Skip to main content
Top
Published in: Cognitive Neurodynamics 6/2023

15-11-2022 | Research Article

2D dynamic analysis of the disturbances in the calcium neuronal model and its implications in neurodegenerative disease

Authors: Hardik Joshi, Brajesh Kumar Jha

Published in: Cognitive Neurodynamics | Issue 6/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Ca2+ signaling is an essential function of neurons to control synaptic activity, memory formation, fertilization, proliferation, etc. Protein and voltage-dependent calcium channels (VDCCs) maintain an adequate level of calcium concentration ([Ca2+]). An alteration in [Ca2+] leads to the death of the neurons that start the primary symptoms of the disease. The present study deals with cell memory-based mathematical modeling of Ca2+ that is characterized by the presence of protein and VDCC. We developed a two-dimensional Ca2+ neuronal model to study the spatiotemporal behavior of the Ca2+ profile. All principal parameters like buffer concentration, diffusion coefficient, VDCC fluxes, etc. are incorporated in this model. Apposite initial and boundary conditions are applied to the physiology of the problem. We obtained an approximate Ca2+ profile by the fractional integral transform method. The application of obtained results is performed to provide its implications to estimate the [Ca2+] in neurodegenerative disease. It is observed that the protein and VDCC provide a significant impact in the presence of cell memory. The memory of cells shrinks the Ca2+ flow from elevation and provides better results to estimated Ca2+ flow in the disease state.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abboubakar H, Kumar P, Erturk VS, Kumar A (2021) A mathematical study of a tuberculosis model with fractional derivatives. Int J Model Simul Sci Comput 12(4):2150037CrossRef Abboubakar H, Kumar P, Erturk VS, Kumar A (2021) A mathematical study of a tuberculosis model with fractional derivatives. Int J Model Simul Sci Comput 12(4):2150037CrossRef
go back to reference Akgül EK, Akgül A, Yavuz M (2021) New illustrative applications of integral transforms to financial models with different fractional derivatives. Chaos Solitons Fractals 146:110877CrossRef Akgül EK, Akgül A, Yavuz M (2021) New illustrative applications of integral transforms to financial models with different fractional derivatives. Chaos Solitons Fractals 146:110877CrossRef
go back to reference Bonyah E, Yavuz M, Baleanu D, Kumar S (2022) A robust study on the listeriosis disease by adopting fractal-fractional operators. Alex Eng J 61(3):2016–2028CrossRef Bonyah E, Yavuz M, Baleanu D, Kumar S (2022) A robust study on the listeriosis disease by adopting fractal-fractional operators. Alex Eng J 61(3):2016–2028CrossRef
go back to reference Borak S, Härdle W, Weron R (2005) Stable distributions. In: Statistical tools for finance and insurance, Springer, 2005, pp 21–44. Borak S, Härdle W, Weron R (2005) Stable distributions. In: Statistical tools for finance and insurance, Springer, 2005, pp 21–44.
go back to reference Brini M, Calì T, Ottolini D, Carafoli E (2014) Neuronal calcium signaling: function and dysfunction. Cell Mol Life Sci 71(15):2787–2814PubMedCrossRef Brini M, Calì T, Ottolini D, Carafoli E (2014) Neuronal calcium signaling: function and dysfunction. Cell Mol Life Sci 71(15):2787–2814PubMedCrossRef
go back to reference Calì T, Ottolini D, Brini M (2014) Calcium signaling in Parkinson’s disease. Cell Tissue Res 357(2):439–454PubMedCrossRef Calì T, Ottolini D, Brini M (2014) Calcium signaling in Parkinson’s disease. Cell Tissue Res 357(2):439–454PubMedCrossRef
go back to reference Crank J (1975) The mathematics of diffusion, 2nd edn. Oxford University Press, Ely House, London W.I. Crank J (1975) The mathematics of diffusion, 2nd edn. Oxford University Press, Ely House, London W.I.
