. Guo, S. Wu, S. Wang, S. Zhang, Au-functionalized hematite hybrid nanospindles: general synthesis, gas sensing and catalytic properties. J. Phys. Chem. C 115, 5352–5357 (2011)CrossRef J. Zhang, X. Liu, L. Wang, T. Yang, X. Guo, S. Wu, S. Wang, S. Zhang, Au-functionalized hematite hybrid nanospindles: general synthesis, gas sensing and catalytic properties. J. Phys. Chem. C 115, 5352–5357 (2011)CrossRef
131.
go back to reference Peng Sun, Yaxin Cai, Du Sisi, Xu Xiumei, Lu You, Jian Ma, Fengmin Liu, Xishuang Liang, Yanfeng Sun, Lu Geyu, Hierarchical α-Fe2O3/SnO2 semiconductor composites: hydrothermal synthesis and gas sensing properties. Sens. Actuators B Chem. 182, 336–343 (2013)CrossRef Peng Sun, Yaxin Cai, Du Sisi, Xu Xiumei, Lu You, Jian Ma, Fengmin Liu, Xishuang Liang, Yanfeng Sun, Lu Geyu, Hierarchical α-Fe2O3/SnO2 semiconductor composites: hydrothermal synthesis and gas sensing properties. Sens. Actuators B Chem. 182, 336–343 (2013)CrossRef
132.
go back to reference Y.F. Kang, L.W. Wang, Y.S. Wang, H.X. Zhang, Y. Wang, D.T. Hong, Y.Q. Qu, S.R. Wang, Construction and enhanced gas sensing performances of CuO-modified α-Fe2O3 hybrid hollow spheres. Sens. Actuators B Chem. 177, 570–576 (2013)CrossRef Y.F. Kang, L.W. Wang, Y.S. Wang, H.X. Zhang, Y. Wang, D.T. Hong, Y.Q. Qu, S.R. Wang, Construction and enhanced gas sensing performances of CuO-modified α-Fe2O3 hybrid hollow spheres. Sens. Actuators B Chem. 177, 570–576 (2013)CrossRef
133.
go back to reference Shufeng Si, Chunhui Li, Xun Wang, Qing Peng, Yadong Li, Fe2O3/ZnO core–shell nanorods for gas sensors. Sens. Actuators B Chem. 119, 52–56 (2006)CrossRef Shufeng Si, Chunhui Li, Xun Wang, Qing Peng, Yadong Li, Fe2O3/ZnO core–shell nanorods for gas sensors. Sens. Actuators B Chem. 119, 52–56 (2006)CrossRef
134.
go back to reference Y.J. Chen, C.L. Zhu, X.L. Shi, M.S. Cao, H.B. Jin, The synthesis and selective gas sensing characteristics of SnO2/α-Fe2O3 hierarchical nanostructures. Nanotechnology 19, 205603 (2008)CrossRef Y.J. Chen, C.L. Zhu, X.L. Shi, M.S. Cao, H.B. Jin, The synthesis and selective gas sensing characteristics of SnO2/α-Fe2O3 hierarchical nanostructures. Nanotechnology 19, 205603 (2008)CrossRef
135.
go back to reference C.L. Zhu, Y.J. Chen, R.X. Wang, L.J. Wang, M.S. Cao, X.L. Shi, Synthesis and enhanced ethanol sensing properties of α-Fe2O3/ZnO heteronanostructures. Sens. Actuators B 140, 185–189 (2009)CrossRef C.L. Zhu, Y.J. Chen, R.X. Wang, L.J. Wang, M.S. Cao, X.L. Shi, Synthesis and enhanced ethanol sensing properties of α-Fe2O3/ZnO heteronanostructures. Sens. Actuators B 140, 185–189 (2009)CrossRef
136.
go back to reference L. Huang, H. Fan, Room-temperature solid state synthesis of ZnO/α-Fe2O3 hierarchical nanostructures and their enhanced gas-sensing properties. Sens. Actuators B 171–172, 1257–1263 (2010) L. Huang, H. Fan, Room-temperature solid state synthesis of ZnO/α-Fe2O3 hierarchical nanostructures and their enhanced gas-sensing properties. Sens. Actuators B 171–172, 1257–1263 (2010)
137.
go back to reference Maria I. Ivanovskaya, Dzmitry A. Kotsikau, Antonietta Taurino, Pietro Siciliano, Structural distinctions of Fe2O3–In2O3 composites obtained by various sol–gel procedures, and their gas-sensing features. Sens. Actuators B 124, 133–142 (2007)CrossRef Maria I. Ivanovskaya, Dzmitry A. Kotsikau, Antonietta Taurino, Pietro Siciliano, Structural distinctions of Fe2O3–In2O3 composites obtained by various sol–gel procedures, and their gas-sensing features. Sens. Actuators B 124, 133–142 (2007)CrossRef
138.
