Skip to main content
Top

2018 | OriginalPaper | Chapter

6. 3-Z-Network Boost Converter

Authors : Guidong Zhang, Bo Zhang, Zhong Li

Published in: Designing Impedance Networks Converters

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Two novel boost converters with three active Z-networks are to be designed in this chapter.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference X. Hu, C. Gong, A high gain input-parallel output-series DC-DC converter with dual coupled-inductors. IEEE Trans. Power Electron. 30(3), 1306–1317 (2015) X. Hu, C. Gong, A high gain input-parallel output-series DC-DC converter with dual coupled-inductors. IEEE Trans. Power Electron. 30(3), 1306–1317 (2015)
2.
go back to reference M.B. Ozkan, P. Karagoz, A novel wind power forecast model: statistical hybrid wind power forecast technique (SHWIP). IEEE Trans. Ind. Inf. 11(2), 375–387 (2015) M.B. Ozkan, P. Karagoz, A novel wind power forecast model: statistical hybrid wind power forecast technique (SHWIP). IEEE Trans. Ind. Inf. 11(2), 375–387 (2015)
3.
go back to reference W. Song, Y. Zhong, H. Zhang, X. Sun, Q. Zhang, W. Wang, A study of z-source dual-bridge matrix converter immune to abnormal input voltage disturbance and with high voltage transfer ratio. IEEE Trans. Ind. Inf. 9(2), 828–838 (2013)CrossRef W. Song, Y. Zhong, H. Zhang, X. Sun, Q. Zhang, W. Wang, A study of z-source dual-bridge matrix converter immune to abnormal input voltage disturbance and with high voltage transfer ratio. IEEE Trans. Ind. Inf. 9(2), 828–838 (2013)CrossRef
4.
go back to reference J. Rodriguez, M.P. Kazmierkowski, J.R. Espinoza, P. Zanchetta, H. Abu-Rub, H.A. Young, C.A. Rojas, State of the art of finite control set model predictive control in power electronics. IEEE Trans. Ind. Inf. 9(2), 1003–1016 (2013)CrossRef J. Rodriguez, M.P. Kazmierkowski, J.R. Espinoza, P. Zanchetta, H. Abu-Rub, H.A. Young, C.A. Rojas, State of the art of finite control set model predictive control in power electronics. IEEE Trans. Ind. Inf. 9(2), 1003–1016 (2013)CrossRef
5.
go back to reference P. Siano, C. Cecati, H. Yu, J. Kolbusz, Real time operation of smart grids via FCN networks and optimal power flow. IEEE Trans. Ind. Inf. 8(4), 944–952 (2012) P. Siano, C. Cecati, H. Yu, J. Kolbusz, Real time operation of smart grids via FCN networks and optimal power flow. IEEE Trans. Ind. Inf. 8(4), 944–952 (2012)
6.
go back to reference L. Valverde, F. Rosa, C. Bordons, Design, planning and management of a hydrogen-based microgrid. IEEE Trans. Ind. Inf. 9(3), 1398–1404 (2013) L. Valverde, F. Rosa, C. Bordons, Design, planning and management of a hydrogen-based microgrid. IEEE Trans. Ind. Inf. 9(3), 1398–1404 (2013)
7.
go back to reference H.L. Ginn, G. Chen, Digital control method for grid-connected converters supplied with nonideal voltage. IEEE Trans. Ind. Inf. 10(1), 127–136 (2014) H.L. Ginn, G. Chen, Digital control method for grid-connected converters supplied with nonideal voltage. IEEE Trans. Ind. Inf. 10(1), 127–136 (2014)
8.
go back to reference X. Long, J. He, J. Zhou, L. Fang, X. Zhou, F. Ren, T. Xu, A review on light-emitting diode based automotive headlamps. Renew. Sustain. Energy Rev. 41, 29–41 (2015) X. Long, J. He, J. Zhou, L. Fang, X. Zhou, F. Ren, T. Xu, A review on light-emitting diode based automotive headlamps. Renew. Sustain. Energy Rev. 41, 29–41 (2015)
9.
