Skip to main content
Top

2022 | OriginalPaper | Chapter

6. 1D Mesoporous Inorganic Nanomaterials Applied in Rechargeable Batteries

Authors : Huilin Hou, Linli Xu, Weiyou Yang, Wai-Yeung Wong

Published in: One-Dimensional Mesoporous Inorganic Nanomaterials

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A rechargeable battery, a kind of electrochemical appliance, is able to convert the chemical energy to electrical energy. It should be noted that the electrode and electrolyte materials play a determinant role in the rechargeable battery characteristics.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. Tarascon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407(6803), 496–499 (2000)CrossRef P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. Tarascon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407(6803), 496–499 (2000)CrossRef
2.
go back to reference E. Yoo, J. Kim, E. Hosono, H.-s Zhou, T. Kudo, I. Honma, Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano. Lett.000000000 8(8), 2277–2282 (2008)CrossRef E. Yoo, J. Kim, E. Hosono, H.-s Zhou, T. Kudo, I. Honma, Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano. Lett.000000000 8(8), 2277–2282 (2008)CrossRef
3.
go back to reference B. Scrosati, J. Hassoun, Y.-K. Sun, Lithium-ion batteries. A look into the future. Energy Environ. Sci. 4(9), 3287–3295 (2011)CrossRef B. Scrosati, J. Hassoun, Y.-K. Sun, Lithium-ion batteries. A look into the future. Energy Environ. Sci. 4(9), 3287–3295 (2011)CrossRef
4.
go back to reference J.W. Choi, D. Aurbach, Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016)CrossRef J.W. Choi, D. Aurbach, Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016)CrossRef
5.
go back to reference K.T. Nam, D.-W. Kim, P.J. Yoo, C.-Y. Chiang, N. Meethong, P.T. Hammond, Y.-M. Chiang, A.M. Belcher, Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312(5775), 885–888 (2006)CrossRef K.T. Nam, D.-W. Kim, P.J. Yoo, C.-Y. Chiang, N. Meethong, P.T. Hammond, Y.-M. Chiang, A.M. Belcher, Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312(5775), 885–888 (2006)CrossRef
6.
go back to reference H. Wang, L.-F. Cui, Y. Yang, H. Sanchez Casalongue, J.T. Robinson, Y. Liang, Y. Cui, H. Dai, Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc. 132(40), 13978–13980 (2010)CrossRef H. Wang, L.-F. Cui, Y. Yang, H. Sanchez Casalongue, J.T. Robinson, Y. Liang, Y. Cui, H. Dai, Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc. 132(40), 13978–13980 (2010)CrossRef
7.
go back to reference Z. Wang, L. Zhou, Metal Oxide Hollow Nanostructures for Lithium-ion Batteries. Adv. Mater. 24(14), 1903–1911 (2012)CrossRef Z. Wang, L. Zhou, Metal Oxide Hollow Nanostructures for Lithium-ion Batteries. Adv. Mater. 24(14), 1903–1911 (2012)CrossRef
8.
go back to reference L. Croguennec, M.R. Palacin, Recent achievements on inorganic electrode materials for lithium-ion batteries. J. Am. Chem. Soc. 137(9), 3140–3156 (2015)CrossRef L. Croguennec, M.R. Palacin, Recent achievements on inorganic electrode materials for lithium-ion batteries. J. Am. Chem. Soc. 137(9), 3140–3156 (2015)CrossRef
9.
go back to reference Q. Xu, J.Y. Li, J.K. Sun, Y.X. Yin, L.J. Wan, Y.G. Guo, Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes. Adv. Energy Mater. 7(3), 1601481 (2017)CrossRef Q. Xu, J.Y. Li, J.K. Sun, Y.X. Yin, L.J. Wan, Y.G. Guo, Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes. Adv. Energy Mater. 7(3), 1601481 (2017)CrossRef
10.
go back to reference X. Li, F. Cheng, B. Guo, J. Chen, Template-synthesized LiCoO2, LiMn2O4, and LiNi0.8Co0.2O2 nanotubes as the cathode materials of lithium ion batteries. J. Phys. Chem. B 109(29), 14017–14024 (2005)CrossRef X. Li, F. Cheng, B. Guo, J. Chen, Template-synthesized LiCoO2, LiMn2O4, and LiNi0.8Co0.2O2 nanotubes as the cathode materials of lithium ion batteries. J. Phys. Chem. B 109(29), 14017–14024 (2005)CrossRef
11.
go back to reference D.K. Kim, P. Muralidharan, H.-W. Lee, R. Ruffo, Y. Yang, C.K. Chan, H. Peng, R.A. Huggins, Y. Cui, Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano. Lett. 8(11), 3948–3952 (2008)CrossRef D.K. Kim, P. Muralidharan, H.-W. Lee, R. Ruffo, Y. Yang, C.K. Chan, H. Peng, R.A. Huggins, Y. Cui, Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano. Lett. 8(11), 3948–3952 (2008)CrossRef
12.
go back to reference X. Qin, X. Wang, H. Xiang, J. Xie, J. Li, Y. Zhou, Mechanism for hydrothermal synthesis of LiFePO4 platelets as cathode material for lithium-ion batteries. J. Phys. Chem. C 114(39), 16806–16812 (2010)CrossRef X. Qin, X. Wang, H. Xiang, J. Xie, J. Li, Y. Zhou, Mechanism for hydrothermal synthesis of LiFePO4 platelets as cathode material for lithium-ion batteries. J. Phys. Chem. C 114(39), 16806–16812 (2010)CrossRef
13.
go back to reference J. Gaubicher, C. Wurm, G. Goward, C. Masquelier, L. Nazar, Rhombohedral form of Li3V2 (PO4) 3 as a cathode in Li-ion batteries. Chem. Mater. 12(11), 3240–3242 (2000)CrossRef J. Gaubicher, C. Wurm, G. Goward, C. Masquelier, L. Nazar, Rhombohedral form of Li3V2 (PO4) 3 as a cathode in Li-ion batteries. Chem. Mater. 12(11), 3240–3242 (2000)CrossRef
14.
go back to reference J. Liu, T.E. Conry, X. Song, L. Yang, M.M. Doeff, T.J. Richardson, Spherical nanoporous LiCoPO 4/C composites as high performance cathode materials for rechargeable lithium-ion batteries. J. Mater. Chem. 21(27), 9984–9987 (2011)CrossRef J. Liu, T.E. Conry, X. Song, L. Yang, M.M. Doeff, T.J. Richardson, Spherical nanoporous LiCoPO 4/C composites as high performance cathode materials for rechargeable lithium-ion batteries. J. Mater. Chem. 21(27), 9984–9987 (2011)CrossRef
15.
go back to reference L.-X. Yuan, Z.-H. Wang, W.-X. Zhang, X.-L. Hu, J.-T. Chen, Y.-H. Huang, J.B. Goodenough, Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy Environ. Sci. 4(2), 269–284 (2011)CrossRef L.-X. Yuan, Z.-H. Wang, W.-X. Zhang, X.-L. Hu, J.-T. Chen, Y.-H. Huang, J.B. Goodenough, Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy Environ. Sci. 4(2), 269–284 (2011)CrossRef
16.
go back to reference C. Nan, J. Lu, L. Li, L. Li, Q. Peng, Y. Li, Size and shape control of LiFePO4 nanocrystals for better lithium ion battery cathode materials. Nano. Res. 6(7), 469–477 (2013)CrossRef C. Nan, J. Lu, L. Li, L. Li, Q. Peng, Y. Li, Size and shape control of LiFePO4 nanocrystals for better lithium ion battery cathode materials. Nano. Res. 6(7), 469–477 (2013)CrossRef
17.
go back to reference Q. Wei, Q. An, D. Chen, L. Mai, S. Chen, Y. Zhao, K.M. Hercule, L. Xu, A. Minhas-Khan, Q. Zhang, One-Pot Synthesized Bicontinuous Hierarchical Li3V2(PO4)3/C Mesoporous Nanowires for High-Rate and Ultralong-Life Lithium-ion Batteries. Nano. Lett. 14(2), 1042–1048 (2014)CrossRef Q. Wei, Q. An, D. Chen, L. Mai, S. Chen, Y. Zhao, K.M. Hercule, L. Xu, A. Minhas-Khan, Q. Zhang, One-Pot Synthesized Bicontinuous Hierarchical Li3V2(PO4)3/C Mesoporous Nanowires for High-Rate and Ultralong-Life Lithium-ion Batteries. Nano. Lett. 14(2), 1042–1048 (2014)CrossRef
18.
go back to reference C. Niu, J. Meng, X. Wang, C. Han, M. Yan, K. Zhao, X. Xu, W. Ren, Y. Zhao, L. Xu, General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis. Nat. Commun. 6, 7462 (2015)CrossRef C. Niu, J. Meng, X. Wang, C. Han, M. Yan, K. Zhao, X. Xu, W. Ren, Y. Zhao, L. Xu, General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis. Nat. Commun. 6, 7462 (2015)CrossRef
19.
go back to reference D. Ma, Y. Li, P. Zhang, A.J. Cooper, A.M. Abdelkader, X. Ren, L. Deng, Mesoporous Li1.2Mn0.54Ni0.13Co0.13O2 nanotubes for high-performance cathodes in Li-ion batteries. J. Power Sources 311, 35–41 (2016)CrossRef D. Ma, Y. Li, P. Zhang, A.J. Cooper, A.M. Abdelkader, X. Ren, L. Deng, Mesoporous Li1.2Mn0.54Ni0.13Co0.13O2 nanotubes for high-performance cathodes in Li-ion batteries. J. Power Sources 311, 35–41 (2016)CrossRef
20.
go back to reference L. Ji, Z. Lin, M. Alcoutlabi, X. Zhang, Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 4(8), 2682–2699 (2011)CrossRef L. Ji, Z. Lin, M. Alcoutlabi, X. Zhang, Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 4(8), 2682–2699 (2011)CrossRef
21.
go back to reference P. Roy, S.K. Srivastava, Nanostructured anode materials for lithium ion batteries. J. Mater. Chem. A 3(6), 2454–2484 (2015)CrossRef P. Roy, S.K. Srivastava, Nanostructured anode materials for lithium ion batteries. J. Mater. Chem. A 3(6), 2454–2484 (2015)CrossRef
22.
go back to reference S. Choi, T.-w Kwon, A. Coskun, J.W. Choi, Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 357(6348), 279–283 (2017)CrossRef S. Choi, T.-w Kwon, A. Coskun, J.W. Choi, Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 357(6348), 279–283 (2017)CrossRef
23.
go back to reference M. Endo, C. Kim, K. Nishimura, T. Fujino, K. Miyashita, Recent development of carbon materials for Li ion batteries. Carbon 38(2), 183–197 (2000)CrossRef M. Endo, C. Kim, K. Nishimura, T. Fujino, K. Miyashita, Recent development of carbon materials for Li ion batteries. Carbon 38(2), 183–197 (2000)CrossRef
24.
go back to reference Y.-P. Wu, E. Rahm, R. Holze, Carbon anode materials for lithium ion batteries. J. Power Sources 114(2), 228–236 (2003)CrossRef Y.-P. Wu, E. Rahm, R. Holze, Carbon anode materials for lithium ion batteries. J. Power Sources 114(2), 228–236 (2003)CrossRef
25.
go back to reference C. De las Casas, W. Li, A review of application of carbon nanotubes for lithium ion battery anode material. J. Power Sources 208, 74–85 (2012)CrossRef C. De las Casas, W. Li, A review of application of carbon nanotubes for lithium ion battery anode material. J. Power Sources 208, 74–85 (2012)CrossRef
26.
go back to reference M. Liang, L. Zhi, Graphene-based electrode materials for rechargeable lithium batteries. J. Mater. Chem. 19(33), 5871–5878 (2009)CrossRef M. Liang, L. Zhi, Graphene-based electrode materials for rechargeable lithium batteries. J. Mater. Chem. 19(33), 5871–5878 (2009)CrossRef
27.