go back to reference M.R. Mohammadi, D.J. Fray, Low temperature nanocrystallineTiO2–Fe2O3 mixed oxide by aparticulate sol–gel route: physical and sensing characteristics. Physica E 46, 43–51 (2012)CrossRef M.R. Mohammadi, D.J. Fray, Low temperature nanocrystallineTiO2–Fe2O3 mixed oxide by aparticulate sol–gel route: physical and sensing characteristics. Physica E 46, 43–51 (2012)CrossRef
139.
go back to reference H. Tang, M. Yan, H. Zhang, S. Li, X. Ma, M. Wang, D. Yang, A selective NH3 gas sensor based on Fe2O3–ZnO nanocomposites at room temperature. Sens. Actuators B 114, 910–915 (2006)CrossRef H. Tang, M. Yan, H. Zhang, S. Li, X. Ma, M. Wang, D. Yang, A selective NH3 gas sensor based on Fe2O3–ZnO nanocomposites at room temperature. Sens. Actuators B 114, 910–915 (2006)CrossRef
140.
go back to reference O.K. Tan, W. Cao, W. Zhu, J.W. Chai, J.S. Pan, Ethanol sensors based on nano-sized α-Fe2O3 with SnO2, ZrO2, TiO2 solid solutions. Sens. Actuators B Chem. 93, 396–401 (2003)CrossRef O.K. Tan, W. Cao, W. Zhu, J.W. Chai, J.S. Pan, Ethanol sensors based on nano-sized α-Fe2O3 with SnO2, ZrO2, TiO2 solid solutions. Sens. Actuators B Chem. 93, 396–401 (2003)CrossRef
141.
go back to reference B.B. Wang, X.X. Fu, F. Liu, S.L. Shi, J.P. Cheng, X.B. Zhang, Fabrication and gas sensing properties of hollow core–shell SnO2/α-Fe2O3 heterogeneous structures. J. Alloys Compd. 587, 82–89 (2014)CrossRef B.B. Wang, X.X. Fu, F. Liu, S.L. Shi, J.P. Cheng, X.B. Zhang, Fabrication and gas sensing properties of hollow core–shell SnO2/α-Fe2O3 heterogeneous structures. J. Alloys Compd. 587, 82–89 (2014)CrossRef
142.
go back to reference X. Liu, Z. Xu, Y. Liu, Y. Shen, A novel high performance ethanol gas sensor based on CdO–Fe2O3 semiconducting materials. Sens. Actuators 52, 270–273 (1998)CrossRef X. Liu, Z. Xu, Y. Liu, Y. Shen, A novel high performance ethanol gas sensor based on CdO–Fe2O3 semiconducting materials. Sens. Actuators 52, 270–273 (1998)CrossRef
143.
go back to reference C. Zhao, W. Hu, Z. Zhang, J. Zhou, X. Pan, E. Xie, Effects of SnO2 additives on nanostructure and gas-sensing propertiesof α-Fe2O3 nanotubes. Sens. Actuators B 195, 486–493 (2014)CrossRef C. Zhao, W. Hu, Z. Zhang, J. Zhou, X. Pan, E. Xie, Effects of SnO2 additives on nanostructure and gas-sensing propertiesof α-Fe2O3 nanotubes. Sens. Actuators B 195, 486–493 (2014)CrossRef
144.
go back to reference O.K. Tan, W. Cao, W. Zhu, Alcohol sensor based on a non-equilibrium nanostructured xZrO2–(1−x)α-Fe2O3 solid solution system. Sens. Actuators B 63, 129–134 (2000)CrossRef O.K. Tan, W. Cao, W. Zhu, Alcohol sensor based on a non-equilibrium nanostructured xZrO2–(1−x)α-Fe2O3 solid solution system. Sens. Actuators B 63, 129–134 (2000)CrossRef
145.
go back to reference J. Zhang, X.H. Liu, L.W. Wang, T.L. Yang, X.Z. Guo, S.H. Wu, S.R. Wang, S.M. Zhang, Synthesis and gas sensing properties of α-Fe2O3@ ZnO core–shell nanospindles. Nanotechnology 22, 185501 (2011)CrossRef J. Zhang, X.H. Liu, L.W. Wang, T.L. Yang, X.Z. Guo, S.H. Wu, S.R. Wang, S.M. Zhang, Synthesis and gas sensing properties of α-Fe2O3@ ZnO core–shell nanospindles. Nanotechnology 22, 185501 (2011)CrossRef
146.