go back to reference Crisanto-Neto JC, da Luz MGE, Raposo EP, Viswanathan GM (2018) An efficient series approximation for the Lévy α-stable symmetric distribution. Phys Lett Sect A Gen At Solid State Phys 382(35):2408–2413 Crisanto-Neto JC, da Luz MGE, Raposo EP, Viswanathan GM (2018) An efficient series approximation for the Lévy α-stable symmetric distribution. Phys Lett Sect A Gen At Solid State Phys 382(35):2408–2413
go back to reference Dave DD, Jha BK (2021a) On finite element estimation of calcium advection diffusion in a multipolar neuron. J Eng Math 128(1):1–15CrossRef Dave DD, Jha BK (2021a) On finite element estimation of calcium advection diffusion in a multipolar neuron. J Eng Math 128(1):1–15CrossRef
go back to reference Dave DD, Jha BK (2021b) Mathematical modeling of calcium oscillatory patterns in a neuron. Interdiscip Sci Comput Life Sci 13(1):12–24CrossRef Dave DD, Jha BK (2021b) Mathematical modeling of calcium oscillatory patterns in a neuron. Interdiscip Sci Comput Life Sci 13(1):12–24CrossRef
go back to reference Hurley MJ, Brandon B, Gentleman SM, Dexter DT (2013) Parkinson’s disease is associated with altered expression of CaV1 channels and calcium-binding proteins. Brain 136(7):2077–2097PubMedCrossRef Hurley MJ, Brandon B, Gentleman SM, Dexter DT (2013) Parkinson’s disease is associated with altered expression of CaV1 channels and calcium-binding proteins. Brain 136(7):2077–2097PubMedCrossRef
go back to reference Iacopino AM, Christakos S (1990) Specific reduction of calcium-binding protein (28-kilodalton calbindin-D) gene expression in aging and neurodegenerative diseases. Proc Natl Acad Sci U S A 87(11):4078–4082PubMedPubMedCentralCrossRef Iacopino AM, Christakos S (1990) Specific reduction of calcium-binding protein (28-kilodalton calbindin-D) gene expression in aging and neurodegenerative diseases. Proc Natl Acad Sci U S A 87(11):4078–4082PubMedPubMedCentralCrossRef
go back to reference Jena RM, Chakraverty S, Yavuz M, Abdeljawad T (2021) A new modeling and existence-uniqueness analysis for Babesiosis disease of fractional order. Mod Phys Lett B 35(30):2150443CrossRef Jena RM, Chakraverty S, Yavuz M, Abdeljawad T (2021) A new modeling and existence-uniqueness analysis for Babesiosis disease of fractional order. Mod Phys Lett B 35(30):2150443CrossRef
go back to reference Jha A, Adlakha N (2015) Two-dimensional finite element model to study unsteady state Ca2+ diffusion in neuron involving ER LEAK and SERCA. Int J Biomath 8(1):1–14CrossRef Jha A, Adlakha N (2015) Two-dimensional finite element model to study unsteady state Ca2+ diffusion in neuron involving ER LEAK and SERCA. Int J Biomath 8(1):1–14CrossRef
go back to reference Jha BK, Adlakha N, Mehta MN (2013) Two-dimensional finite element model to study calcium distribution in astrocytes in presence of VGCC and excess buffer. Int J Model Simul Sci Comput 4(2):1250030CrossRef Jha BK, Adlakha N, Mehta MN (2013) Two-dimensional finite element model to study calcium distribution in astrocytes in presence of VGCC and excess buffer. Int J Model Simul Sci Comput 4(2):1250030CrossRef
go back to reference Jha BK, Adlakha N, Mehta MN (2014) Two-dimensional finite element model to study calcium distribution in astrocytes in presence of excess buffer. Int J Biomath 7(3):1–11CrossRef Jha BK, Adlakha N, Mehta MN (2014) Two-dimensional finite element model to study calcium distribution in astrocytes in presence of excess buffer. Int J Biomath 7(3):1–11CrossRef
go back to reference Jha A, Adlakha N, Jha BK (2015) Finite element model to study effect of Na+-Ca2+ exchangers and source geometry on calcium dynamics in a neuron cell. J Mech Med Biol 16(2):1–22 Jha A, Adlakha N, Jha BK (2015) Finite element model to study effect of Na+-Ca2+ exchangers and source geometry on calcium dynamics in a neuron cell. J Mech Med Biol 16(2):1–22
go back to reference Jha BK, Joshi H, Dave DD (2018) Portraying the effect of calcium-binding proteins on cytosolic calcium concentration distribution fractionally in nerve cells. Interdiscip Sci Comput Life Sci 10(4):674–685CrossRef Jha BK, Joshi H, Dave DD (2018) Portraying the effect of calcium-binding proteins on cytosolic calcium concentration distribution fractionally in nerve cells. Interdiscip Sci Comput Life Sci 10(4):674–685CrossRef