go back to reference A.D. Roberts, X. Li, H. Zhang, Porous carbon spheres and monoliths: morphology control, pore size tuning and their applications as Li-ion battery anode materials. Chem. Soc. Rev. 43(13), 4341–4356 (2014)CrossRef A.D. Roberts, X. Li, H. Zhang, Porous carbon spheres and monoliths: morphology control, pore size tuning and their applications as Li-ion battery anode materials. Chem. Soc. Rev. 43(13), 4341–4356 (2014)CrossRef
28.
go back to reference L. Ji, Z. Lin, A.J. Medford, X. Zhang, Porous carbon nanofibers from electrospun polyacrylonitrile/SiO2 composites as an energy storage material. Carbon 47(14), 3346–3354 (2009)CrossRef L. Ji, Z. Lin, A.J. Medford, X. Zhang, Porous carbon nanofibers from electrospun polyacrylonitrile/SiO2 composites as an energy storage material. Carbon 47(14), 3346–3354 (2009)CrossRef
29.
go back to reference Y. Xing, Y. Wang, C. Zhou, S. Zhang, B. Fang, Simple synthesis of mesoporous carbon nanofibers with hierarchical nanostructure for ultrahigh lithium storage. ACS Appl. Mater. Interfaces 6(4), 2561–2567 (2014)CrossRef Y. Xing, Y. Wang, C. Zhou, S. Zhang, B. Fang, Simple synthesis of mesoporous carbon nanofibers with hierarchical nanostructure for ultrahigh lithium storage. ACS Appl. Mater. Interfaces 6(4), 2561–2567 (2014)CrossRef
30.
go back to reference D. Li, C. Lv, L. Liu, Y. Xia, X. She, S. Guo, D. Yang, Egg-box structure in cobalt alginate: a new approach to multifunctional hierarchical mesoporous N-doped carbon nanofibers for efficient catalysis and energy storage. ACS Central Sci. 1(5), 261–269 (2015)CrossRef D. Li, C. Lv, L. Liu, Y. Xia, X. She, S. Guo, D. Yang, Egg-box structure in cobalt alginate: a new approach to multifunctional hierarchical mesoporous N-doped carbon nanofibers for efficient catalysis and energy storage. ACS Central Sci. 1(5), 261–269 (2015)CrossRef
31.
go back to reference Y. Qiu, K. Yan, S. Yang, Ultrafine tin nanocrystallites encapsulated in mesoporous carbon nanowires: scalable synthesis and excellent electrochemical properties for rechargeable lithium ion batteries. Chem. Commun. 46(44), 8359 (2010)CrossRef Y. Qiu, K. Yan, S. Yang, Ultrafine tin nanocrystallites encapsulated in mesoporous carbon nanowires: scalable synthesis and excellent electrochemical properties for rechargeable lithium ion batteries. Chem. Commun. 46(44), 8359 (2010)CrossRef
32.
go back to reference H. Jiang, H. Zhang, Y. Fu, S. Guo, Y. Hu, L. Zhang, Y. Liu, H. Liu, C. Li, Self-volatilization approach to mesoporous carbon nanotube/silver nanoparticle hybrids: the role of silver in boosting Li Ion storage. ACS Nano. 10(1), 1648–1654 (2016)CrossRef H. Jiang, H. Zhang, Y. Fu, S. Guo, Y. Hu, L. Zhang, Y. Liu, H. Liu, C. Li, Self-volatilization approach to mesoporous carbon nanotube/silver nanoparticle hybrids: the role of silver in boosting Li Ion storage. ACS Nano. 10(1), 1648–1654 (2016)CrossRef
33.
go back to reference Y. Wang, X. Wen, J. Chen, S. Wang, Foamed mesoporous carbon/silicon composite nanofiber anode for lithium ion batteries. J. Power Sources 281, 285–292 (2015)CrossRef Y. Wang, X. Wen, J. Chen, S. Wang, Foamed mesoporous carbon/silicon composite nanofiber anode for lithium ion batteries. J. Power Sources 281, 285–292 (2015)CrossRef
34.
go back to reference C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3(1), 31–35 (2008)CrossRef C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3(1), 31–35 (2008)CrossRef
35.
go back to reference M. Ge, J. Rong, X. Fang, C. Zhou, Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano. Lett. 12(5), 2318–2323 (2012)CrossRef M. Ge, J. Rong, X. Fang, C. Zhou, Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano. Lett. 12(5), 2318–2323 (2012)CrossRef
36.
go back to reference H. Wu, G. Chan, J.W. Choi, I. Ryu, Y. Yao, M.T. McDowell, S.W. Lee, A. Jackson, Y. Yang, L. Hu, Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 7(5), 310–315 (2012)CrossRef H. Wu, G. Chan, J.W. Choi, I. Ryu, Y. Yao, M.T. McDowell, S.W. Lee, A. Jackson, Y. Yang, L. Hu, Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 7(5), 310–315 (2012)CrossRef
37.
go back to reference W. Luo, X. Chen, Y. Xia, M. Chen, L. Wang, Q. Wang, W. Li, J. Yang, Surface and interface engineering of silicon-based anode materials for lithium-ion batteries. Adv. Energy Mater. 7(24), 1701083 (2017)CrossRef W. Luo, X. Chen, Y. Xia, M. Chen, L. Wang, Q. Wang, W. Li, J. Yang, Surface and interface engineering of silicon-based anode materials for lithium-ion batteries. Adv. Energy Mater. 7(24), 1701083 (2017)CrossRef
38.
go back to reference X. Su, Q. Wu, J. Li, X. Xiao, A. Lott, W. Lu, B.W. Sheldon, J. Wu, Silicon-based nanomaterials for lithium-ion batteries: a review. Adv. Energy Mater. 4(1), 1300882 (2014)CrossRef X. Su, Q. Wu, J. Li, X. Xiao, A. Lott, W. Lu, B.W. Sheldon, J. Wu, Silicon-based nanomaterials for lithium-ion batteries: a review. Adv. Energy Mater. 4(1), 1300882 (2014)CrossRef
39.
go back to reference C.K. Chan, R.N. Patel, M.J. O’connell, B.A. Korgel, Y. Cui, Solution-grown silicon nanowires for lithium-ion battery anodes. ACS Nano. 4(3), 1443–1450 (2010)CrossRef C.K. Chan, R.N. Patel, M.J. O’connell, B.A. Korgel, Y. Cui, Solution-grown silicon nanowires for lithium-ion battery anodes. ACS Nano. 4(3), 1443–1450 (2010)CrossRef
40.
go back to reference S.H. Nguyen, J.C. Lim, J.K. Lee, Electrochemical characteristics of bundle-type silicon nanorods as an anode material for lithium ion batteries. Electrochim. Acta. 74, 53–58 (2012)CrossRef S.H. Nguyen, J.C. Lim, J.K. Lee, Electrochemical characteristics of bundle-type silicon nanorods as an anode material for lithium ion batteries. Electrochim. Acta. 74, 53–58 (2012)CrossRef
41.
go back to reference T. Song, J. Xia, J.-H. Lee, D.H. Lee, M.-S. Kwon, J.-M. Choi, J. Wu, S.K. Doo, H. Chang, W.I. Park, Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. Nano. Lett. 10(5), 1710–1716 (2010)CrossRef T. Song, J. Xia, J.-H. Lee, D.H. Lee, M.-S. Kwon, J.-M. Choi, J. Wu, S.K. Doo, H. Chang, W.I. Park, Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. Nano. Lett. 10(5), 1710–1716 (2010)CrossRef
42.
go back to reference J. Chen, L. Yang, S. Rousidan, S. Fang, Z. Zhang, S.-i Hirano, Facile fabrication of Si mesoporous nanowires for high-capacity and long-life lithium storage. Nanoscale 5(21), 10623–10628 (2013)CrossRef J. Chen, L. Yang, S. Rousidan, S. Fang, Z. Zhang, S.-i Hirano, Facile fabrication of Si mesoporous nanowires for high-capacity and long-life lithium storage. Nanoscale 5(21), 10623–10628 (2013)CrossRef
43.
go back to reference D.J. Lee, H. Lee, M.-H. Ryou, G.-B. Han, J.-N. Lee, J. Song, J. Choi, K.Y. Cho, Y.M. Lee, J.-K. Park, Electrospun three-dimensional mesoporous silicon nanofibers as an anode material for high-performance lithium secondary batteries. ACS Appl. Mater. Interfaces 5(22), 12005–12010 (2013)CrossRef D.J. Lee, H. Lee, M.-H. Ryou, G.-B. Han, J.-N. Lee, J. Song, J. Choi, K.Y. Cho, Y.M. Lee, J.-K. Park, Electrospun three-dimensional mesoporous silicon nanofibers as an anode material for high-performance lithium secondary batteries. ACS Appl. Mater. Interfaces 5(22), 12005–12010 (2013)CrossRef
44.
go back to reference Y. Zhou, X. Jiang, L. Chen, J. Yue, H. Xu, J. Yang, Y. Qian, Novel mesoporous silicon nanorod as an anode material for lithium ion batteries. Electrochim. Acta. 127, 252–258 (2014)CrossRef Y. Zhou, X. Jiang, L. Chen, J. Yue, H. Xu, J. Yang, Y. Qian, Novel mesoporous silicon nanorod as an anode material for lithium ion batteries. Electrochim. Acta. 127, 252–258 (2014)CrossRef
45.
go back to reference M.-H. Park, M.G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui, J. Cho, Silicon nanotube battery anodes. Nano. Lett. 9(11), 3844–3847 (2009)CrossRef M.-H. Park, M.G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui, J. Cho, Silicon nanotube battery anodes. Nano. Lett. 9(11), 3844–3847 (2009)CrossRef
46.
go back to reference J.R. Szczech, S. Jin, Nanostructured silicon for high capacity lithium battery anodes. Energy Environ. Sci. 4(1), 56–72 (2011)CrossRef J.R. Szczech, S. Jin, Nanostructured silicon for high capacity lithium battery anodes. Energy Environ. Sci. 4(1), 56–72 (2011)CrossRef
47.
go back to reference Z. Wen, G. Lu, S. Mao, H. Kim, S. Cui, K. Yu, X. Huang, P.T. Hurley, O. Mao, J. Chen, Silicon nanotube anode for lithium-ion batteries. Electrochem. Commun. 29, 67–70 (2013)CrossRef Z. Wen, G. Lu, S. Mao, H. Kim, S. Cui, K. Yu, X. Huang, P.T. Hurley, O. Mao, J. Chen, Silicon nanotube anode for lithium-ion batteries. Electrochem. Commun. 29, 67–70 (2013)CrossRef
48.
go back to reference A.T. Tesfaye, R. Gonzalez, J.L. Coffer, T. Djenizian, Porous silicon nanotube arrays as anode material for Li-Ion batteries. ACS Appl. Mater. Interfaces 7(37), 20495–20498 (2015)CrossRef A.T. Tesfaye, R. Gonzalez, J.L. Coffer, T. Djenizian, Porous silicon nanotube arrays as anode material for Li-Ion batteries. ACS Appl. Mater. Interfaces 7(37), 20495–20498 (2015)CrossRef
49.
go back to reference M. Reddy, G. Subba Rao, B. Chowdari, Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113(7), 5364–5457 (2013)CrossRef M. Reddy, G. Subba Rao, B. Chowdari, Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113(7), 5364–5457 (2013)CrossRef
50.
go back to reference Y. Zhao, X. Li, B. Yan, D. Xiong, D. Li, S. Lawes, X. Sun, Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries. Adv. Energy Mater. 6(8), 1502175 (2016)CrossRef Y. Zhao, X. Li, B. Yan, D. Xiong, D. Li, S. Lawes, X. Sun, Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries. Adv. Energy Mater. 6(8), 1502175 (2016)CrossRef
51.
go back to reference Y. Wang, H.C. Zeng, J.Y. Lee, Highly reversible lithium storage in porous SnO2 nanotubes with coaxially grown carbon nanotube overlayers. Adv. Mater. 18(5), 645–664 (2006)CrossRef Y. Wang, H.C. Zeng, J.Y. Lee, Highly reversible lithium storage in porous SnO2 nanotubes with coaxially grown carbon nanotube overlayers. Adv. Mater. 18(5), 645–664 (2006)CrossRef
52.
