Skip to main content
Top

2022 | OriginalPaper | Chapter

3D Bioreactors for Cell Culture: Fluid Dynamics Aspects

Authors : Natalia Kizilova, Jacek Rokicki (Deceased)

Published in: Biomechanics in Medicine, Sport and Biology

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Reconstructive therapy is essential in functionality restoration of the tissues impaired by congenital disorders, degenerative diseases and trauma that needs authentic cells for transplantation and tissue engineering. Petri dish and Cell Culture Flasks produce the cells which properties were changed by the contacts between the cells and the walls of the vessel. A bioreactor for tissue engineering applications should: (i) facilitate uniform cell distribution; (ii) provide and maintain the physiological requirements of the cell (e.g., nutrients, oxygen, growth factors); (iii) increase mass transport by diffusion and convection using mixing systems of culture medium; (iv) expose the cells to vital physical stimuli; and (v) enable reproducibility, control, monitoring and automation. Besides, bioreactors should present a simple reliable design preventing possible stagnation and allowing an easy access to the engineered tissue if any problem arises in the reactor during the operational period. In this paper the state-of-the-art review on different types of the reactors existed in the market, and their benefits is presented. The review is mostly concentrated on the fluid dynamics aspects of 3D dynamic cell culture technologies.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Atala, A. (ed.): Foundations of Regenerative Medicine. Clinical and Therapeutic Applications. Academic Press. New York (2011) Atala, A. (ed.): Foundations of Regenerative Medicine. Clinical and Therapeutic Applications. Academic Press. New York (2011)
2.
go back to reference Bhattacharya, N., Stubblefield, P.G. (eds.): Regenerative Medicine Using Non-Fetal Sources of Stem Cells. Springer, London (2015) Bhattacharya, N., Stubblefield, P.G. (eds.): Regenerative Medicine Using Non-Fetal Sources of Stem Cells. Springer, London (2015)
3.
go back to reference Braddock, M., Houston, P., Campbell, C., Ashcroft, P.: Born again bone: tissue engineering for bone repair. News Physiol. Sci. 16, 208–213 (2001) Braddock, M., Houston, P., Campbell, C., Ashcroft, P.: Born again bone: tissue engineering for bone repair. News Physiol. Sci. 16, 208–213 (2001)
4.
go back to reference Frohlich, M., Grayson, W.L., Wan, L.Q., et al.: Tissue engineered bone grafts: biological requirements, tissue culture and clinical relevance. Curr. Stem Cell Res. Therapy 3, 254–264 (2008)CrossRef Frohlich, M., Grayson, W.L., Wan, L.Q., et al.: Tissue engineered bone grafts: biological requirements, tissue culture and clinical relevance. Curr. Stem Cell Res. Therapy 3, 254–264 (2008)CrossRef
5.
go back to reference Marolt, D., Knezevic, M., Vunjak-Novakovic, G.: Bone tissue engineering with human stem cells. Stem Cell Res. Therapy 1, 10–16 (2010)CrossRef Marolt, D., Knezevic, M., Vunjak-Novakovic, G.: Bone tissue engineering with human stem cells. Stem Cell Res. Therapy 1, 10–16 (2010)CrossRef
6.
go back to reference Atkinsonm, K. (ed.): The Biology and Therapeutic Application of Mesenchymal Cells. John Wiley & Sons, Inc., Hoboken (2016) Atkinsonm, K. (ed.): The Biology and Therapeutic Application of Mesenchymal Cells. John Wiley & Sons, Inc., Hoboken (2016)
7.
go back to reference Ashoka, A., Choudhury, D., Fang, Y., Hunzikerac, W.: Towards manufacturing of human organoids. Biotechnol. Adv. 39(2), 107460 (2020) Ashoka, A., Choudhury, D., Fang, Y., Hunzikerac, W.: Towards manufacturing of human organoids. Biotechnol. Adv. 39(2), 107460 (2020)
8.
go back to reference Bissell, M.J., Radisky, D.C., Rizki, A., et al.: The organizing principle: microenvironmental influences in the normal and malignant breast. Differentiation 70(9–10), 537–546 (2002)CrossRef Bissell, M.J., Radisky, D.C., Rizki, A., et al.: The organizing principle: microenvironmental influences in the normal and malignant breast. Differentiation 70(9–10), 537–546 (2002)CrossRef
9.