go back to reference M. Rizo, M. Liserre, E. Bueno, F.J. Rodriguez, C. Giron, Voltage control architectures for the universal operation of DPGS. IEEE Trans. Ind. Inf. 11(2), 313–321 (2015) M. Rizo, M. Liserre, E. Bueno, F.J. Rodriguez, C. Giron, Voltage control architectures for the universal operation of DPGS. IEEE Trans. Ind. Inf. 11(2), 313–321 (2015)
10.
go back to reference T.B. Lazzarin, I. Barbi, DSP-based control for parallelism of three-phase voltage source inverter. IEEE Trans. Ind. Inf. 9(2), 749–759 (2013)CrossRef T.B. Lazzarin, I. Barbi, DSP-based control for parallelism of three-phase voltage source inverter. IEEE Trans. Ind. Inf. 9(2), 749–759 (2013)CrossRef
11.
go back to reference M. Bertoluzzo, G. Buja, Development of electric propulsion systems for light electric vehicles. IEEE Trans. Ind. Inf. 7(3), 428–435 (2011) M. Bertoluzzo, G. Buja, Development of electric propulsion systems for light electric vehicles. IEEE Trans. Ind. Inf. 7(3), 428–435 (2011)
12.
go back to reference N. Lu, H. Lin, J. Lu, G. Zhang, A customer churn prediction model in telecom industry using boosting. IEEE Trans. Ind. Inf. 10(2), 1659–1665 (2014)CrossRef N. Lu, H. Lin, J. Lu, G. Zhang, A customer churn prediction model in telecom industry using boosting. IEEE Trans. Ind. Inf. 10(2), 1659–1665 (2014)CrossRef
13.
go back to reference Q. Yang, J.A. Barria, T.C. Green, Communication infrastructures for distributed control of power distribution networks. IEEE Trans. Ind. Inf. 7(2), 316–327 (2011)CrossRef Q. Yang, J.A. Barria, T.C. Green, Communication infrastructures for distributed control of power distribution networks. IEEE Trans. Ind. Inf. 7(2), 316–327 (2011)CrossRef
14.
go back to reference G. Zhang, Z. Li, B. Zhang, D. Qiu, W. Xiao, W.A. Halang, A Z-source half-bridge converter. IEEE Trans. Ind. Electron. 61(3), 1269–1279 (2014) G. Zhang, Z. Li, B. Zhang, D. Qiu, W. Xiao, W.A. Halang, A Z-source half-bridge converter. IEEE Trans. Ind. Electron. 61(3), 1269–1279 (2014)
15.
go back to reference C. Buccella, C. Cecati, H. Latafat, Digital control of power converters–a survey. IEEE Trans. Ind. Inf. 8(3), 437–447 (2012) C. Buccella, C. Cecati, H. Latafat, Digital control of power converters–a survey. IEEE Trans. Ind. Inf. 8(3), 437–447 (2012)
16.
go back to reference W. Li, Y. Zhao, J. Wu, X. He, Interleaved high step-up converter with winding-cross-coupled inductors and voltage multiplier cells. IEEE Trans. Power Electron. 27(1), 133–143 (2012) W. Li, Y. Zhao, J. Wu, X. He, Interleaved high step-up converter with winding-cross-coupled inductors and voltage multiplier cells. IEEE Trans. Power Electron. 27(1), 133–143 (2012)
17.
go back to reference W. Li, L. Fan, Y. Zhao, X. He, D. Xu, High step-up and high efficiency fuel cell power generation system with active clamp flyback-forward converter. IEEE Trans. Ind. Electron. 59(1), 599–610 (2012) W. Li, L. Fan, Y. Zhao, X. He, D. Xu, High step-up and high efficiency fuel cell power generation system with active clamp flyback-forward converter. IEEE Trans. Ind. Electron. 59(1), 599–610 (2012)
18.