go back to reference Jha BK, Jha A, Adlakha N (2020) Three-dimensional finite element model to study calcium distribution in astrocytes in presence of VGCC and excess buffer. Differ Equ Dyn Syst 28(3):603–616CrossRef Jha BK, Jha A, Adlakha N (2020) Three-dimensional finite element model to study calcium distribution in astrocytes in presence of VGCC and excess buffer. Differ Equ Dyn Syst 28(3):603–616CrossRef
go back to reference Joshi H, Jha BK (2021b) On a reaction–diffusion model for calcium dynamics in neurons with Mittag-Leffler memory. Eur Phys J Plus 136(6):1–15CrossRef Joshi H, Jha BK (2021b) On a reaction–diffusion model for calcium dynamics in neurons with Mittag-Leffler memory. Eur Phys J Plus 136(6):1–15CrossRef
go back to reference Joshi H, Jha BK (2021c) Chaos of calcium diffusion in Parkinson’s infectious disease model and treatment mechanism via Hilfer fractional derivative. Math Model Numer Simul Appl 1(2):84–94 Joshi H, Jha BK (2021c) Chaos of calcium diffusion in Parkinson’s infectious disease model and treatment mechanism via Hilfer fractional derivative. Math Model Numer Simul Appl 1(2):84–94
go back to reference Joshi H, Jha BK (2022) Generalized diffusion characteristics of calcium model with concentration and memory of cells: a spatiotemporal approach. Iran J Sci Technol Trans A Sci 46(1):309–322CrossRef Joshi H, Jha BK (2022) Generalized diffusion characteristics of calcium model with concentration and memory of cells: a spatiotemporal approach. Iran J Sci Technol Trans A Sci 46(1):309–322CrossRef
go back to reference Keener J, Sneyd J (2009) Mathematical Physiology, Second. Interdisciplinary Applied Mathematics, Springer US Keener J, Sneyd J (2009) Mathematical Physiology, Second. Interdisciplinary Applied Mathematics, Springer US
go back to reference Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier, New York Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier, New York
go back to reference Kumar H, Naik PA, Pardasani KR (2018) Finite element model to study calcium distribution in T lymphocyte involving buffers and ryanodine receptors. Proc Natl Acad Sci India Sect A Phys Sci 88(4):585–590CrossRef Kumar H, Naik PA, Pardasani KR (2018) Finite element model to study calcium distribution in T lymphocyte involving buffers and ryanodine receptors. Proc Natl Acad Sci India Sect A Phys Sci 88(4):585–590CrossRef
go back to reference Kumar P, Suat Ertürk V, Nisar KS (2021) Fractional dynamics of huanglongbing transmission within a citrus tree. Math Methods Appl Sci 44(14):11404–11424CrossRef Kumar P, Suat Ertürk V, Nisar KS (2021) Fractional dynamics of huanglongbing transmission within a citrus tree. Math Methods Appl Sci 44(14):11404–11424CrossRef
go back to reference Magin RL (2006) Fractional calculus in bioengineering. Begell House Magin RL (2006) Fractional calculus in bioengineering. Begell House
go back to reference Manhas N, Pardasani KR (2014) Modelling mechanism of calcium oscillations in pancreatic acinar cells. J Bioenerg Biomembr 46(5):403–420PubMedCrossRef Manhas N, Pardasani KR (2014) Modelling mechanism of calcium oscillations in pancreatic acinar cells. J Bioenerg Biomembr 46(5):403–420PubMedCrossRef
go back to reference Manhas N, Sneyd J, Pardasani KR (2014) Modelling the transition from simple to complex Ca2+ oscillations in pancreatic acinar cells. J Biosci 39(3):463–484PubMedCrossRef Manhas N, Sneyd J, Pardasani KR (2014) Modelling the transition from simple to complex Ca2+ oscillations in pancreatic acinar cells. J Biosci 39(3):463–484PubMedCrossRef
go back to reference McMahon A, Wong BS, Iacopino AM, Ng MC, Chi S, German DC (1998) Calbindin-D28k buffers intracellular calcium and promotes resistance to degeneration in PC12 cells. Mol Brain Res 54(1):56–63PubMedCrossRef McMahon A, Wong BS, Iacopino AM, Ng MC, Chi S, German DC (1998) Calbindin-D28k buffers intracellular calcium and promotes resistance to degeneration in PC12 cells. Mol Brain Res 54(1):56–63PubMedCrossRef