go back to reference J. Zhang, G. Zhu, X. Shen, Z. Ji, K. Chen, α-Fe2O3 nanospindles loaded with ZnO nanocrystals: synthesis and improved gas sensing performance. Cryst. Res. Technol. 49, 452–459 (2014)CrossRef J. Zhang, G. Zhu, X. Shen, Z. Ji, K. Chen, α-Fe2O3 nanospindles loaded with ZnO nanocrystals: synthesis and improved gas sensing performance. Cryst. Res. Technol. 49, 452–459 (2014)CrossRef
147.
go back to reference G.X. Tao, X.Q. Liu, Effect of α-Fe2O3 on the conductance and gas-sensing properties on In2O3. Acta Phys. Chim. Sin. 17, 887–891 (2001) G.X. Tao, X.Q. Liu, Effect of α-Fe2O3 on the conductance and gas-sensing properties on In2O3. Acta Phys. Chim. Sin. 17, 887–891 (2001)
148.
go back to reference H. Shan, C. Liu, L. Liu, J. Zhang, H. Li, Z. Liu, X. Zhang, X. Bo, X.Chi, Excellent toluene sensing properties of SnO2–Fe2O3 interconnected nanotubes. ACS Appl. Mater. Interfaces 5(13), 6376–6380 (2013)CrossRef H. Shan, C. Liu, L. Liu, J. Zhang, H. Li, Z. Liu, X. Zhang, X. Bo, X.Chi, Excellent toluene sensing properties of SnO2–Fe2O3 interconnected nanotubes. ACS Appl. Mater. Interfaces 5(13), 6376–6380 (2013)CrossRef
149.
go back to reference C.L. Zhu, H.L. Yu, Y. Zhang, T.S. Wang, Q.Y. Ouyang, L.H. Qi, Y.J. Chen, X.Y. Xue, Fe2O3/TiO2 tube-like nanostructures: synthesis, structural transformation and the enhanced sensing properties. Appl. Mater. Interfaces 4, 665–671 (2012)CrossRef C.L. Zhu, H.L. Yu, Y. Zhang, T.S. Wang, Q.Y. Ouyang, L.H. Qi, Y.J. Chen, X.Y. Xue, Fe2O3/TiO2 tube-like nanostructures: synthesis, structural transformation and the enhanced sensing properties. Appl. Mater. Interfaces 4, 665–671 (2012)CrossRef
150.
go back to reference S.L. Sharp, G. Kumar, E.P. Vicenzi, A.B. Bocarsly, M. Heibel, Formation and structure of a tin-iron oxide solid-state system with potential applications in carbon monoxide sensing through the use of cyanogel chemistry. Chem. Mater. 10, 880–885 (1998)CrossRef S.L. Sharp, G. Kumar, E.P. Vicenzi, A.B. Bocarsly, M. Heibel, Formation and structure of a tin-iron oxide solid-state system with potential applications in carbon monoxide sensing through the use of cyanogel chemistry. Chem. Mater. 10, 880–885 (1998)CrossRef
151.
go back to reference Z. Tianshu, P. Hing, Z. Ruifang, Improvements in α-Fe2O3 ceramic sensors for reducing gases by addition of Sb2O3. J. Mater. Sci. 35, 1419–1425 (2000)CrossRef Z. Tianshu, P. Hing, Z. Ruifang, Improvements in α-Fe2O3 ceramic sensors for reducing gases by addition of Sb2O3. J. Mater. Sci. 35, 1419–1425 (2000)CrossRef
152.
go back to reference P. Sun, C. Wang, J. Liu, X. Zhou, X. Li, X. Hu, G.Lu, Hierarchical assembly of α-Fe2O3 nanosheets on SnO2 hollow nanospheres with enhanced ethanol sensing properties. Appl. Mater. Interfaces 7(34), 19119–19125 (2015)CrossRef P. Sun, C. Wang, J. Liu, X. Zhou, X. Li, X. Hu, G.Lu, Hierarchical assembly of α-Fe2O3 nanosheets on SnO2 hollow nanospheres with enhanced ethanol sensing properties. Appl. Mater. Interfaces 7(34), 19119–19125 (2015)CrossRef
153.