go back to reference Z. Wen, Q. Wang, Q. Zhang, J. Li, In situ growth of mesoporous SnO2 on multiwalled carbon nanotubes: a novel composite with porous-tube structure as anode for lithium batteries. Adv. Funct. Mater. 17(15), 2772–2778 (2007)CrossRef Z. Wen, Q. Wang, Q. Zhang, J. Li, In situ growth of mesoporous SnO2 on multiwalled carbon nanotubes: a novel composite with porous-tube structure as anode for lithium batteries. Adv. Funct. Mater. 17(15), 2772–2778 (2007)CrossRef
53.
go back to reference H. Kim, J. Cho, Hard templating synthesis of mesoporous and nanowire SnO2 lithium battery anode materials. J. Mater. Chem. 18(7), 771–775 (2008)CrossRef H. Kim, J. Cho, Hard templating synthesis of mesoporous and nanowire SnO2 lithium battery anode materials. J. Mater. Chem. 18(7), 771–775 (2008)CrossRef
54.
go back to reference L. Li, X. Yin, S. Liu, Y. Wang, L. Chen, T. Wang, Electrospun porous SnO2 nanotubes as high capacity anode materials for lithium ion batteries. Electrochem. Commun. 12(10), 1383–1386 (2010)CrossRef L. Li, X. Yin, S. Liu, Y. Wang, L. Chen, T. Wang, Electrospun porous SnO2 nanotubes as high capacity anode materials for lithium ion batteries. Electrochem. Commun. 12(10), 1383–1386 (2010)CrossRef
55.
go back to reference H.E. Wang, L.J. Xi, R.G. Ma, Z.G. Lu, C.Y. Chung, I. Bello, J.A. Zapien, Microwave-assisted hydrothermal synthesis of porous SnO2 nanotubes and their lithium ion storage properties. J. Solid State Chem. 190, 104–110 (2012)CrossRef H.E. Wang, L.J. Xi, R.G. Ma, Z.G. Lu, C.Y. Chung, I. Bello, J.A. Zapien, Microwave-assisted hydrothermal synthesis of porous SnO2 nanotubes and their lithium ion storage properties. J. Solid State Chem. 190, 104–110 (2012)CrossRef
56.
go back to reference X. Xu, J. Liang, H. Zhou, D. Lv, F. Liang, Z. Yang, S. Ding, D. Yu, The preparation of uniform SnO2 nanotubes with a mesoporous shell for lithium storage. J. Mater. Chem. A 1(9), 2995–2998 (2013)CrossRef X. Xu, J. Liang, H. Zhou, D. Lv, F. Liang, Z. Yang, S. Ding, D. Yu, The preparation of uniform SnO2 nanotubes with a mesoporous shell for lithium storage. J. Mater. Chem. A 1(9), 2995–2998 (2013)CrossRef
57.
go back to reference X. Zhang, J. Liang, G. Gao, S. Ding, Z. Yang, W. Yu, B.Q. Li, The preparation of mesoporous SnO2 nanotubes by carbon nanofibers template and their lithium storage properties. Electrochim. Acta 98, 263–267 (2013)CrossRef X. Zhang, J. Liang, G. Gao, S. Ding, Z. Yang, W. Yu, B.Q. Li, The preparation of mesoporous SnO2 nanotubes by carbon nanofibers template and their lithium storage properties. Electrochim. Acta 98, 263–267 (2013)CrossRef
58.
go back to reference H.-J. Yang, S.-C. Lim, S.-Y. He, H.-Y. Tuan, Ultralong mesoporous ZnO nanowires grown via room temperature self-assembly of ZnO nanoparticles for enhanced reversible storage in lithium ion batteries. RSC Adv. 5(42), 33392–33399 (2015)CrossRef H.-J. Yang, S.-C. Lim, S.-Y. He, H.-Y. Tuan, Ultralong mesoporous ZnO nanowires grown via room temperature self-assembly of ZnO nanoparticles for enhanced reversible storage in lithium ion batteries. RSC Adv. 5(42), 33392–33399 (2015)CrossRef
59.
go back to reference K. Wang, M. Wei, M.A. Morris, H. Zhou, J.D. Holmes, Mesoporous titania nanotubes: their preparation and application as electrode materials for rechargeable lithium batteries. Adv Mater. 19(19), 3016–3020 (2007)CrossRef K. Wang, M. Wei, M.A. Morris, H. Zhou, J.D. Holmes, Mesoporous titania nanotubes: their preparation and application as electrode materials for rechargeable lithium batteries. Adv Mater. 19(19), 3016–3020 (2007)CrossRef
60.
go back to reference Q. Li, J. Zhang, B. Liu, M. Li, R. Liu, X. Li, H. Ma, S. Yu, L. Wang, Y. Zou, Synthesis of high-density nanocavities inside TiO2-B nanoribbons and their enhanced electrochemical lithium storage properties. Inorg. Chem. 47(21), 9870–9873 (2008)CrossRef Q. Li, J. Zhang, B. Liu, M. Li, R. Liu, X. Li, H. Ma, S. Yu, L. Wang, Y. Zou, Synthesis of high-density nanocavities inside TiO2-B nanoribbons and their enhanced electrochemical lithium storage properties. Inorg. Chem. 47(21), 9870–9873 (2008)CrossRef
61.
go back to reference B. Zhao, R. Cai, S. Jiang, Y. Sha, Z. Shao, Highly flexible self-standing film electrode composed of mesoporous rutile TiO2/C nanofibers for lithium-ion batteries. Electrochim. Acta 85, 636–643 (2012)CrossRef B. Zhao, R. Cai, S. Jiang, Y. Sha, Z. Shao, Highly flexible self-standing film electrode composed of mesoporous rutile TiO2/C nanofibers for lithium-ion batteries. Electrochim. Acta 85, 636–643 (2012)CrossRef
62.
go back to reference G.A. Seisenbaeva, J.-M. Nedelec, G. Daniel, C. Tiseanu, V. Parvulescu, V.G. Pol, L. Abrego, V.G. Kessler, Mesoporous anatase TiO2 nanorods as thermally robust anode materials for li-ion batteries: detailed insight into the formation mechanism. Chem. Eur. J. 19(51), 17439–17444 (2013)CrossRef G.A. Seisenbaeva, J.-M. Nedelec, G. Daniel, C. Tiseanu, V. Parvulescu, V.G. Pol, L. Abrego, V.G. Kessler, Mesoporous anatase TiO2 nanorods as thermally robust anode materials for li-ion batteries: detailed insight into the formation mechanism. Chem. Eur. J. 19(51), 17439–17444 (2013)CrossRef
63.
go back to reference Z. Xing, A.M. Asiri, A.Y. Obaid, X. Sun, X. Ge, Carbon nanofiber-templated mesoporous TiO2 nanotubes as a high-capacity anode material for lithium-ion batteries. RSC Adv. 4(18), 9061 (2014)CrossRef Z. Xing, A.M. Asiri, A.Y. Obaid, X. Sun, X. Ge, Carbon nanofiber-templated mesoporous TiO2 nanotubes as a high-capacity anode material for lithium-ion batteries. RSC Adv. 4(18), 9061 (2014)CrossRef
64.
go back to reference J.-Y. Liao, A. Manthiram, Mesoporous TiO2-Sn/C core-shell nanowire arrays as high-performance 3D anodes for Li-Ion batteries. Adv. Energy Mater. 4(14), 1400403 (2014)CrossRef J.-Y. Liao, A. Manthiram, Mesoporous TiO2-Sn/C core-shell nanowire arrays as high-performance 3D anodes for Li-Ion batteries. Adv. Energy Mater. 4(14), 1400403 (2014)CrossRef
65.
go back to reference B. Wang, H. Xin, X. Li, J. Cheng, G. Yang, F. Nie, Mesoporous CNT@TiO2-C nanocable with extremely durable high rate capability for lithium-ion battery anodes. Sci. Rep. 4(1), 3729 (2014)CrossRef B. Wang, H. Xin, X. Li, J. Cheng, G. Yang, F. Nie, Mesoporous CNT@TiO2-C nanocable with extremely durable high rate capability for lithium-ion battery anodes. Sci. Rep. 4(1), 3729 (2014)CrossRef
66.
go back to reference J. Wang, J. Xie, Y. Jiang, J. Zhang, Y. Wang, Z. Zhou, Preparation of mesoporous TiO2-B nanowires from titanium glycolate and their application as an anode material for lithium-ion batteries. J. Mater. Sci. 50(19), 6321–6328 (2015)CrossRef J. Wang, J. Xie, Y. Jiang, J. Zhang, Y. Wang, Z. Zhou, Preparation of mesoporous TiO2-B nanowires from titanium glycolate and their application as an anode material for lithium-ion batteries. J. Mater. Sci. 50(19), 6321–6328 (2015)CrossRef
67.
go back to reference W. Zhuang, L. Li, J. Zhu, R. An, L. Lu, X. Lu, X. Wu, H. Ying, Facile synthesis of mesoporous MoS2-TiO2 nanofibers for ultrastable lithium ion battery anodes. ChemElectroChem 2(3), 374–438 (2015)CrossRef W. Zhuang, L. Li, J. Zhu, R. An, L. Lu, X. Lu, X. Wu, H. Ying, Facile synthesis of mesoporous MoS2-TiO2 nanofibers for ultrastable lithium ion battery anodes. ChemElectroChem 2(3), 374–438 (2015)CrossRef
68.
go back to reference S. Chattopadhyay, S. Maiti, I. Das, S. Mahanty, G. De, Electrospun TiO2-rGO composite nanofibers with ordered mesopores by molecular level assembly: a high performance anode material for lithium-ion batteries. Adv. Mater. Interfaces 3(23), 1600761 (2016)CrossRef S. Chattopadhyay, S. Maiti, I. Das, S. Mahanty, G. De, Electrospun TiO2-rGO composite nanofibers with ordered mesopores by molecular level assembly: a high performance anode material for lithium-ion batteries. Adv. Mater. Interfaces 3(23), 1600761 (2016)CrossRef
69.
go back to reference Z. Yuan, L. Si, D. Wei, L. Hu, Y. Zhu, X. Li, Y. Qian, Vacuum topotactic conversion route to mesoporous orthorhombic MoO3 nanowire bundles with enhanced electrochemical performance. J. Phys. Chem. C 118(10), 5091–5101 (2014)CrossRef Z. Yuan, L. Si, D. Wei, L. Hu, Y. Zhu, X. Li, Y. Qian, Vacuum topotactic conversion route to mesoporous orthorhombic MoO3 nanowire bundles with enhanced electrochemical performance. J. Phys. Chem. C 118(10), 5091–5101 (2014)CrossRef
70.
go back to reference L. Zhang, K. Zhao, W. Xu, J. Meng, L. He, Q. An, X. Xu, Y. Luo, T. Zhao, L. Mai, Mesoporous VO2 nanowires with excellent cycling stability and enhanced rate capability for lithium batteries. RSC Adv. 4(63), 33332 (2014)CrossRef L. Zhang, K. Zhao, W. Xu, J. Meng, L. He, Q. An, X. Xu, Y. Luo, T. Zhao, L. Mai, Mesoporous VO2 nanowires with excellent cycling stability and enhanced rate capability for lithium batteries. RSC Adv. 4(63), 33332 (2014)CrossRef
71.
go back to reference C. Huang, J. Fu, H. Song, X. Li, X. Peng, B. Gao, X. Zhang, P.K. Chu, General fabrication of mesoporous Nb2O5 nanobelts for lithium ion battery anodes. RSC Adv. 6(93), 90489–90493 (2016)CrossRef C. Huang, J. Fu, H. Song, X. Li, X. Peng, B. Gao, X. Zhang, P.K. Chu, General fabrication of mesoporous Nb2O5 nanobelts for lithium ion battery anodes. RSC Adv. 6(93), 90489–90493 (2016)CrossRef
72.
go back to reference J. Liu, Q. Xia, Y. Wang, H. Xia, Mesoporous ZnCo2O4-ZnO hybrid nanotube arrays as advanced anodes for lithium-ion batteries. Mater. Lett. 193, 220–223 (2017)CrossRef J. Liu, Q. Xia, Y. Wang, H. Xia, Mesoporous ZnCo2O4-ZnO hybrid nanotube arrays as advanced anodes for lithium-ion batteries. Mater. Lett. 193, 220–223 (2017)CrossRef
73.