go back to reference Miller KS, Ross B (1993) An introduction to the fractional calculus and fractional differential equations. Wiley, New York Miller KS, Ross B (1993) An introduction to the fractional calculus and fractional differential equations. Wiley, New York
go back to reference Naik PA (2020) Modeling the mechanics of calcium regulation in T lymphocyte: a finite element method approach. Int J Biomath 13(5):2050038CrossRef Naik PA (2020) Modeling the mechanics of calcium regulation in T lymphocyte: a finite element method approach. Int J Biomath 13(5):2050038CrossRef
go back to reference Naik PA, Pardasani KR (2016) Finite element model to study calcium distribution in oocytes involving voltage gated Ca2+ channel, ryanodine receptor and buffers. Alex J Med 52(March):43–49 Naik PA, Pardasani KR (2016) Finite element model to study calcium distribution in oocytes involving voltage gated Ca2+ channel, ryanodine receptor and buffers. Alex J Med 52(March):43–49
go back to reference Naik PA, Zu J (2020) Modeling and simulation of spatial-temporal calcium distribution in T lymphocyte cell by using a reaction-diffusion equation. J Bioinform Comput Biol 18(2):2050013PubMedCrossRef Naik PA, Zu J (2020) Modeling and simulation of spatial-temporal calcium distribution in T lymphocyte cell by using a reaction-diffusion equation. J Bioinform Comput Biol 18(2):2050013PubMedCrossRef
go back to reference Naik PA, Owolabi KM, Yavuz M, Zu J (2020) Chaotic dynamics of a fractional order HIV-1 model involving AIDS-related cancer cells. Chaos Solitons Fractals 140:110272CrossRef Naik PA, Owolabi KM, Yavuz M, Zu J (2020) Chaotic dynamics of a fractional order HIV-1 model involving AIDS-related cancer cells. Chaos Solitons Fractals 140:110272CrossRef
go back to reference Navarro-López EM, Çelikok U, Şengör NS (2021) A dynamical model for the basal ganglia-thalamo-cortical oscillatory activity and its implications in Parkinson’s disease. Cogn Neurodyn 15(4):693–720PubMedCrossRef Navarro-López EM, Çelikok U, Şengör NS (2021) A dynamical model for the basal ganglia-thalamo-cortical oscillatory activity and its implications in Parkinson’s disease. Cogn Neurodyn 15(4):693–720PubMedCrossRef
go back to reference Özköse F, Şenel MT, Habbireeh R (2021) Fractional-order mathematical modelling of cancer cells-cancer stem cells-immune system interaction with chemotherapy. Math Model Numer Simul Appl 1(2):67–83 Özköse F, Şenel MT, Habbireeh R (2021) Fractional-order mathematical modelling of cancer cells-cancer stem cells-immune system interaction with chemotherapy. Math Model Numer Simul Appl 1(2):67–83
go back to reference Pak S (2009) Solitary wave solutions for the RLW equation by he’s semi inverse method. Int J Nonlinear Sci Numer Simul 10(4):505–508CrossRef Pak S (2009) Solitary wave solutions for the RLW equation by he’s semi inverse method. Int J Nonlinear Sci Numer Simul 10(4):505–508CrossRef
go back to reference Panday S, Pardasani KR (2014) Finite element model to study the mechanics of calcium regulation in oocyte. J Mech Med Biol 14(2):1–16CrossRef Panday S, Pardasani KR (2014) Finite element model to study the mechanics of calcium regulation in oocyte. J Mech Med Biol 14(2):1–16CrossRef
go back to reference Paradisi P, Cesari R, Mainardi F, Tampieri F (2001) Fractional Fick’s law for non-local transport processes. Phys A Stat Mech Appl 293(1–2):130–142CrossRef Paradisi P, Cesari R, Mainardi F, Tampieri F (2001) Fractional Fick’s law for non-local transport processes. Phys A Stat Mech Appl 293(1–2):130–142CrossRef
go back to reference Pathak K, Adlakha N (2016) Finite element model to study two dimensional unsteady state calcium distribution in cardiac myocytes. Alex J Med 52(3):261–268 Pathak K, Adlakha N (2016) Finite element model to study two dimensional unsteady state calcium distribution in cardiac myocytes. Alex J Med 52(3):261–268