go back to reference C. Wang, X. Cheng, X. Zhou, P. Sun, X. Hu, K. Shimanoe, G. Lu, N. Yamazoe, Hierarchical α-Fe2O3/NiO composites with a hollow structure for a gas sensor. Appl. Mater. Interfaces 6, 12031–12037 (2014)CrossRef C. Wang, X. Cheng, X. Zhou, P. Sun, X. Hu, K. Shimanoe, G. Lu, N. Yamazoe, Hierarchical α-Fe2O3/NiO composites with a hollow structure for a gas sensor. Appl. Mater. Interfaces 6, 12031–12037 (2014)CrossRef
154.
go back to reference W. Zhu, O.K. Tan, J.Z. Jiang, A new model and gas sensitivity of nonequilibrium xSnO2-(1-x)a-Fe2O3 nanopowders prepared by mechanical alloying. J. Mater. Sci. Mater. Electron. 9, 275–278 (1998)CrossRef W. Zhu, O.K. Tan, J.Z. Jiang, A new model and gas sensitivity of nonequilibrium xSnO2-(1-x)a-Fe2O3 nanopowders prepared by mechanical alloying. J. Mater. Sci. Mater. Electron. 9, 275–278 (1998)CrossRef
155.
go back to reference X. Zhou, Y. Xiao, M. Wang, P. Sun, F. Liu, X. Liang, X. Li, G. Lu, Highly enhanced sensing properties for ZnO nanoparticle-decorated round-edged α-Fe2O3 hexahedrons. Appl. Mater. Interfaces 7(16), 8743–8749 (2015)CrossRef X. Zhou, Y. Xiao, M. Wang, P. Sun, F. Liu, X. Liang, X. Li, G. Lu, Highly enhanced sensing properties for ZnO nanoparticle-decorated round-edged α-Fe2O3 hexahedrons. Appl. Mater. Interfaces 7(16), 8743–8749 (2015)CrossRef
156.
go back to reference S. Vallejos, I. GràCia, E.Figueras, C. Cané, Nanoscale Heterostructures Based on Fe2O3@WO3−x nanoneedles and their direct integration into flexible transducing platforms for toluene sensing. Appl. Mater. Interfaces 7(33), 18638–18649 (2015)CrossRef S. Vallejos, I. GràCia, E.Figueras, C. Cané, Nanoscale Heterostructures Based on Fe2O3@WO3−x nanoneedles and their direct integration into flexible transducing platforms for toluene sensing. Appl. Mater. Interfaces 7(33), 18638–18649 (2015)CrossRef
157.
go back to reference S. Singh, A. Singh, B.C. Yadav, P. Tandon, Synthesis, characterization, magnetic measurements and liquefied petroleum gas sensing properties of nanostructured cobalt ferrite and ferric oxide. Mater. Sci. Semicond. Process. 23, 122–135 (2014)CrossRef S. Singh, A. Singh, B.C. Yadav, P. Tandon, Synthesis, characterization, magnetic measurements and liquefied petroleum gas sensing properties of nanostructured cobalt ferrite and ferric oxide. Mater. Sci. Semicond. Process. 23, 122–135 (2014)CrossRef
158.
go back to reference R. Srivastavaa, B.C. Yadav, Nanostructured ZnFe2O4 thick film as room temperature liquefied petroleum gas sensor. J. Exp. Nanosci. 10, 703–717 (2015)CrossRef R. Srivastavaa, B.C. Yadav, Nanostructured ZnFe2O4 thick film as room temperature liquefied petroleum gas sensor. J. Exp. Nanosci. 10, 703–717 (2015)CrossRef
159.
go back to reference S. Singh, B.C. Yadav, A. Singh, P.K. Dwivedi, Synthesis of nanostructured iron-antimonate and its application in liquefied petroleum gas sensor. Adv. Mater. Lett. 3, 154–160 (2012)CrossRef S. Singh, B.C. Yadav, A. Singh, P.K. Dwivedi, Synthesis of nanostructured iron-antimonate and its application in liquefied petroleum gas sensor. Adv. Mater. Lett. 3, 154–160 (2012)CrossRef
160.
go back to reference A. Singh, S. Singh, B.D. Joshi, B.C. Anujshukla, P.Tandon Yadav, Synthesis, characterization, magnetic properties and gas sensing applications of ZnxCu1−xFe2O4 (0 ≤ x ≤ 0.8) nanocomposites. Mater. Sci. Semicond. Process. 27, 934–949 (2014)CrossRef A. Singh, S. Singh, B.D. Joshi, B.C. Anujshukla, P.Tandon Yadav, Synthesis, characterization, magnetic properties and gas sensing applications of ZnxCu1−xFe2O4 (0 ≤ x ≤ 0.8) nanocomposites. Mater. Sci. Semicond. Process. 27, 934–949 (2014)CrossRef
161.