go back to reference X. Tan, C. Cui, S. Wu, B. Qiu, L. Wang, J. Zhang, Nitrogen-doped mesoporous carbon-encapsulated MoO2 nanobelts as a high-capacity and stable host for lithium-ion storage. Chem.-Asian J. 12(1), 36–40 (2017)CrossRef X. Tan, C. Cui, S. Wu, B. Qiu, L. Wang, J. Zhang, Nitrogen-doped mesoporous carbon-encapsulated MoO2 nanobelts as a high-capacity and stable host for lithium-ion storage. Chem.-Asian J. 12(1), 36–40 (2017)CrossRef
74.
go back to reference J. Jiang, J. Liu, R. Ding, X. Ji, Y. Hu, X. Li, A. Hu, F. Wu, Z. Zhu, X. Huang, Direct synthesis of CoO porous nanowire arrays on Ti substrate and their application as lithium-ion battery electrodes. J. Phys. Chem. C 114(2), 929–932 (2009)CrossRef J. Jiang, J. Liu, R. Ding, X. Ji, Y. Hu, X. Li, A. Hu, F. Wu, Z. Zhu, X. Huang, Direct synthesis of CoO porous nanowire arrays on Ti substrate and their application as lithium-ion battery electrodes. J. Phys. Chem. C 114(2), 929–932 (2009)CrossRef
75.
go back to reference Y. Li, B. Tan, Y. Wu, Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano. Lett. 8(1), 265–270 (2008)CrossRef Y. Li, B. Tan, Y. Wu, Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano. Lett. 8(1), 265–270 (2008)CrossRef
76.
go back to reference X.W. Lou, D. Deng, J.Y. Lee, L.A. Archer, Thermal formation of mesoporous single-crystal Co3O4 nano-needles and their lithium storage properties. J. Mater. Chem. 18(37), 4397 (2008)CrossRef X.W. Lou, D. Deng, J.Y. Lee, L.A. Archer, Thermal formation of mesoporous single-crystal Co3O4 nano-needles and their lithium storage properties. J. Mater. Chem. 18(37), 4397 (2008)CrossRef
77.
go back to reference L. Tian, H. Zou, J. Fu, X. Yang, Y. Wang, H. Guo, X. Fu, C. Liang, M. Wu, P.K. Shen, Q. Gao, Topotactic conversion route to mesoporous quasi-single-crystalline Co3O4 nanobelts with optimizable electrochemical performance. Adv. Funct. Mater. 20(4), 617–662 (2010)CrossRef L. Tian, H. Zou, J. Fu, X. Yang, Y. Wang, H. Guo, X. Fu, C. Liang, M. Wu, P.K. Shen, Q. Gao, Topotactic conversion route to mesoporous quasi-single-crystalline Co3O4 nanobelts with optimizable electrochemical performance. Adv. Funct. Mater. 20(4), 617–662 (2010)CrossRef
78.
go back to reference D. Su, H.-S. Kim, W.-S. Kim, G. Wang, Mesoporous nickel oxide nanowires: hydrothermal synthesis, characterisation and applications for lithium-ion batteries and supercapacitors with superior performance. Chem. Eur. J. 18(26), 8224–8229 (2012)CrossRef D. Su, H.-S. Kim, W.-S. Kim, G. Wang, Mesoporous nickel oxide nanowires: hydrothermal synthesis, characterisation and applications for lithium-ion batteries and supercapacitors with superior performance. Chem. Eur. J. 18(26), 8224–8229 (2012)CrossRef
79.
go back to reference H. Geng, H. Ang, X. Ding, H. Tan, G. Guo, G. Qu, Y. Yang, J. Zheng, Q. Yan, H. Gu, Metal coordination polymer derived mesoporous Co3O4 nanorods with uniform TiO2 coating as advanced anodes for lithium ion batteries. Nanoscale 8(5), 2967–2973 (2016)CrossRef H. Geng, H. Ang, X. Ding, H. Tan, G. Guo, G. Qu, Y. Yang, J. Zheng, Q. Yan, H. Gu, Metal coordination polymer derived mesoporous Co3O4 nanorods with uniform TiO2 coating as advanced anodes for lithium ion batteries. Nanoscale 8(5), 2967–2973 (2016)CrossRef
80.
go back to reference Z. Xiao, Y. Xia, Z. Ren, Z. Liu, G. Xu, C. Chao, X. Li, G. Shen, G. Han, Facile synthesis of single-crystalline mesoporous α-Fe2O3 and Fe3O4 nanorods as anode materials for lithium-ion batteries. J. Mater. Chem. 22(38), 20566 (2012)CrossRef Z. Xiao, Y. Xia, Z. Ren, Z. Liu, G. Xu, C. Chao, X. Li, G. Shen, G. Han, Facile synthesis of single-crystalline mesoporous α-Fe2O3 and Fe3O4 nanorods as anode materials for lithium-ion batteries. J. Mater. Chem. 22(38), 20566 (2012)CrossRef
81.
go back to reference Z. Bai, N. Fan, Z. Ju, C. Guo, Y. Qian, B. Tang, S. Xiong, Facile synthesis of mesoporous Mn3O4 nanotubes and their excellent performance for lithium-ion batteries. J. Mater. Chem. A 1(36), 10985–10990 (2013)CrossRef Z. Bai, N. Fan, Z. Ju, C. Guo, Y. Qian, B. Tang, S. Xiong, Facile synthesis of mesoporous Mn3O4 nanotubes and their excellent performance for lithium-ion batteries. J. Mater. Chem. A 1(36), 10985–10990 (2013)CrossRef
82.
go back to reference Z. Bai, X. Zhang, Y. Zhang, C. Guo, B. Tang, Facile synthesis of mesoporous Mn3O4nanorods as a promising anode material for high performance lithium-ion batteries. J. Mater. Chem. A 2(39), 16755–16760 (2014)CrossRef Z. Bai, X. Zhang, Y. Zhang, C. Guo, B. Tang, Facile synthesis of mesoporous Mn3O4nanorods as a promising anode material for high performance lithium-ion batteries. J. Mater. Chem. A 2(39), 16755–16760 (2014)CrossRef
83.
go back to reference A.K. Mondal, D. Su, S. Chen, X. Xie, G. Wang, Highly porous NiCo2O4 nanoflakes and nanobelts as anode materials for lithium-ion batteries with excellent rate capability. ACS Appl. Mater. Interfaces 6(17), 140827–214035 (2014)CrossRef A.K. Mondal, D. Su, S. Chen, X. Xie, G. Wang, Highly porous NiCo2O4 nanoflakes and nanobelts as anode materials for lithium-ion batteries with excellent rate capability. ACS Appl. Mater. Interfaces 6(17), 140827–214035 (2014)CrossRef
84.
go back to reference S.-H. Park, W.-J. Lee, Hierarchically mesoporous CuO/carbon nanofiber coaxial shell-core nanowires for lithium ion batteries. Sci. Rep. 5(1), 9754 (2015)CrossRef S.-H. Park, W.-J. Lee, Hierarchically mesoporous CuO/carbon nanofiber coaxial shell-core nanowires for lithium ion batteries. Sci. Rep. 5(1), 9754 (2015)CrossRef
85.
go back to reference B. Li, J. Feng, Y. Qian, S. Xiong, Mesoporous quasi-single-crystalline NiCo2O4superlattice nanoribbons with optimizable lithium storage properties. J. Mate.r Chem. A 3(19), 10336–10344 (2015)CrossRef B. Li, J. Feng, Y. Qian, S. Xiong, Mesoporous quasi-single-crystalline NiCo2O4superlattice nanoribbons with optimizable lithium storage properties. J. Mate.r Chem. A 3(19), 10336–10344 (2015)CrossRef
86.
go back to reference X.-B. Zhong, Z.-Z. Yang, H.-Y. Wang, L. Lu, B. Jin, M. Zha, Q.-C. Jiang, A novel approach to facilely synthesize mesoporous ZnFe2O4 nanorods for lithium ion batteries. J. Power Sources 306, 718–723 (2016)CrossRef X.-B. Zhong, Z.-Z. Yang, H.-Y. Wang, L. Lu, B. Jin, M. Zha, Q.-C. Jiang, A novel approach to facilely synthesize mesoporous ZnFe2O4 nanorods for lithium ion batteries. J. Power Sources 306, 718–723 (2016)CrossRef
87.
go back to reference C. Xu, Z. Liu, T. Wei, L. Sheng, L. Zhang, L. Chen, Q. Zhou, Z. Jiang, L. Wang, Z. Fan, Mesoporous single-crystalline MnOx nanofibers@graphene for ultra-high rate and long-life lithium-ion battery anodes. J. Mater. Chem. A 6(48), 24756–24766 (2018)CrossRef C. Xu, Z. Liu, T. Wei, L. Sheng, L. Zhang, L. Chen, Q. Zhou, Z. Jiang, L. Wang, Z. Fan, Mesoporous single-crystalline MnOx nanofibers@graphene for ultra-high rate and long-life lithium-ion battery anodes. J. Mater. Chem. A 6(48), 24756–24766 (2018)CrossRef
88.
go back to reference Y. Ma, J. He, Z. Kou, A.M. Elshahawy, Y. Hu, C. Guan, X. Li, J. Wang, MOF-derived vertically aligned mesoporous Co3O4 nanowires for ultrahigh capacity lithium-ion batteries anodes. Adv. Mater. Interfaces 5(14), 1800222 (2018)CrossRef Y. Ma, J. He, Z. Kou, A.M. Elshahawy, Y. Hu, C. Guan, X. Li, J. Wang, MOF-derived vertically aligned mesoporous Co3O4 nanowires for ultrahigh capacity lithium-ion batteries anodes. Adv. Mater. Interfaces 5(14), 1800222 (2018)CrossRef
89.
go back to reference K.-T. Chen, H.-Y. Chen, C.-J.J.E.A. Tsai, Mesoporous Sn/Mg doped ZnFe2O4 nanorods as anode with enhanced Li-ion storage properties. Electrochim. Acta 319(577), 586 (2019) K.-T. Chen, H.-Y. Chen, C.-J.J.E.A. Tsai, Mesoporous Sn/Mg doped ZnFe2O4 nanorods as anode with enhanced Li-ion storage properties. Electrochim. Acta 319(577), 586 (2019)
90.
go back to reference H. Li, L.-J. Wu, S.-G. Zhang, C. Yao, C.-Y. Chao, H.-W. Yue, H.-H. Fan, Facile synthesis of mesoporous one-dimensional Fe2O3 nanowires as anode for lithium ion batteries. J. Alloys. Compd. 832, 155008 (2020)CrossRef H. Li, L.-J. Wu, S.-G. Zhang, C. Yao, C.-Y. Chao, H.-W. Yue, H.-H. Fan, Facile synthesis of mesoporous one-dimensional Fe2O3 nanowires as anode for lithium ion batteries. J. Alloys. Compd. 832, 155008 (2020)CrossRef
91.
go back to reference M.S. Park, G.X. Wang, Y.M. Kang, D. Wexler, S.X. Dou, H.K. Liu, Preparation and electrochemical properties of sno2 nanowires for application in lithium-ion batteries. Angen. Chem. 119(5), 764–767 (2007)CrossRef M.S. Park, G.X. Wang, Y.M. Kang, D. Wexler, S.X. Dou, H.K. Liu, Preparation and electrochemical properties of sno2 nanowires for application in lithium-ion batteries. Angen. Chem. 119(5), 764–767 (2007)CrossRef
92.
go back to reference C. Wang, Y. Zhou, M. Ge, X. Xu, Z. Zhang, J. Jiang, Large-scale synthesis of SnO2 nanosheets with high lithium storage capacity. J. Am. Chem. Soc. 132(1), 46–47 (2010)CrossRef C. Wang, Y. Zhou, M. Ge, X. Xu, Z. Zhang, J. Jiang, Large-scale synthesis of SnO2 nanosheets with high lithium storage capacity. J. Am. Chem. Soc. 132(1), 46–47 (2010)CrossRef
93.