go back to reference M.A. Al-Saffar, E.H. Ismail, A.J. Sabzali, Family of ZC-ZVS converters with wide voltage range for renewable energy systems. Renew. Energy 56, 32–43 (2013) M.A. Al-Saffar, E.H. Ismail, A.J. Sabzali, Family of ZC-ZVS converters with wide voltage range for renewable energy systems. Renew. Energy 56, 32–43 (2013)
19.
go back to reference J. Duarte, L.R. Lima, L. Oliveira, M. Mezaroba, L. Michels, C. Rech, Modeling and digital control of a single-stage step-up/down isolated PFC rectifier. IEEE Trans. Ind. Inf. 9(2), 1017–1028 (2013)CrossRef J. Duarte, L.R. Lima, L. Oliveira, M. Mezaroba, L. Michels, C. Rech, Modeling and digital control of a single-stage step-up/down isolated PFC rectifier. IEEE Trans. Ind. Inf. 9(2), 1017–1028 (2013)CrossRef
20.
go back to reference M. Fu, C. Ma, X. Zhu, A cascaded boost-buck converter for high-efficiency wireless power transfer systems. IEEE Trans. Ind. Inf. 10(3), 1972–1980 (2014) M. Fu, C. Ma, X. Zhu, A cascaded boost-buck converter for high-efficiency wireless power transfer systems. IEEE Trans. Ind. Inf. 10(3), 1972–1980 (2014)
21.
go back to reference C. Mario, C. Alfio, A. Rosario, G. Francesco, Soft-switching converter with HF transformer for grid-connected photovoltaic systems. IEEE Trans. Ind. Electron. 57(5), 1678–1686 (2010)CrossRef C. Mario, C. Alfio, A. Rosario, G. Francesco, Soft-switching converter with HF transformer for grid-connected photovoltaic systems. IEEE Trans. Ind. Electron. 57(5), 1678–1686 (2010)CrossRef
22.
go back to reference W. Li, Y. He, X. He, Y. Sun, F. Wang, L. Ma, Series asymmetrical half-bridge converters with voltage autobalance for high input-voltage applications. IEEE Trans. Power Electron. 28(8), 3665–3674 (2013) W. Li, Y. He, X. He, Y. Sun, F. Wang, L. Ma, Series asymmetrical half-bridge converters with voltage autobalance for high input-voltage applications. IEEE Trans. Power Electron. 28(8), 3665–3674 (2013)
23.
go back to reference C.-M. Young, M.-H.Chen, T.-A. Chang, C.-C. Ko, K.-K. Jen, Cascade cockcroft-walton voltage multiplier applied to transformerless high step-up DC-DC converter. IEEE Trans. Ind. Electron. 60(2), 523–537 (2013) C.-M. Young, M.-H.Chen, T.-A. Chang, C.-C. Ko, K.-K. Jen, Cascade cockcroft-walton voltage multiplier applied to transformerless high step-up DC-DC converter. IEEE Trans. Ind. Electron. 60(2), 523–537 (2013)
24.
go back to reference D.S. Wijeratne, G. Moschopoulos, Quadratic power conversion for power electronics: principles and circuits. IEEE Trans. Circuits Syst. I 59(2), 1967–1979 (2011) D.S. Wijeratne, G. Moschopoulos, Quadratic power conversion for power electronics: principles and circuits. IEEE Trans. Circuits Syst. I 59(2), 1967–1979 (2011)
25.
go back to reference G.A.L. Henn, R.N.A.L. Silva, P.P. Praca, L.H.S.C. Barreto, D.S. Oliveira.Jr, Interleaved-boost converter with high voltage gain. IEEE Trans. Power Electron. 25(11), 2753–2761 (2010) G.A.L. Henn, R.N.A.L. Silva, P.P. Praca, L.H.S.C. Barreto, D.S. Oliveira.Jr, Interleaved-boost converter with high voltage gain. IEEE Trans. Power Electron. 25(11), 2753–2761 (2010)
26.