go back to reference S. Singha, B.C. Yadava, R. Prakash, B. Bajaj, J.R. Lee, Synthesis of nanorods and mixed shaped copper ferrite and their applications as liquefied petroleum gas sensor. Appl. Surf. Sci. 257, 10763–10770 (2011)CrossRef S. Singha, B.C. Yadava, R. Prakash, B. Bajaj, J.R. Lee, Synthesis of nanorods and mixed shaped copper ferrite and their applications as liquefied petroleum gas sensor. Appl. Surf. Sci. 257, 10763–10770 (2011)CrossRef
162.
go back to reference N. Verma, S. Singh, R. Srivastava, B.C. Yadav, Fabrication of iron titanium oxide thin film and its application as opto-electronic humidity and liquefied petroleum gas sensors. Opt. Laser Technol. 57, 181–188 (2014)CrossRef N. Verma, S. Singh, R. Srivastava, B.C. Yadav, Fabrication of iron titanium oxide thin film and its application as opto-electronic humidity and liquefied petroleum gas sensors. Opt. Laser Technol. 57, 181–188 (2014)CrossRef
163.
go back to reference J. Ming, Y.Q. Wu, L.Y. Wang, Y.C. Tu, F.Y. Zhao, CO2-assisted template synthesis of porous hollow bi-phase gamma-/alpha-Fe2O3 with high sensor property. J. Mater. Chem. 21, 17776–17782 (2011)CrossRef J. Ming, Y.Q. Wu, L.Y. Wang, Y.C. Tu, F.Y. Zhao, CO2-assisted template synthesis of porous hollow bi-phase gamma-/alpha-Fe2O3 with high sensor property. J. Mater. Chem. 21, 17776–17782 (2011)CrossRef
164.
go back to reference S. Yan, G. Zan, Q. Wu, An ultrahigh sensitive and selective sensing material for ethanol: α-/γ-Fe2O3 mixed-phase mesoporous nanofiber. Nano Res. 8(11), 3673–3686 (2015)CrossRef S. Yan, G. Zan, Q. Wu, An ultrahigh sensitive and selective sensing material for ethanol: α-/γ-Fe2O3 mixed-phase mesoporous nanofiber. Nano Res. 8(11), 3673–3686 (2015)CrossRef
165.
go back to reference Y.V. Kaneti, J. Moriceau, M. Liu, Y. Yuan, Q. Zakaria, X. Jianga, A. Yu, Hydrothermal synthesis of ternary α-Fe2O3–ZnO–Au nanocompositeswith high gas-sensing performance. Sens. Actuators B 209, 889–897 (2015)CrossRef Y.V. Kaneti, J. Moriceau, M. Liu, Y. Yuan, Q. Zakaria, X. Jianga, A. Yu, Hydrothermal synthesis of ternary α-Fe2O3–ZnO–Au nanocompositeswith high gas-sensing performance. Sens. Actuators B 209, 889–897 (2015)CrossRef
166.
go back to reference G. Neri, A. Bonavita, G. Rizzo, S. Galvagno, S. Capone, P. Siciliano, Methanol gas-sensing properties of CeO2–Fe2O3 thin films. Sens. Actuators B 114, 687–695 (2006)CrossRef G. Neri, A. Bonavita, G. Rizzo, S. Galvagno, S. Capone, P. Siciliano, Methanol gas-sensing properties of CeO2–Fe2O3 thin films. Sens. Actuators B 114, 687–695 (2006)CrossRef
167.
go back to reference Z. Lou, F. Li, J. Deng, L. Wang, T. Zhang, Branch-like hierarchical heterostructure (α-Fe2O3/TiO2): a novel sensing material for trimethylamine gas sensor. Appl. Mater. Interfaces 5, 12310–12316 (2013)CrossRef Z. Lou, F. Li, J. Deng, L. Wang, T. Zhang, Branch-like hierarchical heterostructure (α-Fe2O3/TiO2): a novel sensing material for trimethylamine gas sensor. Appl. Mater. Interfaces 5, 12310–12316 (2013)CrossRef
168.
go back to reference R. Srivastava, B.C. Yadav, Ferrite materials: introduction, synthesis techniques, and applications as sensors. Int. J. Green Nanotechnol. 4, 141–154 (2012)CrossRef R. Srivastava, B.C. Yadav, Ferrite materials: introduction, synthesis techniques, and applications as sensors. Int. J. Green Nanotechnol. 4, 141–154 (2012)CrossRef
169.