go back to reference V. Etacheri, G.A. Seisenbaeva, J. Caruthers, G. Daniel, J.M. Nedelec, V.G. Kessler, V.G. Pol, Ordered network of interconnected SnO2 nanoparticles for excellent Lithium-Ion Storage. Adv. Energy Mater. 5(5), 1401289 (2015)CrossRef V. Etacheri, G.A. Seisenbaeva, J. Caruthers, G. Daniel, J.M. Nedelec, V.G. Kessler, V.G. Pol, Ordered network of interconnected SnO2 nanoparticles for excellent Lithium-Ion Storage. Adv. Energy Mater. 5(5), 1401289 (2015)CrossRef
94.
go back to reference T. Ma, X. Yu, H. Li, W. Zhang, X. Cheng, W. Zhu, X. Qiu, High volumetric capacity of hollow structured SnO2@ Si nanospheres for lithium-ion batteries. Nano. Lett. 17(6), 3959–3964 (2017)CrossRef T. Ma, X. Yu, H. Li, W. Zhang, X. Cheng, W. Zhu, X. Qiu, High volumetric capacity of hollow structured SnO2@ Si nanospheres for lithium-ion batteries. Nano. Lett. 17(6), 3959–3964 (2017)CrossRef
95.
go back to reference X.W. Lou, Y. Wang, C. Yuan, J.Y. Lee, L.A. Archer, Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater. 18(17), 2325–2329 (2006)CrossRef X.W. Lou, Y. Wang, C. Yuan, J.Y. Lee, L.A. Archer, Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater. 18(17), 2325–2329 (2006)CrossRef
96.
go back to reference R. Demir-Cakan, Y.-S. Hu, M. Antonietti, J. Maier, M.-M. Titirici, Facile one-pot synthesis of mesoporous SnO2 microspheres via nanoparticles assembly and lithium storage properties. Chem. Mater. 20(4), 1227–1229 (2008)CrossRef R. Demir-Cakan, Y.-S. Hu, M. Antonietti, J. Maier, M.-M. Titirici, Facile one-pot synthesis of mesoporous SnO2 microspheres via nanoparticles assembly and lithium storage properties. Chem. Mater. 20(4), 1227–1229 (2008)CrossRef
97.
go back to reference J. Ye, H. Zhang, R. Yang, X. Li, L. Qi, Morphology-controlled synthesis of SnO2 nanotubes by using 1D silica mesostructures as sacrificial templates and their applications in lithium-ion batteries. Small 6(2), 296–306 (2010)CrossRef J. Ye, H. Zhang, R. Yang, X. Li, L. Qi, Morphology-controlled synthesis of SnO2 nanotubes by using 1D silica mesostructures as sacrificial templates and their applications in lithium-ion batteries. Small 6(2), 296–306 (2010)CrossRef
98.
go back to reference D. Zhou, W.-L. Song, L.-Z. Fan, Hollow core–shell SnO2/C fibers as highly stable anodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 7(38), 21472–21478 (2015)CrossRef D. Zhou, W.-L. Song, L.-Z. Fan, Hollow core–shell SnO2/C fibers as highly stable anodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 7(38), 21472–21478 (2015)CrossRef
99.
go back to reference Y.-Q. Wang, L. Gu, Y.-G. Guo, H. Li, X.-Q. He, S. Tsukimoto, Y. Ikuhara, L.-J. Wan, Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery. J. Am. Chem. Soc. 134(18), 7874–7879 (2012)CrossRef Y.-Q. Wang, L. Gu, Y.-G. Guo, H. Li, X.-Q. He, S. Tsukimoto, Y. Ikuhara, L.-J. Wan, Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery. J. Am. Chem. Soc. 134(18), 7874–7879 (2012)CrossRef
100.
go back to reference Q.L. Wu, J. Li, R.D. Deshpande, N. Subramanian, S.E. Rankin, F. Yang, Y.-T. Cheng, Aligned TiO2 nanotube arrays as durable lithium-ion battery negative electrodes. J. Phys. Chem. C 116(35), 18669–18677 (2012)CrossRef Q.L. Wu, J. Li, R.D. Deshpande, N. Subramanian, S.E. Rankin, F. Yang, Y.-T. Cheng, Aligned TiO2 nanotube arrays as durable lithium-ion battery negative electrodes. J. Phys. Chem. C 116(35), 18669–18677 (2012)CrossRef
101.
go back to reference A.A. Abdel Hamid, Y. Yu, J. Yang, J.Y. Ying, Generalized synthesis of metal oxide nanosheets and their application as Li-ion battery anodes. Adv. Mater. 29(32), 1701427 (2017)CrossRef A.A. Abdel Hamid, Y. Yu, J. Yang, J.Y. Ying, Generalized synthesis of metal oxide nanosheets and their application as Li-ion battery anodes. Adv. Mater. 29(32), 1701427 (2017)CrossRef
102.
go back to reference A.R. Armstrong, G. Armstrong, J. Canales, R. García, P.G. Bruce, Lithium-ion intercalation into TiO2-B nanowires. Adv. Mater. 17(7), 862–865 (2005)CrossRef A.R. Armstrong, G. Armstrong, J. Canales, R. García, P.G. Bruce, Lithium-ion intercalation into TiO2-B nanowires. Adv. Mater. 17(7), 862–865 (2005)CrossRef
103.
go back to reference H. Liu, Z. Bi, X.G. Sun, R.R. Unocic, M.P. Paranthaman, S. Dai, G.M. Brown, Mesoporous TiO2–B microspheres with superior rate performance for lithium ion batteries. Adv. Mater. 23(30), 3450–3454 (2011)CrossRef H. Liu, Z. Bi, X.G. Sun, R.R. Unocic, M.P. Paranthaman, S. Dai, G.M. Brown, Mesoporous TiO2–B microspheres with superior rate performance for lithium ion batteries. Adv. Mater. 23(30), 3450–3454 (2011)CrossRef
104.
go back to reference S. Liu, H. Jia, L. Han, J. Wang, P. Gao, D. Xu, J. Yang, S. Che, Nanosheet-constructed porous TiO2–B for advanced lithium ion batteries. Adv. Mater. 24(24), 3201–3204 (2012)CrossRef S. Liu, H. Jia, L. Han, J. Wang, P. Gao, D. Xu, J. Yang, S. Che, Nanosheet-constructed porous TiO2–B for advanced lithium ion batteries. Adv. Mater. 24(24), 3201–3204 (2012)CrossRef
105.
go back to reference C. Han, D. Yang, Y. Yang, B. Jiang, Y. He, M. Wang, A.-Y. Song, Y.-B. He, B. Li, Z. Lin, Hollow titanium dioxide spheres as anode material for lithium ion battery with largely improved rate stability and cycle performance by suppressing the formation of solid electrolyte interface layer. J. Mate.r Chem. A 3(25), 13340–13349 (2015)CrossRef C. Han, D. Yang, Y. Yang, B. Jiang, Y. He, M. Wang, A.-Y. Song, Y.-B. He, B. Li, Z. Lin, Hollow titanium dioxide spheres as anode material for lithium ion battery with largely improved rate stability and cycle performance by suppressing the formation of solid electrolyte interface layer. J. Mate.r Chem. A 3(25), 13340–13349 (2015)CrossRef
106.
go back to reference D. Wang, D. Choi, Z. Yang, V.V. Viswanathan, Z. Nie, C. Wang, Y. Song, J.-G. Zhang, J. Liu, Synthesis and Li-ion insertion properties of highly crystalline mesoporous rutile TiO2. Chem. Mater. 20(10), 3435–3442 (2008)CrossRef D. Wang, D. Choi, Z. Yang, V.V. Viswanathan, Z. Nie, C. Wang, Y. Song, J.-G. Zhang, J. Liu, Synthesis and Li-ion insertion properties of highly crystalline mesoporous rutile TiO2. Chem. Mater. 20(10), 3435–3442 (2008)CrossRef
107.
go back to reference N. Li, G. Liu, C. Zhen, F. Li, L. Zhang, H.M. Cheng, Battery performance and photocatalytic activity of mesoporous anatase TiO2 nanospheres/graphene composites by template-free self-assembly. Adv. Funct. Mater. 21(9), 1717–1722 (2011)CrossRef N. Li, G. Liu, C. Zhen, F. Li, L. Zhang, H.M. Cheng, Battery performance and photocatalytic activity of mesoporous anatase TiO2 nanospheres/graphene composites by template-free self-assembly. Adv. Funct. Mater. 21(9), 1717–1722 (2011)CrossRef
108.
go back to reference Y. Ren, Z. Liu, F. Pourpoint, A.R. Armstrong, C.P. Grey, P.G. Bruce, Nanoparticulate TiO2 (B): an anode for lithium-ion batteries. Angew. Chem. 124(9), 2206–2209 (2012)CrossRef Y. Ren, Z. Liu, F. Pourpoint, A.R. Armstrong, C.P. Grey, P.G. Bruce, Nanoparticulate TiO2 (B): an anode for lithium-ion batteries. Angew. Chem. 124(9), 2206–2209 (2012)CrossRef
109.
go back to reference J. Chen, L. Yang, Z. Zhang, S. Fang, S.-i Hirano, Mesoporous TiO2-Sn@ C core–shell microspheres for Li-ion batteries. Chem. Commun. 49(27), 2792–2794 (2013)CrossRef J. Chen, L. Yang, Z. Zhang, S. Fang, S.-i Hirano, Mesoporous TiO2-Sn@ C core–shell microspheres for Li-ion batteries. Chem. Commun. 49(27), 2792–2794 (2013)CrossRef
110.
go back to reference L. Liu, Q. Fan, C. Sun, X. Gu, H. Li, F. Gao, Y. Chen, L. Dong, Synthesis of sandwich-like TiO2@ C composite hollow spheres with high rate capability and stability for lithium-ion batteries. J. Power Sources 221, 141–148 (2013)CrossRef L. Liu, Q. Fan, C. Sun, X. Gu, H. Li, F. Gao, Y. Chen, L. Dong, Synthesis of sandwich-like TiO2@ C composite hollow spheres with high rate capability and stability for lithium-ion batteries. J. Power Sources 221, 141–148 (2013)CrossRef
111.
go back to reference B. Wang, H. Xin, X. Li, J. Cheng, G. Yang, F. Nie, Mesoporous CNT@ TiO2-C nanocable with extremely durable high rate capability for lithium-ion battery anodes. Sci. Rep. 4, 3729 (2014)CrossRef B. Wang, H. Xin, X. Li, J. Cheng, G. Yang, F. Nie, Mesoporous CNT@ TiO2-C nanocable with extremely durable high rate capability for lithium-ion battery anodes. Sci. Rep. 4, 3729 (2014)CrossRef
112.
go back to reference M. Mao, F. Yan, C. Cui, J. Ma, M. Zhang, T. Wang, C. Wang, Pipe-wire TiO2–Sn@ carbon nanofibers paper anodes for lithium and sodium ion batteries. Nano. Lett. 17(6), 3830–3836 (2017)CrossRef M. Mao, F. Yan, C. Cui, J. Ma, M. Zhang, T. Wang, C. Wang, Pipe-wire TiO2–Sn@ carbon nanofibers paper anodes for lithium and sodium ion batteries. Nano. Lett. 17(6), 3830–3836 (2017)CrossRef
113.
go back to reference F. Wang, R. Robert, N.A. Chernova, N. Pereira, F. Omenya, F. Badway, X. Hua, M. Ruotolo, R. Zhang, L. Wu, Conversion reaction mechanisms in lithium ion batteries: study of the binary metal fluoride electrodes. J. Am. Chem. Soc. 133(46), 18828–18836 (2011)CrossRef F. Wang, R. Robert, N.A. Chernova, N. Pereira, F. Omenya, F. Badway, X. Hua, M. Ruotolo, R. Zhang, L. Wu, Conversion reaction mechanisms in lithium ion batteries: study of the binary metal fluoride electrodes. J. Am. Chem. Soc. 133(46), 18828–18836 (2011)CrossRef
114.
go back to reference H. Guan, X. Wang, H. Li, C. Zhi, T. Zhai, Y. Bando, D. Golberg, CoO octahedral nanocages for high-performance lithium ion batteries. Chem. Commun. 48(40), 4878–4880 (2012)CrossRef H. Guan, X. Wang, H. Li, C. Zhi, T. Zhai, Y. Bando, D. Golberg, CoO octahedral nanocages for high-performance lithium ion batteries. Chem. Commun. 48(40), 4878–4880 (2012)CrossRef
115.