go back to reference Pawar A, Pardasani KR (2022b) Effects of disorders in interdependent calcium and IP3 dynamics on nitric oxide production in a neuron cell. Eur Phys J Plus 137(5):1–19CrossRef Pawar A, Pardasani KR (2022b) Effects of disorders in interdependent calcium and IP3 dynamics on nitric oxide production in a neuron cell. Eur Phys J Plus 137(5):1–19CrossRef
go back to reference Pawar A, Pardasani KR (2022c) Simulation of disturbances in interdependent calcium and β-amyloid dynamics in the nerve cell. Eur Phys J Plus 137(8):1–23CrossRef Pawar A, Pardasani KR (2022c) Simulation of disturbances in interdependent calcium and β-amyloid dynamics in the nerve cell. Eur Phys J Plus 137(8):1–23CrossRef
go back to reference Podlubny I (1998) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their, 1st Editio. Academic Press, Elsevier Podlubny I (1998) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their, 1st Editio. Academic Press, Elsevier
go back to reference Podlubny I (2002) Geometric and physical interpretation of fractional integration and fractional differentiation. Fract Calc Appl Anal 5(4):367–386 Podlubny I (2002) Geometric and physical interpretation of fractional integration and fractional differentiation. Fract Calc Appl Anal 5(4):367–386
go back to reference Smith GD, Dai L, Miura RM, Sherman A (2001) Asymptotic analysis of buffered calcium diffusion near a point source. SIAM J Appl Math 61(5):1816–1838CrossRef Smith GD, Dai L, Miura RM, Sherman A (2001) Asymptotic analysis of buffered calcium diffusion near a point source. SIAM J Appl Math 61(5):1816–1838CrossRef
go back to reference Tewari SG, Pardasani KR (2012) Modeling effect of sodium pump on calcium oscillations in neuron cells. J Multiscale Model 04(03):1250010CrossRef Tewari SG, Pardasani KR (2012) Modeling effect of sodium pump on calcium oscillations in neuron cells. J Multiscale Model 04(03):1250010CrossRef
go back to reference Tewari V, Tewari S, Pardasani KR (2011) A model to study the effect of excess buffers and Na+ ions on Ca2+ diffusion in neuron cell. World Acad Sci Eng Technol 76(4):41–46 Tewari V, Tewari S, Pardasani KR (2011) A model to study the effect of excess buffers and Na+ ions on Ca2+ diffusion in neuron cell. World Acad Sci Eng Technol 76(4):41–46
go back to reference Veeresha P (2021) A numerical approach to the coupled atmospheric ocean model using a fractional operator. Math Model Numer Simul Appl 1(1):1–10 Veeresha P (2021) A numerical approach to the coupled atmospheric ocean model using a fractional operator. Math Model Numer Simul Appl 1(1):1–10
go back to reference Yavuz M, Bonyah E (2019) New approaches to the fractional dynamics of schistosomiasis disease model. Phys A Stat Mech Appl 525:373–393CrossRef Yavuz M, Bonyah E (2019) New approaches to the fractional dynamics of schistosomiasis disease model. Phys A Stat Mech Appl 525:373–393CrossRef
go back to reference Yu Y, Han F, Wang Q, Wang Q (2022) Model-based optogenetic stimulation to regulate beta oscillations in Parkinsonian neural networks. Cogn Neurodyn 16(3):667–681PubMedCrossRef Yu Y, Han F, Wang Q, Wang Q (2022) Model-based optogenetic stimulation to regulate beta oscillations in Parkinsonian neural networks. Cogn Neurodyn 16(3):667–681PubMedCrossRef
go back to reference Yuan H-H, Chen R-J, Zhu Y-H, Peng C-L, Zhu X-R (2012) The neuroprotective effect of overexpression of calbindin-D28k in an animal model of Parkinson’s disease. Mol Neurobiol 47:117–122PubMedCrossRef Yuan H-H, Chen R-J, Zhu Y-H, Peng C-L, Zhu X-R (2012) The neuroprotective effect of overexpression of calbindin-D28k in an animal model of Parkinson’s disease. Mol Neurobiol 47:117–122PubMedCrossRef
Metadata
Title
2D dynamic analysis of the disturbances in the calcium neuronal model and its implications in neurodegenerative disease
Authors
Hardik Joshi
Brajesh Kumar Jha
Publication date
15-11-2022
Publisher
Springer Netherlands
Published in
Cognitive Neurodynamics / Issue 6/2023
Print ISSN: 1871-4080
Electronic ISSN: 1871-4099
DOI
https://doi.org/10.1007/s11571-022-09903-1

Other articles of this Issue 6/2023

Cognitive Neurodynamics 6/2023 Go to the issue