go back to reference S. Singh, B.C. Yadav, M. Singh, R. Kothari, A review report on nanostructured ferrites as liquefied petroleum gas sensor. Int. J. Sci. Technol Soc. 1, 5–21 (2015) S. Singh, B.C. Yadav, M. Singh, R. Kothari, A review report on nanostructured ferrites as liquefied petroleum gas sensor. Int. J. Sci. Technol Soc. 1, 5–21 (2015)
170.
go back to reference M. Song, F. Liu, X. Ma, Study on preparation and gas sensing property of PANI. Int. J. Control Autom. 8, 267–274 (2015)CrossRef M. Song, F. Liu, X. Ma, Study on preparation and gas sensing property of PANI. Int. J. Control Autom. 8, 267–274 (2015)CrossRef
171.
go back to reference J.J. Maisik, A. Hooper, B.C. Tofield, Conducting polymer gas sensors. J. Chem. Soc. Faraday Trans. 82, 1117–1126 (1986)CrossRef J.J. Maisik, A. Hooper, B.C. Tofield, Conducting polymer gas sensors. J. Chem. Soc. Faraday Trans. 82, 1117–1126 (1986)CrossRef
172.
go back to reference K. Suri, S. Annaporni, A.K. Sarkar, R.P. Tandon, Gas and humidity sensors based on iron oxide polypyrrole nanocomposites. Sens. Actuators B 81, 277–282 (2002)CrossRef K. Suri, S. Annaporni, A.K. Sarkar, R.P. Tandon, Gas and humidity sensors based on iron oxide polypyrrole nanocomposites. Sens. Actuators B 81, 277–282 (2002)CrossRef
173.
go back to reference A. Kaushik, R. Kumar, S.K. Arya, M. Nair, B.D. Malhotra, S. Bhansali, Organic–inorganic hybrid nanocomposite-based gas sensors for environmental monitoring. Chem. Rev. 115(11), 4571–4606 (2015)CrossRef A. Kaushik, R. Kumar, S.K. Arya, M. Nair, B.D. Malhotra, S. Bhansali, Organic–inorganic hybrid nanocomposite-based gas sensors for environmental monitoring. Chem. Rev. 115(11), 4571–4606 (2015)CrossRef
174.
go back to reference H. Bai, G. Shi, Gas sensors based on conducting polymers. Sensors 7, 267–307 (2007)CrossRef H. Bai, G. Shi, Gas sensors based on conducting polymers. Sensors 7, 267–307 (2007)CrossRef
175.
go back to reference D.K. Bandgar, S.T. Navale, A.T. Mane, S.K. Gupta, D.K. Aswal, V.B. Patil, Ammonia sensing properties of polyaniline/a-Fe2O3 hybrid nanocomposites. Synth. Met. 204, 1–9 (2015)CrossRef D.K. Bandgar, S.T. Navale, A.T. Mane, S.K. Gupta, D.K. Aswal, V.B. Patil, Ammonia sensing properties of polyaniline/a-Fe2O3 hybrid nanocomposites. Synth. Met. 204, 1–9 (2015)CrossRef
176.
go back to reference J. Gong, Y. Li, Z. Hu, Z. Zhou, Y. Deng, Ultrasensitive NH3 gas sensor from polyaniline nanograin enchased TiO2 fibers. J Phys. Chem. C 114, 9970–9974 (2010)CrossRef J. Gong, Y. Li, Z. Hu, Z. Zhou, Y. Deng, Ultrasensitive NH3 gas sensor from polyaniline nanograin enchased TiO2 fibers. J Phys. Chem. C 114, 9970–9974 (2010)CrossRef
177.
go back to reference D.W. Hatchett, M. Josowicz, Composites of intrinsically conducting polymers as sensing nanomaterials. Chem. Rev. 108, 746–769 (2008)CrossRef D.W. Hatchett, M. Josowicz, Composites of intrinsically conducting polymers as sensing nanomaterials. Chem. Rev. 108, 746–769 (2008)CrossRef
178.
go back to reference L. Geng, S. Wang, Y. Zhao, P. Li, S. Zhang, W. Huang, S. Wu, Study of the primary sensitivity of polypyrrole/r-Fe2O3 to toxic gases. Mater. Chem. Phys. 99, 15–19 (2006)CrossRef L. Geng, S. Wang, Y. Zhao, P. Li, S. Zhang, W. Huang, S. Wu, Study of the primary sensitivity of polypyrrole/r-Fe2O3 to toxic gases. Mater. Chem. Phys. 99, 15–19 (2006)CrossRef
179.