go back to reference Martin, I., Wendt, D., Heberer, M.: The role of bioreactors in tissue engineering. Trends Biotechnol. 22, 80–86 (2004)CrossRef Martin, I., Wendt, D., Heberer, M.: The role of bioreactors in tissue engineering. Trends Biotechnol. 22, 80–86 (2004)CrossRef
10.
go back to reference Bayir, E., Sahinler, M., Celtikoglu, M.M., Sendemir, A.: Bioreactors in tissue engineering: mimicking the microenvironment. In: Biomaterials for Organ and Tissue Regeneration New Technologies and Future Prospects. Woodhead Publishing. Series in Biomaterials, pp. 709–752 (2020) Bayir, E., Sahinler, M., Celtikoglu, M.M., Sendemir, A.: Bioreactors in tissue engineering: mimicking the microenvironment. In: Biomaterials for Organ and Tissue Regeneration New Technologies and Future Prospects. Woodhead Publishing. Series in Biomaterials, pp. 709–752 (2020)
11.
go back to reference Lim, K.-T., Patel, D.K., Seonwoo, H., et al.: A fully automated bioreactor system for precise control of stem cell proliferation and differentiation. Biochem. Eng. J. 150, 107258 (2019) Lim, K.-T., Patel, D.K., Seonwoo, H., et al.: A fully automated bioreactor system for precise control of stem cell proliferation and differentiation. Biochem. Eng. J. 150, 107258 (2019)
12.
go back to reference Pedersen, J.A., Swartz, M.A.: Mechanobiology in the third dimension. Ann. Biomed. Eng. 33, 1469–1490 (2005)CrossRef Pedersen, J.A., Swartz, M.A.: Mechanobiology in the third dimension. Ann. Biomed. Eng. 33, 1469–1490 (2005)CrossRef
13.
go back to reference Wang, J.H., Thampatty, B.P.: An introductory review of cell mechanobiology. Biomech. Model. Mechanobiol. 5, 1–16 (2006)CrossRef Wang, J.H., Thampatty, B.P.: An introductory review of cell mechanobiology. Biomech. Model. Mechanobiol. 5, 1–16 (2006)CrossRef
14.
go back to reference Rutkowski, J.M., Swartz, M.A.: A driving force for change: interstitial flow as a morphoregulator. Trends Cell Biol. 17(1), 44–50 (2007)CrossRef Rutkowski, J.M., Swartz, M.A.: A driving force for change: interstitial flow as a morphoregulator. Trends Cell Biol. 17(1), 44–50 (2007)CrossRef
15.
go back to reference Wendt, D., Marsano, A., Jakob, M., et al.: Oscillating perfusion of cell suspensions through three-dimensional scaffolds enhances cell seeding efficiency and uniformity. Biotechnol. Bioeng. 84, 205–214 (2003)CrossRef Wendt, D., Marsano, A., Jakob, M., et al.: Oscillating perfusion of cell suspensions through three-dimensional scaffolds enhances cell seeding efficiency and uniformity. Biotechnol. Bioeng. 84, 205–214 (2003)CrossRef
16.
go back to reference Zhao, F., Ma, T.: Perfusion bioreactor system for human mesenchymal stem cell tissue engineering: dynamic cell seeding and construct development. Biotechnol. Bioeng. 91, 482–493 (2005)CrossRef Zhao, F., Ma, T.: Perfusion bioreactor system for human mesenchymal stem cell tissue engineering: dynamic cell seeding and construct development. Biotechnol. Bioeng. 91, 482–493 (2005)CrossRef
17.
go back to reference Huang, C., Ogawa, R.: Effect of hydrostatic pressure on bone regeneration using human mesenchymal stem cells. Tissue Eng. Part A 18, 2106–2113 (2012)CrossRef Huang, C., Ogawa, R.: Effect of hydrostatic pressure on bone regeneration using human mesenchymal stem cells. Tissue Eng. Part A 18, 2106–2113 (2012)CrossRef
18.
go back to reference Weinbaum, S., Cowin, S.C., Zeng, Y.: A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J. Biomech. 27(3), 339–360 (1994)CrossRef Weinbaum, S., Cowin, S.C., Zeng, Y.: A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J. Biomech. 27(3), 339–360 (1994)CrossRef
19.
