Skip to main content
Top
Published in:

2024 | OriginalPaper | Chapter

2-D Minimal Surface Flow with the Oblique Condition and Translators

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we study evolved surfaces over convex planar domains following the minimal surface flow
$$\begin{aligned}u_{t}= div\left( \frac{Du}{\sqrt{1+|Du|^2}}\right) -H(x,Du).\end{aligned}$$
Here, we specify the angle of contact of the evolved surface to the boundary cylinder. The interesting question is to find translating solitons of the form \(u(x,t)=\omega t+w(x)\) where \(\omega \in \mathbb R\). Under an angle condition on the boundary, we can prove the a priori estimate holds true for the translating solitons (i.e., translator), which makes the solitons exist. Then, we can prove for suitable condition on the function H(xp) that there is the global solution of the minimal surface flow. Finally, we show that once the translating soliton exists, the global solutions converge to such translator.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S.-J. Altschuler, L.-F. Wu, Translating surfaces of the non-parametric mean curvature flow with prescribed contact angle, Calc. Var. Partial Differ. Equ. 2 (1994) 101–111. S.-J. Altschuler, L.-F. Wu, Translating surfaces of the non-parametric mean curvature flow with prescribed contact angle, Calc. Var. Partial Differ. Equ. 2 (1994) 101–111.
2.
go back to reference G. Bellettini, M. Novaga, G. Orlandi, Eventual regularity for the parabolic minimal surface equation, Discrete Contin. Dyn. Syst. 35 (2015) 5711–5723. G. Bellettini, M. Novaga, G. Orlandi, Eventual regularity for the parabolic minimal surface equation, Discrete Contin. Dyn. Syst. 35 (2015) 5711–5723.
3.
go back to reference P. Concus, R. Finn, On capillary free surfaces in a gravitational field, Acta Math., 132 (1974), pp. 207–223. P. Concus, R. Finn, On capillary free surfaces in a gravitational field, Acta Math., 132 (1974), pp. 207–223.
4.
go back to reference K. Ecker, Estimates for evolutionary surfaces of prescribed mean curvature, Math. Z. 180 (1982) 179–192. K. Ecker, Estimates for evolutionary surfaces of prescribed mean curvature, Math. Z. 180 (1982) 179–192.
5.
go back to reference C. Gerhardt, Evolutionary surfaces of prescribed mean curvature, J. Differ. Equ. 36 (1980) 139–172. C. Gerhardt, Evolutionary surfaces of prescribed mean curvature, J. Differ. Equ. 36 (1980) 139–172.
6.
go back to reference C.Gerhadt, Global regularity of the solutions to the capillarity problem, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 3 (1976) 157–176. C.Gerhadt, Global regularity of the solutions to the capillarity problem, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 3 (1976) 157–176.
7.
go back to reference D. Gilbarg, N.-S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, Heidelberg. D. Gilbarg, N.-S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, Heidelberg.
8.
go back to reference B. Guan, Mean curvature motion of non-parametric hypersurfaces with contact angle condition, in: A.K. Peters(Ed.), Elliptic and Parabolic Methods in Geometry, Wellesley (MA), 1996, pp. 47–56. B. Guan, Mean curvature motion of non-parametric hypersurfaces with contact angle condition, in: A.K. Peters(Ed.), Elliptic and Parabolic Methods in Geometry, Wellesley (MA), 1996, pp. 47–56.
9.
go back to reference G. Huisken, Non-parametric mean curvature evolution with boundary conditions, J. Differ. Equ. 77 (1989) 369–378. G. Huisken, Non-parametric mean curvature evolution with boundary conditions, J. Differ. Equ. 77 (1989) 369–378.
10.