go back to reference S.T. Navale, G.D. Khuspe, M.A. Chougule, V.B. Patil, Room temperatureNO2 gas sensorbasedonPPy/α-Fe2O3 hybrid nanocomposites. Ceram. Int. 40, 8013–8020 (2014)CrossRef S.T. Navale, G.D. Khuspe, M.A. Chougule, V.B. Patil, Room temperatureNO2 gas sensorbasedonPPy/α-Fe2O3 hybrid nanocomposites. Ceram. Int. 40, 8013–8020 (2014)CrossRef
180.
go back to reference S.T. Navale, G.D. Khuspe, M.A. Chougule, V.B. Patil, Camphor sulfonic acid doped PPy/α-Fe2O3 hybrid nanocomposites as NO2 sensors. RSC Adv. 4, 27998–28004 (2014)CrossRef S.T. Navale, G.D. Khuspe, M.A. Chougule, V.B. Patil, Camphor sulfonic acid doped PPy/α-Fe2O3 hybrid nanocomposites as NO2 sensors. RSC Adv. 4, 27998–28004 (2014)CrossRef
181.
go back to reference S.T. Navale, G.D. Khuspe, M.A. Chougule, V.B. Patil, Polypyrrole, α-Fe2O3 and their hybrid nanocomposite sensor: an impedance spectroscopy study. Org. Electron. 15, 2159–2167 (2014)CrossRef S.T. Navale, G.D. Khuspe, M.A. Chougule, V.B. Patil, Polypyrrole, α-Fe2O3 and their hybrid nanocomposite sensor: an impedance spectroscopy study. Org. Electron. 15, 2159–2167 (2014)CrossRef
182.
go back to reference F. Tudorache, M. Grigoraş, Study of polyaniline—iron oxides composites using for gas detection. Optoelectron. Adv. Mater. Rapid Commun. 4, 43–47 (2010) F. Tudorache, M. Grigoraş, Study of polyaniline—iron oxides composites using for gas detection. Optoelectron. Adv. Mater. Rapid Commun. 4, 43–47 (2010)
183.
go back to reference Y. Wu, S. Xing, S. Jing, T. Zhou, C. Zhao, Preparation of polyaniline/Fe2O3 composite dispersions in the presence of dodecylbenzene sulfonic acid. e-Polymers 103, 1–7 (2007) Y. Wu, S. Xing, S. Jing, T. Zhou, C. Zhao, Preparation of polyaniline/Fe2O3 composite dispersions in the presence of dodecylbenzene sulfonic acid. e-Polymers 103, 1–7 (2007)
184.
go back to reference A. Tomescu, C.E. Simion, R. Alexandrescu, I. Morjan, M. Scarisoreanu, Sensitivity to reducing gases of polymer-iron nanocomposite materials. Rom. J. Inform. Sci. Technol. 11, 85–95 (2008) A. Tomescu, C.E. Simion, R. Alexandrescu, I. Morjan, M. Scarisoreanu, Sensitivity to reducing gases of polymer-iron nanocomposite materials. Rom. J. Inform. Sci. Technol. 11, 85–95 (2008)
185.
go back to reference D. K. Bandgar, S.T. Navale, M. Naushad, R.S. Mane, F.J. Stadler, V.B. Patil, Ultra-sensitive polyaniline-iron oxide nanocomposite room temperature flexible ammonia sensor. RSC Adv. 5, 68964–68971 (2015)CrossRef D. K. Bandgar, S.T. Navale, M. Naushad, R.S. Mane, F.J. Stadler, V.B. Patil, Ultra-sensitive polyaniline-iron oxide nanocomposite room temperature flexible ammonia sensor. RSC Adv. 5, 68964–68971 (2015)CrossRef
186.
go back to reference Novoselov Ks, Geim Ak, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos et al., Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRef Novoselov Ks, Geim Ak, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos et al., Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRef
187.
go back to reference S. Liang, J. Zhu, C. Wang, S. Yu, H. Bia, X. Liua, X. Wang, Fabrication of α-Fe2O3@graphene nanostructures for enhancedgas-sensing property to ethanol. Appl. Surf. Sci. 292, 278–284 (2014)CrossRef S. Liang, J. Zhu, C. Wang, S. Yu, H. Bia, X. Liua, X. Wang, Fabrication of α-Fe2O3@graphene nanostructures for enhancedgas-sensing property to ethanol. Appl. Surf. Sci. 292, 278–284 (2014)CrossRef
188.
go back to reference F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007)CrossRef F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007)CrossRef
189.