go back to reference X.W. Lou, D. Deng, J.Y. Lee, J. Feng, L.A. Archer, Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv. Mater. 20(2), 258–326 (2008)CrossRef X.W. Lou, D. Deng, J.Y. Lee, J. Feng, L.A. Archer, Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv. Mater. 20(2), 258–326 (2008)CrossRef
116.
go back to reference J. Wang, N. Yang, H. Tang, Z. Dong, Q. Jin, M. Yang, D. Kisailus, H. Zhao, Z. Tang, D. Wang, Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries. Angew. Chem. 125(25), 6545–6548 (2013)CrossRef J. Wang, N. Yang, H. Tang, Z. Dong, Q. Jin, M. Yang, D. Kisailus, H. Zhao, Z. Tang, D. Wang, Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries. Angew. Chem. 125(25), 6545–6548 (2013)CrossRef
117.
go back to reference D. Wang, Y. Yu, H. He, J. Wang, W. Zhou, H.D. Abruña, Template-free synthesis of hollow-structured Co3O4 nanoparticles as high-performance anodes for lithium-ion batteries. ACS Nano. 9(2), 1775–1781 (2015)CrossRef D. Wang, Y. Yu, H. He, J. Wang, W. Zhou, H.D. Abruña, Template-free synthesis of hollow-structured Co3O4 nanoparticles as high-performance anodes for lithium-ion batteries. ACS Nano. 9(2), 1775–1781 (2015)CrossRef
118.
go back to reference H. Huang, W. Zhu, X. Tao, Y. Xia, Z. Yu, J. Fang, Y. Gan, W. Zhang, Nanocrystal-constructed mesoporous single-crystalline Co3O4 nanobelts with superior rate capability for advanced lithium-ion batteries. ACS Appl. Mater. Interfaces 4(11), 5974–5980 (2012)CrossRef H. Huang, W. Zhu, X. Tao, Y. Xia, Z. Yu, J. Fang, Y. Gan, W. Zhang, Nanocrystal-constructed mesoporous single-crystalline Co3O4 nanobelts with superior rate capability for advanced lithium-ion batteries. ACS Appl. Mater. Interfaces 4(11), 5974–5980 (2012)CrossRef
119.
go back to reference A.K. Mondal, D. Su, S. Chen, K. Kretschmer, X. Xie, H.-J. Ahn, G. Wang, A microwave synthesis of mesoporous NiCo2O4 nanosheets as electrode materials for lithium-ion batteries and supercapacitors. ChemPhysChem 16(1), 169–175 (2015)CrossRef A.K. Mondal, D. Su, S. Chen, K. Kretschmer, X. Xie, H.-J. Ahn, G. Wang, A microwave synthesis of mesoporous NiCo2O4 nanosheets as electrode materials for lithium-ion batteries and supercapacitors. ChemPhysChem 16(1), 169–175 (2015)CrossRef
120.
go back to reference L. Shen, L. Yu, X.-Y. Yu, X. Zhang, X.W. Lou, Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors. Angew. Chem. Int. Ed. 54(6), 1868–1872 (2015)CrossRef L. Shen, L. Yu, X.-Y. Yu, X. Zhang, X.W. Lou, Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors. Angew. Chem. Int. Ed. 54(6), 1868–1872 (2015)CrossRef
121.
go back to reference J. Li, S. Xiong, Y. Liu, Z. Ju, Y. Qian, High electrochemical performance of monodisperse NiCo2O4 mesoporous microspheres as an anode material for Li-ion batteries. ACS Appl. Mater. Interfaces 5(3), 981–988 (2013)CrossRef J. Li, S. Xiong, Y. Liu, Z. Ju, Y. Qian, High electrochemical performance of monodisperse NiCo2O4 mesoporous microspheres as an anode material for Li-ion batteries. ACS Appl. Mater. Interfaces 5(3), 981–988 (2013)CrossRef
122.
go back to reference H. Li, M. Liang, W. Sun, Y. Wang, Bimetal-organic framework: one-step homogenous formation and its derived mesoporous ternary metal oxide nanorod for high-capacity, high-rate, and long-cycle-life lithium storage. Adv. Funct. Mater. 26(7), 1098–1103 (2016)CrossRef H. Li, M. Liang, W. Sun, Y. Wang, Bimetal-organic framework: one-step homogenous formation and its derived mesoporous ternary metal oxide nanorod for high-capacity, high-rate, and long-cycle-life lithium storage. Adv. Funct. Mater. 26(7), 1098–1103 (2016)CrossRef
123.
go back to reference J. Zhou, J. Qin, X. Zhang, C. Shi, E. Liu, J. Li, N. Zhao, C. He, 2D space-confined synthesis of few-layer MoS2 anchored on carbon nanosheet for lithium-ion battery anode. ACS Nano. 9(4), 3837–3848 (2015)CrossRef J. Zhou, J. Qin, X. Zhang, C. Shi, E. Liu, J. Li, N. Zhao, C. He, 2D space-confined synthesis of few-layer MoS2 anchored on carbon nanosheet for lithium-ion battery anode. ACS Nano. 9(4), 3837–3848 (2015)CrossRef
124.
go back to reference M. Zhang, Y. Qiu, Y. Han, Y. Guo, F. Cheng, Three-dimensional tungsten nitride nanowires as high performance anode material for lithium ion batteries. J. Power Sources 322, 163–216 (2016)CrossRef M. Zhang, Y. Qiu, Y. Han, Y. Guo, F. Cheng, Three-dimensional tungsten nitride nanowires as high performance anode material for lithium ion batteries. J. Power Sources 322, 163–216 (2016)CrossRef
125.
go back to reference H. Huang, S. Gao, A.-M. Wu, K. Cheng, X.-N. Li, X.-X. Gao, J.-J. Zhao, X.-L. Dong, G.-Z. Cao, Fe3N constrained inside C nanocages as an anode for Li-ion batteries through post-synthesis nitridation. Nano. Energy 31, 74–83 (2017)CrossRef H. Huang, S. Gao, A.-M. Wu, K. Cheng, X.-N. Li, X.-X. Gao, J.-J. Zhao, X.-L. Dong, G.-Z. Cao, Fe3N constrained inside C nanocages as an anode for Li-ion batteries through post-synthesis nitridation. Nano. Energy 31, 74–83 (2017)CrossRef
126.
go back to reference H.-C. Park, K.-H. Lee, Y.-W. Lee, S.-J. Kim, D.-M. Kim, M.-C. Kim, K.-W. Park, Mesoporous molybdenum nitride nanobelts as an anode with improved electrochemical properties in lithium ion batteries. J. Power Sources 269, 534–541 (2014)CrossRef H.-C. Park, K.-H. Lee, Y.-W. Lee, S.-J. Kim, D.-M. Kim, M.-C. Kim, K.-W. Park, Mesoporous molybdenum nitride nanobelts as an anode with improved electrochemical properties in lithium ion batteries. J. Power Sources 269, 534–541 (2014)CrossRef
127.
go back to reference P. Mei, J. Lee, M. Pramanik, A. Alshehri, J. Kim, J. Henzie, J.H. Kim, Y. Yamauchi, Mesoporous manganese phosphonate nanorods as a prospective anode for lithium-ion batteries. ACS Appl. Mater. Interfaces 10(23), 19739–19745 (2018)CrossRef P. Mei, J. Lee, M. Pramanik, A. Alshehri, J. Kim, J. Henzie, J.H. Kim, Y. Yamauchi, Mesoporous manganese phosphonate nanorods as a prospective anode for lithium-ion batteries. ACS Appl. Mater. Interfaces 10(23), 19739–19745 (2018)CrossRef
128.
go back to reference Y.-X. Yin, S. Xin, Y.-G. Guo, L.-J. Wan, Lithium-sulfur batteries: electrochemistry, materials, and prospects. Angew. Chem. Int. Ed. 52(50), 13186–13200 (2013)CrossRef Y.-X. Yin, S. Xin, Y.-G. Guo, L.-J. Wan, Lithium-sulfur batteries: electrochemistry, materials, and prospects. Angew. Chem. Int. Ed. 52(50), 13186–13200 (2013)CrossRef
129.
go back to reference M. Wild, L. O’Neill, T. Zhang, R. Purkayastha, G. Minton, M. Marinescu, G.J. Offer, Lithium sulfur batteries, a mechanistic review. Energy Environ. Sci. 8(12), 3477–3494 (2015)CrossRef M. Wild, L. O’Neill, T. Zhang, R. Purkayastha, G. Minton, M. Marinescu, G.J. Offer, Lithium sulfur batteries, a mechanistic review. Energy Environ. Sci. 8(12), 3477–3494 (2015)CrossRef
130.
go back to reference R. Cao, W. Xu, D. Lv, J. Xiao, J.-G. Zhang, Anodes for rechargeable lithium-sulfur batteries. Adv. Energy Mater. 5(16), 201402273 (2015)CrossRef R. Cao, W. Xu, D. Lv, J. Xiao, J.-G. Zhang, Anodes for rechargeable lithium-sulfur batteries. Adv. Energy Mater. 5(16), 201402273 (2015)CrossRef
131.
go back to reference A. Manthiram, S.-H. Chung, C. Zu, Lithium-sulfur batteries: progress and prospects. Adv. Mater. 27(12), 1980–2006 (2015)CrossRef A. Manthiram, S.-H. Chung, C. Zu, Lithium-sulfur batteries: progress and prospects. Adv. Mater. 27(12), 1980–2006 (2015)CrossRef
132.
go back to reference A. Manthiram, Y. Fu, Y.-S. Su, Challenges and prospects of lithium-sulfur batteries. Acc. Chem. Res. 46(5), 1125–1134 (2013)CrossRef A. Manthiram, Y. Fu, Y.-S. Su, Challenges and prospects of lithium-sulfur batteries. Acc. Chem. Res. 46(5), 1125–1134 (2013)CrossRef
133.
go back to reference S. Zhang, K. Ueno, K. Dokko, M. Watanabe, Recent advances in electrolytes for lithium-sulfur batteries. Adv. Energy Mater. 5(16), 201500117 (2015)CrossRef S. Zhang, K. Ueno, K. Dokko, M. Watanabe, Recent advances in electrolytes for lithium-sulfur batteries. Adv. Energy Mater. 5(16), 201500117 (2015)CrossRef
134.
go back to reference Z.W. Seh, Y. Sun, Q. Zhang, Y. Cui, Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 45(20), 5605–5634 (2016)CrossRef Z.W. Seh, Y. Sun, Q. Zhang, Y. Cui, Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 45(20), 5605–5634 (2016)CrossRef
135.
go back to reference X. Li, K. Ding, B. Gao, Q. Li, Y. Li, J. Fu, X. Zhang, P.K. Chu, K. Huo, Freestanding carbon encapsulated mesoporous vanadium nitride nanowires enable highly stable sulfur cathodes for lithium-sulfur batteries. Nano. Energy 40, 655–662 (2017)CrossRef X. Li, K. Ding, B. Gao, Q. Li, Y. Li, J. Fu, X. Zhang, P.K. Chu, K. Huo, Freestanding carbon encapsulated mesoporous vanadium nitride nanowires enable highly stable sulfur cathodes for lithium-sulfur batteries. Nano. Energy 40, 655–662 (2017)CrossRef
136.
go back to reference L. Ji, M. Rao, S. Aloni, L. Wang, E.J. Cairns, Y. Zhang, Porous carbon nanofiber–sulfur composite electrodes for lithium/sulfur cells. Energy Environ. Sci. 4(12), 5053–5059 (2011)CrossRef L. Ji, M. Rao, S. Aloni, L. Wang, E.J. Cairns, Y. Zhang, Porous carbon nanofiber–sulfur composite electrodes for lithium/sulfur cells. Energy Environ. Sci. 4(12), 5053–5059 (2011)CrossRef
137.