go back to reference D. Li, P.C. Loh, M. Zhu, G. Feng, F. Blaabjerg, Generalized multicell switched-inductor and switched-capacitor Z-source inverters. IEEE Trans. Power Electron. 28(2), 837–848 (2013) D. Li, P.C. Loh, M. Zhu, G. Feng, F. Blaabjerg, Generalized multicell switched-inductor and switched-capacitor Z-source inverters. IEEE Trans. Power Electron. 28(2), 837–848 (2013)
27.
go back to reference K.I. Hwu, C.F. Chuang, W.C. Tu, High voltage-boosting converters based on bootstrap capacitors and boost inductors. IEEE Trans. Ind. Electron. 60(6), 2178–2193 (2013) K.I. Hwu, C.F. Chuang, W.C. Tu, High voltage-boosting converters based on bootstrap capacitors and boost inductors. IEEE Trans. Ind. Electron. 60(6), 2178–2193 (2013)
28.
go back to reference S. Vighetti, J.P. Ferrieux, Y. Lembeye, Optimization and design of a cascaded DC-DC converter devoted to grid-connected photovoltaic systems. IEEE Trans. Power Electron. 27(4), 2018–2027 (2012) S. Vighetti, J.P. Ferrieux, Y. Lembeye, Optimization and design of a cascaded DC-DC converter devoted to grid-connected photovoltaic systems. IEEE Trans. Power Electron. 27(4), 2018–2027 (2012)
29.
go back to reference P.D. Antoszczuk, R. Garcia Retegui, M. Funes, D. Carrica, Optimized implementation of a current control algorithm for multiphase interleaved power converters. IEEE Trans. Ind. Inf. 10(4), 2224–2232 (2014) P.D. Antoszczuk, R. Garcia Retegui, M. Funes, D. Carrica, Optimized implementation of a current control algorithm for multiphase interleaved power converters. IEEE Trans. Ind. Inf. 10(4), 2224–2232 (2014)
30.
go back to reference C.-T. Pan, C.-F. Chuang, C.-C. Chu, A novel transformerless interleaved high step-down conversion ratio DC-DC converter with low switch voltage stress. IEEE Trans. Power Electron. 61(10), 5290–5299 (2014) C.-T. Pan, C.-F. Chuang, C.-C. Chu, A novel transformerless interleaved high step-down conversion ratio DC-DC converter with low switch voltage stress. IEEE Trans. Power Electron. 61(10), 5290–5299 (2014)
31.
go back to reference G. Zhang, B. Zhang, Z. Li, A constructing method for power electronics converters based on the graph theory, in China Power Supply Society 20th Annual Academic Annual Meeting (2014) G. Zhang, B. Zhang, Z. Li, A constructing method for power electronics converters based on the graph theory, in China Power Supply Society 20th Annual Academic Annual Meeting (2014)
32.
go back to reference G. Zhang, B. Zhang, Z. Li, D. Qiu, L. Yang, W. Halang, A 3-Z-network boost converter. IEEE Trans. Ind. Electron. 62(1), 278–288 (2015) G. Zhang, B. Zhang, Z. Li, D. Qiu, L. Yang, W. Halang, A 3-Z-network boost converter. IEEE Trans. Ind. Electron. 62(1), 278–288 (2015)
33.
go back to reference G. Zhang, H.H.C. Iu, B. Zhang, Z. Li, T. Fernando, S.-Z. Chen, Y. Zhang, An impedance network boost converter with high-voltage gain high voltage-gain. IEEE Trans. Power Electron. 32(9), 6661–6665 (2017) G. Zhang, H.H.C. Iu, B. Zhang, Z. Li, T. Fernando, S.-Z. Chen, Y. Zhang, An impedance network boost converter with high-voltage gain high voltage-gain. IEEE Trans. Power Electron. 32(9), 6661–6665 (2017)
Metadata
Title
3-Z-Network Boost Converter
Authors
Guidong Zhang
Bo Zhang
Zhong Li
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-63655-9_6