go back to reference S. Liu, B. Yu, H. Zhang, T. Fei, T. Zhang, Enhancing NO2 gas sensing performances at room temperature based on reduced graphene oxide-ZnO nanoparticles hybrids. Sens. Actuators B 202, 272–278 (2014)CrossRef S. Liu, B. Yu, H. Zhang, T. Fei, T. Zhang, Enhancing NO2 gas sensing performances at room temperature based on reduced graphene oxide-ZnO nanoparticles hybrids. Sens. Actuators B 202, 272–278 (2014)CrossRef
190.
go back to reference F.-L. Meng, Z. Guo, X.J. Huang, Graphene-based hybrids for chemiresistive gas sensors. TrAC Trends Anal. Chem. 68, 37–47 (2015)CrossRef F.-L. Meng, Z. Guo, X.J. Huang, Graphene-based hybrids for chemiresistive gas sensors. TrAC Trends Anal. Chem. 68, 37–47 (2015)CrossRef
191.
go back to reference Y. Wang, S. Gong, Cotton-like Fe 2 O 3 anchored on graphene sheets for improved NO 2 sensing at room temperature (Mater. Electron., J Mater Sci, 2015) Y. Wang, S. Gong, Cotton-like Fe 2 O 3 anchored on graphene sheets for improved NO 2 sensing at room temperature (Mater. Electron., J Mater Sci, 2015)
192.
go back to reference Y.L. Dong, X.F. Zhang, X.L. Cheng, Y.M. Xu, S. Gao, H. Zhao, L.H. Huo, Highly selective NO2 sensor at room temperature based on the nanocomposites of hierarchical nanosphere-like α-Fe2O3 and reduced graphene oxide. RSC Adv. 4, 57493–57500 (2014)CrossRef Y.L. Dong, X.F. Zhang, X.L. Cheng, Y.M. Xu, S. Gao, H. Zhao, L.H. Huo, Highly selective NO2 sensor at room temperature based on the nanocomposites of hierarchical nanosphere-like α-Fe2O3 and reduced graphene oxide. RSC Adv. 4, 57493–57500 (2014)CrossRef
193.
go back to reference Z. Jiang, J. Li, H. Aslan, Q. Li, Y. Li, M. Chen, Y. Huang, J.P. Froning, M. Otyepka, R. Zboril, F. Besenbacherb, M. Dong, A high efficiency H2S gas sensor material: paper like Fe2O3/graphene nanosheets and structural alignment dependency of device efficiency. J. Phys. Chem. A 2, 6714–6717 (2014) Z. Jiang, J. Li, H. Aslan, Q. Li, Y. Li, M. Chen, Y. Huang, J.P. Froning, M. Otyepka, R. Zboril, F. Besenbacherb, M. Dong, A high efficiency H2S gas sensor material: paper like Fe2O3/graphene nanosheets and structural alignment dependency of device efficiency. J. Phys. Chem. A 2, 6714–6717 (2014)
194.
go back to reference V.E. Bochenkov, G.B. Sergeev, Sensitivity, selectivity, and stability of gas-sensitive metal-oxide nanostructures, in Metal Oxide Nanostructures and Their Applications, vol. 3, ed. by A. U. a. Y.B. Hahn (American Scientific Publishers, 2010), pp. 31–52 V.E. Bochenkov, G.B. Sergeev, Sensitivity, selectivity, and stability of gas-sensitive metal-oxide nanostructures, in Metal Oxide Nanostructures and Their Applications, vol. 3, ed. by A. U. a. Y.B. Hahn (American Scientific Publishers, 2010), pp. 31–52
195.
go back to reference D.K. Bandgar, S.T. Navale, G.D. Khuspe, S.A. Pawar, R.N. Mulik, V.B. Patil, Novel route for fabrication of nanostructured α-Fe2O3 gas sensor. Mater. Sci. Semicond. Process. 17, 67–73 (2014)CrossRef D.K. Bandgar, S.T. Navale, G.D. Khuspe, S.A. Pawar, R.N. Mulik, V.B. Patil, Novel route for fabrication of nanostructured α-Fe2O3 gas sensor. Mater. Sci. Semicond. Process. 17, 67–73 (2014)CrossRef
Metadata
Title
α-Fe2O3 based nanomaterials as gas sensors
Authors
A. Mirzaei
B. Hashemi
K. Janghorban
Publication date
19-12-2015
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 4/2016
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-015-4200-z

Other articles of this Issue 4/2016

Journal of Materials Science: Materials in Electronics 4/2016 Go to the issue