go back to reference L. Sun, D. Wang, Y. Luo, K. Wang, W. Kong, Y. Wu, L. Zhang, K. Jiang, Q. Li, Y. Zhang, J. Wang, S. Fan, Sulfur embedded in a mesoporous carbon nanotube network as a binder-free electrode for high-performance lithium-sulfur batteries. ACS Nano. 10(1), 1300–1308 (2016)CrossRef L. Sun, D. Wang, Y. Luo, K. Wang, W. Kong, Y. Wu, L. Zhang, K. Jiang, Q. Li, Y. Zhang, J. Wang, S. Fan, Sulfur embedded in a mesoporous carbon nanotube network as a binder-free electrode for high-performance lithium-sulfur batteries. ACS Nano. 10(1), 1300–1308 (2016)CrossRef
138.
go back to reference X. Shan, Z. Guo, X. Zhang, J. Yang, L. Duan, Mesoporous TiO2 nanofiber as highly efficient sulfur host for advanced lithium-sulfur batteries. Chin. J. Mech. Eng. 32(1), 1–6 (2019). CrossRef X. Shan, Z. Guo, X. Zhang, J. Yang, L. Duan, Mesoporous TiO2 nanofiber as highly efficient sulfur host for advanced lithium-sulfur batteries. Chin. J. Mech. Eng. 32(1), 1–6 (2019). CrossRef
139.
go back to reference T. Ogasawara, A. Débart, M. Holzapfel, P. Novák, P.G. Bruce, Rechargeable Li2O2 electrode for lithium batteries. J. Am. Chem. Soc. 128(4), 1390–1393 (2006)CrossRef T. Ogasawara, A. Débart, M. Holzapfel, P. Novák, P.G. Bruce, Rechargeable Li2O2 electrode for lithium batteries. J. Am. Chem. Soc. 128(4), 1390–1393 (2006)CrossRef
140.
go back to reference J. Xiao, D. Mei, X. Li, W. Xu, D. Wang, G.L. Graff, W.D. Bennett, Z. Nie, L.V. Saraf, I.A. Aksay, J. Liu, J.-G. Zhang, Hierarchically porous graphene as a lithium-air battery electrode. Nano. Lett. 11(11), 5071–5078 (2011)CrossRef J. Xiao, D. Mei, X. Li, W. Xu, D. Wang, G.L. Graff, W.D. Bennett, Z. Nie, L.V. Saraf, I.A. Aksay, J. Liu, J.-G. Zhang, Hierarchically porous graphene as a lithium-air battery electrode. Nano. Lett. 11(11), 5071–5078 (2011)CrossRef
141.
go back to reference Z. Peng, S.A. Freunberger, Y. Chen, P.G. Bruce, A reversible and higher-rate Li-O2 battery. Science 337(6094), 563–566 (2012)CrossRef Z. Peng, S.A. Freunberger, Y. Chen, P.G. Bruce, A reversible and higher-rate Li-O2 battery. Science 337(6094), 563–566 (2012)CrossRef
142.
go back to reference J. Lu, Y. Jung Lee, X. Luo, K. Chun Lau, M. Asadi, H.-H. Wang, S. Brombosz, J. Wen, D. Zhai, Z. Chen, D.J. Miller, Y. Sub Jeong, J.-B. Park, Z. Zak Fang, B. Kumar, A. Salehi-Khojin, Y.-K. Sun, L.A. Curtiss, K. Amine, A lithium–oxygen battery based on lithium superoxide. Nature 529(7586), 377–382 (2016)CrossRef J. Lu, Y. Jung Lee, X. Luo, K. Chun Lau, M. Asadi, H.-H. Wang, S. Brombosz, J. Wen, D. Zhai, Z. Chen, D.J. Miller, Y. Sub Jeong, J.-B. Park, Z. Zak Fang, B. Kumar, A. Salehi-Khojin, Y.-K. Sun, L.A. Curtiss, K. Amine, A lithium–oxygen battery based on lithium superoxide. Nature 529(7586), 377–382 (2016)CrossRef
143.
go back to reference B. Scrosati, J. Garche, Lithium batteries: Status, prospects and future. J. Power Sources 195(9), 2419–2430 (2010)CrossRef B. Scrosati, J. Garche, Lithium batteries: Status, prospects and future. J. Power Sources 195(9), 2419–2430 (2010)CrossRef
144.
go back to reference G. Girishkumar, B. McCloskey, A.C. Luntz, S. Swanson, W. Wilcke, Lithium−air battery: promise and challenges. J. Phys. Chem. Lett. 1(14), 2193–2203 (2010).CrossRef G. Girishkumar, B. McCloskey, A.C. Luntz, S. Swanson, W. Wilcke, Lithium−air battery: promise and challenges. J. Phys. Chem. Lett. 1(14), 2193–2203 (2010).CrossRef
145.
go back to reference A. Débart, A.J. Paterson, J. Bao, P.G. Bruce, α-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. Angew. Chem. 120(24), 4597–4600 (2008)CrossRef A. Débart, A.J. Paterson, J. Bao, P.G. Bruce, α-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. Angew. Chem. 120(24), 4597–4600 (2008)CrossRef
146.
go back to reference A. Manthiram, Materials challenges and opportunities of lithium ion batteries. J. Phys. Chem. Lett. 2(3), 176–184 (2011)CrossRef A. Manthiram, Materials challenges and opportunities of lithium ion batteries. J. Phys. Chem. Lett. 2(3), 176–184 (2011)CrossRef
147.
go back to reference Q. Liu, Y. Jiang, J. Xu, D. Xu, Z. Chang, Y. Yin, W. Liu, X. Zhang, Hierarchical Co3O4 porous nanowires as an efficient bifunctional cathode catalyst for long life Li-O2 batteries. Nano. Res. 8(2), 576–583 (2014)CrossRef Q. Liu, Y. Jiang, J. Xu, D. Xu, Z. Chang, Y. Yin, W. Liu, X. Zhang, Hierarchical Co3O4 porous nanowires as an efficient bifunctional cathode catalyst for long life Li-O2 batteries. Nano. Res. 8(2), 576–583 (2014)CrossRef
148.
go back to reference B. Wu, H. Zhang, W. Zhou, M. Wang, X. Li, H. Zhang, Carbon-free CoO mesoporous nanowire array cathode for high-performance aprotic Li–O2 batteries. ACS Appl. Mater. Interfaces 7(41), 23182–23189 (2015)CrossRef B. Wu, H. Zhang, W. Zhou, M. Wang, X. Li, H. Zhang, Carbon-free CoO mesoporous nanowire array cathode for high-performance aprotic Li–O2 batteries. ACS Appl. Mater. Interfaces 7(41), 23182–23189 (2015)CrossRef
149.
go back to reference S. Peng, L. Li, Y. Hu, M. Srinivasan, F. Cheng, J. Chen, S. Ramakrishna, Fabrication of spinel one-dimensional architectures by single-spinneret electrospinning for energy storage applications. ACS Nano. 9(2), 1945–1954 (2015)CrossRef S. Peng, L. Li, Y. Hu, M. Srinivasan, F. Cheng, J. Chen, S. Ramakrishna, Fabrication of spinel one-dimensional architectures by single-spinneret electrospinning for energy storage applications. ACS Nano. 9(2), 1945–1954 (2015)CrossRef
150.
go back to reference K.-N. Jung, J.-I. Lee, W.B. Im, S. Yoon, K.-H. Shin, J.-W. Lee, Promoting Li2O2 oxidation by an layered perovskite in lithium-oxygen batteries. Chem. Commun. 48(75), 9406–9408 (2012)CrossRef K.-N. Jung, J.-I. Lee, W.B. Im, S. Yoon, K.-H. Shin, J.-W. Lee, Promoting Li2O2 oxidation by an layered perovskite in lithium-oxygen batteries. Chem. Commun. 48(75), 9406–9408 (2012)CrossRef
151.
go back to reference J. Zhang, Y. Zhao, X. Zhao, Z. Liu, W. Chen, Porous perovskite LaNiO3 nanocubes as cathode catalysts for Li-O2 batteries with low charge potential. Sci. Rep. 4, 6005 (2014)CrossRef J. Zhang, Y. Zhao, X. Zhao, Z. Liu, W. Chen, Porous perovskite LaNiO3 nanocubes as cathode catalysts for Li-O2 batteries with low charge potential. Sci. Rep. 4, 6005 (2014)CrossRef
152.
go back to reference M. Sun, L. Zou, Z. Wang, S. Guo, Y. Chen, B. Chi, J. Pu, J. Li, Porous nanocubes La0.9Co0.8Ni0.2O3-x as efficient catalyst for Li-O2 batteries. Electrochim. Acta 327, 135017 (2019)CrossRef M. Sun, L. Zou, Z. Wang, S. Guo, Y. Chen, B. Chi, J. Pu, J. Li, Porous nanocubes La0.9Co0.8Ni0.2O3-x as efficient catalyst for Li-O2 batteries. Electrochim. Acta 327, 135017 (2019)CrossRef
153.
go back to reference Y. Zhao, L. Xu, L. Mai, C. Han, Q. An, X. Xu, X. Liu, Q. Zhang, Hierarchical mesoporous perovskite La0.5Sr0.5CoO2.91 nanowires with ultrahigh capacity for Li-air batteries. Proc. Natl. Acad. Sci. 109(48), 19569–19574 (2012)CrossRef Y. Zhao, L. Xu, L. Mai, C. Han, Q. An, X. Xu, X. Liu, Q. Zhang, Hierarchical mesoporous perovskite La0.5Sr0.5CoO2.91 nanowires with ultrahigh capacity for Li-air batteries. Proc. Natl. Acad. Sci. 109(48), 19569–19574 (2012)CrossRef
154.
go back to reference J.-J. Xu, D. Xu, Z.-L. Wang, H.-G. Wang, L.-L. Zhang, X.-B. Zhang, Synthesis of perovskite-based porous La0.75Sr0.25MnO3 nanotubes as a highly efficient electrocatalyst for rechargeable lithium-oxygen batteries. Angew. Chem. Int. Ed. 52(14), 3887–3890 (2013)CrossRef J.-J. Xu, D. Xu, Z.-L. Wang, H.-G. Wang, L.-L. Zhang, X.-B. Zhang, Synthesis of perovskite-based porous La0.75Sr0.25MnO3 nanotubes as a highly efficient electrocatalyst for rechargeable lithium-oxygen batteries. Angew. Chem. Int. Ed. 52(14), 3887–3890 (2013)CrossRef
155.
go back to reference M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Sodium-ion batteries. Adv. Funct. Mater. 23(8), 947–958 (2013)CrossRef M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Sodium-ion batteries. Adv. Funct. Mater. 23(8), 947–958 (2013)CrossRef
156.
go back to reference N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research development on sodium-ion batteries. Chem. Rev. 114(23), 11636–11682 (2014)CrossRef N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research development on sodium-ion batteries. Chem. Rev. 114(23), 11636–11682 (2014)CrossRef
157.
go back to reference S.-W. Kim, D.-H. Seo, X. Ma, G. Ceder, K. Kang, Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2(7), 710–721 (2012)CrossRef S.-W. Kim, D.-H. Seo, X. Ma, G. Ceder, K. Kang, Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2(7), 710–721 (2012)CrossRef
158.
go back to reference L.P. Wang, L. Yu, X. Wang, M. Srinivasan, Z.J. Xu, Recent developments in electrode materials for sodium-ion batteries. J. Mater. Chem. A 3(18), 9353–9378 (2015)CrossRef L.P. Wang, L. Yu, X. Wang, M. Srinivasan, Z.J. Xu, Recent developments in electrode materials for sodium-ion batteries. J. Mater. Chem. A 3(18), 9353–9378 (2015)CrossRef
159.
go back to reference H. Liu, Y. Liu, 1D mesoporous NaTi2(PO4)3/carbon nanofiber: The promising anode material for sodium-ion batteries. Ceram. Int. 44(5), 5813–5816 (2018)CrossRef H. Liu, Y. Liu, 1D mesoporous NaTi2(PO4)3/carbon nanofiber: The promising anode material for sodium-ion batteries. Ceram. Int. 44(5), 5813–5816 (2018)CrossRef
160.