go back to reference Delafosse, A., Calvo, S., Collignon, M.-L., et al.: Euler-Lagrange approach to model heterogeneities in stirred tank bioreactors – comparison to experimental flow characterization and particle tracking. Chem. Engin. Sci. 134(29), 457–466 (2015)CrossRef Delafosse, A., Calvo, S., Collignon, M.-L., et al.: Euler-Lagrange approach to model heterogeneities in stirred tank bioreactors – comparison to experimental flow characterization and particle tracking. Chem. Engin. Sci. 134(29), 457–466 (2015)CrossRef
20.
go back to reference Egger, D., Fischer, M., Clementi, A., et al.: Development and characterization of a parallelizable perfusion bioreactor for 3D cell culture. Bioengineering 4, 51 (2017)CrossRef Egger, D., Fischer, M., Clementi, A., et al.: Development and characterization of a parallelizable perfusion bioreactor for 3D cell culture. Bioengineering 4, 51 (2017)CrossRef
21.
go back to reference Pessoa, D.R., Finkler, A.T.J., Machado, A.V.L., et al.: CFD simulation of a packed-bed solid-state fermentation bioreactor. Appl. Math. Model. 70, 439–458 (2019)MathSciNetMATHCrossRef Pessoa, D.R., Finkler, A.T.J., Machado, A.V.L., et al.: CFD simulation of a packed-bed solid-state fermentation bioreactor. Appl. Math. Model. 70, 439–458 (2019)MathSciNetMATHCrossRef
22.
go back to reference Loubière, C., Delafosse, A., Guedon, E., et al.: Dimensional analysis and CFD simulations of microcarrier ‘just-suspended’ state in mesenchymal stromal cells bioreactors. Chem. Engin. Sci. 203, 464–474 (2019)CrossRef Loubière, C., Delafosse, A., Guedon, E., et al.: Dimensional analysis and CFD simulations of microcarrier ‘just-suspended’ state in mesenchymal stromal cells bioreactors. Chem. Engin. Sci. 203, 464–474 (2019)CrossRef
23.
go back to reference Keiger, D.: Moving cancer research out of the Petri dish and into the third dimension. Johns Hopkins Mag. 53 (2013) Keiger, D.: Moving cancer research out of the Petri dish and into the third dimension. Johns Hopkins Mag. 53 (2013)
24.
go back to reference Casser-Bette, M., Murray, A.B., Closs, E.I., et al.: Bone formation by osteoblast-like cells in a three-dimensional cell culture. Calcif. Tissue Int. 46, 46–56 (1990)CrossRef Casser-Bette, M., Murray, A.B., Closs, E.I., et al.: Bone formation by osteoblast-like cells in a three-dimensional cell culture. Calcif. Tissue Int. 46, 46–56 (1990)CrossRef
25.
go back to reference Sourla, A., Doillon, C., Koutsilieris, M.: Three dimensional type I collagen gel system containing MG-63 osteoblast-like cells as a model for studying local bone reaction caused by metastatic cancer cells. Anticancer Res. 16, 2773–2780 (1996) Sourla, A., Doillon, C., Koutsilieris, M.: Three dimensional type I collagen gel system containing MG-63 osteoblast-like cells as a model for studying local bone reaction caused by metastatic cancer cells. Anticancer Res. 16, 2773–2780 (1996)
26.
go back to reference Mizuno, M., Shindo, M., Kobayashi, D., et al.: Osteogenesis by bone stromal cells maintained on type I collagen matrix gels in vivo. Bone 20, 101–107 (1997)CrossRef Mizuno, M., Shindo, M., Kobayashi, D., et al.: Osteogenesis by bone stromal cells maintained on type I collagen matrix gels in vivo. Bone 20, 101–107 (1997)CrossRef
27.
go back to reference Hoffman, R.M.: 3D Sponge-matrix histoculture: an overview. Methods Mol. Biol. 1760, 11–17 (2018)CrossRef Hoffman, R.M.: 3D Sponge-matrix histoculture: an overview. Methods Mol. Biol. 1760, 11–17 (2018)CrossRef
28.
go back to reference Hendijani, F.: Explant culture: an advantageous method for isolation of mesenchymal stem cells from human tissues. Cell Prolif. 50, e12334 (2017) Hendijani, F.: Explant culture: an advantageous method for isolation of mesenchymal stem cells from human tissues. Cell Prolif. 50, e12334 (2017)
29.
go back to reference Haycock, J.W.: 3D cell culture: a review of current approaches and techniques. Methods Mol. Biol. 695, 1–15 (2011)CrossRef Haycock, J.W.: 3D cell culture: a review of current approaches and techniques. Methods Mol. Biol. 695, 1–15 (2011)CrossRef
30.