go back to reference O. A. Ladyzhenskaya, N.N.Ural’ceva, Linear and quasilinear elliptic equations, New York-London, Academic Press (1968). O. A. Ladyzhenskaya, N.N.Ural’ceva, Linear and quasilinear elliptic equations, New York-London, Academic Press (1968).
11.
go back to reference A. Lichnewski, R. Temam, Pseudo-solutions of the time dependent minimal surface problem. J. Differential Equations 30, 340–364 (1978) A. Lichnewski, R. Temam, Pseudo-solutions of the time dependent minimal surface problem. J. Differential Equations 30, 340–364 (1978)
12.
go back to reference G.-M. Lieberman, Gradient estimates for capillary-type problems via the maximum principle, Commu. Partial Differ. Equ. 13 (1988) 33–59. G.-M. Lieberman, Gradient estimates for capillary-type problems via the maximum principle, Commu. Partial Differ. Equ. 13 (1988) 33–59.
13.
go back to reference G.-M. Lieberman, Oblique derivative problems for elliptic equations, World scientific, Singapore, 2013. G.-M. Lieberman, Oblique derivative problems for elliptic equations, World scientific, Singapore, 2013.
14.
go back to reference L. Ma, Y. Yang, A remark on soliton equation of mean curvature flow, An. Acad. Brasil. Cic. 76 (2004) 467–473. L. Ma, Y. Yang, A remark on soliton equation of mean curvature flow, An. Acad. Brasil. Cic. 76 (2004) 467–473.
15.
go back to reference L. Ma, Volume growth and Bernstein theorems for translating solitons, J. Math. Anal. Appl. 473 (2019) 1244–1252. L. Ma, Volume growth and Bernstein theorems for translating solitons, J. Math. Anal. Appl. 473 (2019) 1244–1252.
16.
go back to reference Li Ma, the minimal surface flow with prescribed contact angle and translating surfaces, preprint, 2022 Li Ma, the minimal surface flow with prescribed contact angle and translating surfaces, preprint, 2022
18.
go back to reference X.-N. Ma, P.-H. Wang, W. Wei, Constant mean curvature surfaces and mean curvature flow with non-zero Neumann boundary conditions on strictly convex domains, J. Funct. Anal. 274 (2018) 252–277. X.-N. Ma, P.-H. Wang, W. Wei, Constant mean curvature surfaces and mean curvature flow with non-zero Neumann boundary conditions on strictly convex domains, J. Funct. Anal. 274 (2018) 252–277.
19.
go back to reference Joel Spruck, On the existence of a capilliary surface with prescribed contact angle, Commun. Pur. Appl. Math. 28 (1975) 189–200. Joel Spruck, On the existence of a capilliary surface with prescribed contact angle, Commun. Pur. Appl. Math. 28 (1975) 189–200.
20.
go back to reference R. Temam, Applications de l’analyse convexe au calcul des variations. In: Nonlinear Operators and the Calculus of Variations (Gossez, Lami Dozo, Mawhin, Waelbroeck, eds.). Summer School (Bruxelles 1975), pp. 208-237. Lecture Notes in Mathematics 543. Berlin-Heidelberg- New York: Springer 1976 R. Temam, Applications de l’analyse convexe au calcul des variations. In: Nonlinear Operators and the Calculus of Variations (Gossez, Lami Dozo, Mawhin, Waelbroeck, eds.). Summer School (Bruxelles 1975), pp. 208-237. Lecture Notes in Mathematics 543. Berlin-Heidelberg- New York: Springer 1976
21.
go back to reference N.Ural’tseva, The solvability of the capillarity problem, Vestnik Leningrad Univ., No. 19; Mat. Meh. Astronom. Vyp. 4 (1973), pp. 54–64, Russian. N.Ural’tseva, The solvability of the capillarity problem, Vestnik Leningrad Univ., No. 19; Mat. Meh. Astronom. Vyp. 4 (1973), pp. 54–64, Russian.
Metadata
Title
2-D Minimal Surface Flow with the Oblique Condition and Translators
Authors
Li Ma
Yuxin Pan
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-53212-2_1

Premium Partner