go back to reference T. Jin, Y. Liu, Y. Li, K. Cao, X. Wang, L. Jiao, Electrospun NaVPO4F/C nanofibers as self-standing cathode material for ultralong cycle life Na-Ion batteries. Adv. Energy Mater. 7(15), 1700087 (2017)CrossRef T. Jin, Y. Liu, Y. Li, K. Cao, X. Wang, L. Jiao, Electrospun NaVPO4F/C nanofibers as self-standing cathode material for ultralong cycle life Na-Ion batteries. Adv. Energy Mater. 7(15), 1700087 (2017)CrossRef
161.
go back to reference P. Barpanda, G. Liu, C.D. Ling, M. Tamaru, M. Avdeev, S.-C. Chung, Y. Yamada, A. Yamada, Na2FeP2O7: a safe cathode for rechargeable sodium-ion batteries. Chem. Mater. 25(17), 3480–3487 (2013)CrossRef P. Barpanda, G. Liu, C.D. Ling, M. Tamaru, M. Avdeev, S.-C. Chung, Y. Yamada, A. Yamada, Na2FeP2O7: a safe cathode for rechargeable sodium-ion batteries. Chem. Mater. 25(17), 3480–3487 (2013)CrossRef
162.
go back to reference X. Xiang, K. Zhang, J. Chen, Recent advances and prospects of cathode materials for sodium-ion batteries. Adv. Mater. 27(36), 5343–5364 (2015)CrossRef X. Xiang, K. Zhang, J. Chen, Recent advances and prospects of cathode materials for sodium-ion batteries. Adv. Mater. 27(36), 5343–5364 (2015)CrossRef
163.
go back to reference M.H. Han, E. Gonzalo, G. Singh, T. Rojo, A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries. Energy Environ. Sci. 8(1), 81–102 (2015)CrossRef M.H. Han, E. Gonzalo, G. Singh, T. Rojo, A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries. Energy Environ. Sci. 8(1), 81–102 (2015)CrossRef
164.
go back to reference Z. Jian, W. Han, X. Lu, H. Yang, Y.-S. Hu, J. Zhou, Z. Zhou, J. Li, W. Chen, D. Chen, L. Chen, Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries. Adv. Energy Mater. 3(2), 156–160 (2013)CrossRef Z. Jian, W. Han, X. Lu, H. Yang, Y.-S. Hu, J. Zhou, Z. Zhou, J. Li, W. Chen, D. Chen, L. Chen, Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries. Adv. Energy Mater. 3(2), 156–160 (2013)CrossRef
165.
go back to reference K. Saravanan, C.W. Mason, A. Rudola, K.H. Wong, P. Balaya, The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3 for sodium ion batteries. Adv. Energy Mater. 3(4), 444–450 (2013)CrossRef K. Saravanan, C.W. Mason, A. Rudola, K.H. Wong, P. Balaya, The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3 for sodium ion batteries. Adv. Energy Mater. 3(4), 444–450 (2013)CrossRef
166.
go back to reference J. Liu, K. Tang, K. Song, P.A. van Aken, Y. Yu, J. Maier, Electrospun Na3V2(PO4)3/C nanofibers as stable cathode materials for sodium-ion batteries. Nanoscale 6(10), 5081–5086 (2014)CrossRef J. Liu, K. Tang, K. Song, P.A. van Aken, Y. Yu, J. Maier, Electrospun Na3V2(PO4)3/C nanofibers as stable cathode materials for sodium-ion batteries. Nanoscale 6(10), 5081–5086 (2014)CrossRef
167.
go back to reference Y. Fang, L. Xiao, X. Ai, Y. Cao, H. Yang, Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries. Adv. Mater. 27(39), 5895–5900 (2015)CrossRef Y. Fang, L. Xiao, X. Ai, Y. Cao, H. Yang, Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries. Adv. Mater. 27(39), 5895–5900 (2015)CrossRef
168.
go back to reference X. Rui, W. Sun, C. Wu, Y. Yu, Q. Yan, An advanced sodium-ion battery composed of carbon coated Na3V2(PO4)3 in a porous graphene network. Adv. Mater. 27(42), 6670–6676 (2015)CrossRef X. Rui, W. Sun, C. Wu, Y. Yu, Q. Yan, An advanced sodium-ion battery composed of carbon coated Na3V2(PO4)3 in a porous graphene network. Adv. Mater. 27(42), 6670–6676 (2015)CrossRef
169.
go back to reference R. Alcántara, J.M. Jiménez-Mateos, P. Lavela, J.L. Tirado, Carbon black: a promising electrode material for sodium-ion batteries. Electrochem. Commun. 3(11), 639–642 (2001)CrossRef R. Alcántara, J.M. Jiménez-Mateos, P. Lavela, J.L. Tirado, Carbon black: a promising electrode material for sodium-ion batteries. Electrochem. Commun. 3(11), 639–642 (2001)CrossRef
170.
go back to reference J. Ding, H. Wang, Z. Li, A. Kohandehghan, K. Cui, Z. Xu, B. Zahiri, X. Tan, E.M. Lotfabad, B.C. Olsen, D. Mitlin, Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano. 7(12), 11004–11015 (2013)CrossRef J. Ding, H. Wang, Z. Li, A. Kohandehghan, K. Cui, Z. Xu, B. Zahiri, X. Tan, E.M. Lotfabad, B.C. Olsen, D. Mitlin, Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano. 7(12), 11004–11015 (2013)CrossRef
171.
go back to reference L. Fu, K. Tang, K. Song, P.A. van Aken, Y. Yu, J. Maier, Nitrogen doped porous carbon fibers as anode materials for sodium ion batteries with excellent rate performance. Nanoscale 6(3), 1384–1389 (2014)CrossRef L. Fu, K. Tang, K. Song, P.A. van Aken, Y. Yu, J. Maier, Nitrogen doped porous carbon fibers as anode materials for sodium ion batteries with excellent rate performance. Nanoscale 6(3), 1384–1389 (2014)CrossRef
172.
go back to reference Y. Li, Z. Wang, L. Li, S. Peng, L. Zhang, M. Srinivasan, S. Ramakrishna, Preparation of nitrogen- and phosphorous co-doped carbon microspheres and their superior performance as anode in sodium-ion batteries. Carbon 99, 556–563 (2016)CrossRef Y. Li, Z. Wang, L. Li, S. Peng, L. Zhang, M. Srinivasan, S. Ramakrishna, Preparation of nitrogen- and phosphorous co-doped carbon microspheres and their superior performance as anode in sodium-ion batteries. Carbon 99, 556–563 (2016)CrossRef
173.
go back to reference Y. Wu, X. Liu, Z. Yang, L. Gu, Y. Yu, Nitrogen-doped ordered mesoporous anatase TiO2 nanofibers as anode materials for high performance sodium-ion batteries. Small 12(26), 3522–3529 (2016)CrossRef Y. Wu, X. Liu, Z. Yang, L. Gu, Y. Yu, Nitrogen-doped ordered mesoporous anatase TiO2 nanofibers as anode materials for high performance sodium-ion batteries. Small 12(26), 3522–3529 (2016)CrossRef
174.
go back to reference L. Wu, J. Lang, R. Wang, R. Guo, X. Yan, Electrospinning synthesis of mesoporous MnCoNiOx@Double-carbon nanofibers for sodium-ion battery anodes with pseudocapacitive behavior and long cycle life. ACS Appl. Mater. Interfaces 8(50), 34342–34352 (2016)CrossRef L. Wu, J. Lang, R. Wang, R. Guo, X. Yan, Electrospinning synthesis of mesoporous MnCoNiOx@Double-carbon nanofibers for sodium-ion battery anodes with pseudocapacitive behavior and long cycle life. ACS Appl. Mater. Interfaces 8(50), 34342–34352 (2016)CrossRef
175.
go back to reference G. Zhou, F. Li, H.-M. Cheng, Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 7(4), 1307–1338 (2014)CrossRef G. Zhou, F. Li, H.-M. Cheng, Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 7(4), 1307–1338 (2014)CrossRef
176.
go back to reference Y.-P. Zhu, Y.-P. Liu, T.-Z. Ren, Z.-Y. Yuan, Self-supported cobalt phosphide mesoporous nanorod arrays: a flexible and bifunctional electrode for highly active electrocatalytic water reduction and oxidation. Adv. Funct. Mater. 25(47), 7337–7347 (2015)CrossRef Y.-P. Zhu, Y.-P. Liu, T.-Z. Ren, Z.-Y. Yuan, Self-supported cobalt phosphide mesoporous nanorod arrays: a flexible and bifunctional electrode for highly active electrocatalytic water reduction and oxidation. Adv. Funct. Mater. 25(47), 7337–7347 (2015)CrossRef
177.
go back to reference L. Mai, J. Sheng, L. Xu, S. Tan, J. Meng, One-dimensional hetero-nanostructures for rechargeable batteries. Acc Chem. Res. 51(4), 950–959 (2018)CrossRef L. Mai, J. Sheng, L. Xu, S. Tan, J. Meng, One-dimensional hetero-nanostructures for rechargeable batteries. Acc Chem. Res. 51(4), 950–959 (2018)CrossRef
178.
go back to reference Y. Liu, N. Zhang, L. Jiao, J. Chen, Tin nanodots encapsulated in porous nitrogen-doped carbon nanofibers as a free-standing anode for advanced sodium-ion batteries. Adv. Mater. 27(42), 6702–6707 (2015)CrossRef Y. Liu, N. Zhang, L. Jiao, J. Chen, Tin nanodots encapsulated in porous nitrogen-doped carbon nanofibers as a free-standing anode for advanced sodium-ion batteries. Adv. Mater. 27(42), 6702–6707 (2015)CrossRef
179.
go back to reference L. Xia, S. Wang, G. Liu, L. Ding, D. Li, H. Wang, S. Qiao, Flexible SnO2/N-doped carbon nanofiber films as integrated electrodes for lithium-ion batteries with superior rate capacity and long cycle life. Small 12(7), 853–859 (2016)CrossRef L. Xia, S. Wang, G. Liu, L. Ding, D. Li, H. Wang, S. Qiao, Flexible SnO2/N-doped carbon nanofiber films as integrated electrodes for lithium-ion batteries with superior rate capacity and long cycle life. Small 12(7), 853–859 (2016)CrossRef
180.
go back to reference W. Li, M. Li, M. Wang, L. Zeng, Y. Yu, Electrospinning with partially carbonization in air: highly porous carbon nanofibers optimized for high-performance flexible lithium-ion batteries. Nano. Energy 13, 693–701 (2015)CrossRef W. Li, M. Li, M. Wang, L. Zeng, Y. Yu, Electrospinning with partially carbonization in air: highly porous carbon nanofibers optimized for high-performance flexible lithium-ion batteries. Nano. Energy 13, 693–701 (2015)CrossRef
181.
go back to reference M. Yu, Z. Wang, C. Hou, Z. Wang, C. Liang, C. Zhao, Y. Tong, X. Lu, S. Yang, Nitrogen-doped Co3O4 mesoporous nanowire arrays as an additive-free air-cathode for flexible solid-state zinc-air batteries. Adv. Mater. 29(15), 201602868 (2017)CrossRef M. Yu, Z. Wang, C. Hou, Z. Wang, C. Liang, C. Zhao, Y. Tong, X. Lu, S. Yang, Nitrogen-doped Co3O4 mesoporous nanowire arrays as an additive-free air-cathode for flexible solid-state zinc-air batteries. Adv. Mater. 29(15), 201602868 (2017)CrossRef
182.
go back to reference J. Liu, K. Song, P.A. van Aken, J. Maier, Y. Yu, Self-supported Li4Ti5O12-C nanotube arrays as high-rate and long-life anode materials for flexible Li-ion batteries. Nano. Lett. 14(5), 2597–2603 (2014)CrossRef J. Liu, K. Song, P.A. van Aken, J. Maier, Y. Yu, Self-supported Li4Ti5O12-C nanotube arrays as high-rate and long-life anode materials for flexible Li-ion batteries. Nano. Lett. 14(5), 2597–2603 (2014)CrossRef
Metadata
Title
1D Mesoporous Inorganic Nanomaterials Applied in Rechargeable Batteries
Authors
Huilin Hou
Linli Xu
Weiyou Yang
Wai-Yeung Wong
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-89105-3_6