go back to reference Li, X.J., Valadez, A.V., Zuo, P., Nie, Z.: Microfluidic 3D cell culture: potential application for tissue-based bioassays. Bioanalysis 4, 1509–1525 (2012)CrossRef Li, X.J., Valadez, A.V., Zuo, P., Nie, Z.: Microfluidic 3D cell culture: potential application for tissue-based bioassays. Bioanalysis 4, 1509–1525 (2012)CrossRef
31.
go back to reference Ahmed, H.M.M., Salerno, S., Morelli, S., et al.: 3D liver membrane system by co-culturing human hepatocytes, sinusoidal endothelial and stellate cells. Biofabrication 9, 025022 (2017) Ahmed, H.M.M., Salerno, S., Morelli, S., et al.: 3D liver membrane system by co-culturing human hepatocytes, sinusoidal endothelial and stellate cells. Biofabrication 9, 025022 (2017)
32.
go back to reference Granet, C., Laroche, N.L. Vico, C. Alexandre, M.H.: Lafage-proust rotating-wall vessels, promising bioreactors for osteoblastic cell culture: comparison with other 3D conditions. Med. Biol. Eng. Comput. 36(4), 513–519 (1998) Granet, C., Laroche, N.L. Vico, C. Alexandre, M.H.: Lafage-proust rotating-wall vessels, promising bioreactors for osteoblastic cell culture: comparison with other 3D conditions. Med. Biol. Eng. Comput. 36(4), 513–519 (1998)
33.
go back to reference Schwarz, R.P., Goodwin, T.J., Wolf, D.A.: Cell culture for three-dimensional modeling in rotating-wall vessels: an application of simulated microgravity. J. Tissue Cult. Methods 14, 51–57 (1992)CrossRef Schwarz, R.P., Goodwin, T.J., Wolf, D.A.: Cell culture for three-dimensional modeling in rotating-wall vessels: an application of simulated microgravity. J. Tissue Cult. Methods 14, 51–57 (1992)CrossRef
34.
go back to reference Goodwin, T.J., Schroeder, W.F., Wolf, D.A., Moyer, M.P.: Rotating-wall vessel coculture of small intestine as a prelude to tissue modeling: aspects of simulated microgravity. Proc. Soc. Exp. Biol. Med. 202, 181–192 (1993)CrossRef Goodwin, T.J., Schroeder, W.F., Wolf, D.A., Moyer, M.P.: Rotating-wall vessel coculture of small intestine as a prelude to tissue modeling: aspects of simulated microgravity. Proc. Soc. Exp. Biol. Med. 202, 181–192 (1993)CrossRef
35.
go back to reference Tsao, Y.D., Goodwin, T.J., Wolf, D.A., Spaulding, G.F.: Responses of gravity level variations on the NASA/JSC bioreactor system. Physiologist 35(1), S49-50 (1992) Tsao, Y.D., Goodwin, T.J., Wolf, D.A., Spaulding, G.F.: Responses of gravity level variations on the NASA/JSC bioreactor system. Physiologist 35(1), S49-50 (1992)
36.
go back to reference Zhang, Z.-Y., Teoh, S.H., Chong, W.-S.: A biaxial rotating bioreactor for the culture of fetal mesenchymal stem cells for bone tissue engineering. Biomaterials 30, 2694–2704 (2009)CrossRef Zhang, Z.-Y., Teoh, S.H., Chong, W.-S.: A biaxial rotating bioreactor for the culture of fetal mesenchymal stem cells for bone tissue engineering. Biomaterials 30, 2694–2704 (2009)CrossRef
37.
go back to reference Navran, S.: The application of low shear modeled microgravity to 3D cell biology and tissue engineering. Biotechnol. Annu. Rev. 14, 275–296 (2008)CrossRef Navran, S.: The application of low shear modeled microgravity to 3D cell biology and tissue engineering. Biotechnol. Annu. Rev. 14, 275–296 (2008)CrossRef
38.
go back to reference Barrila, J., Radtke, A.L., Crabbe, A., et al.: Organotypic 3d cell culture models: using the rotating wall vessel to study host-pathogen interactions. Nat. Rev. Microbiol. 8, 791–801 (2010)CrossRef Barrila, J., Radtke, A.L., Crabbe, A., et al.: Organotypic 3d cell culture models: using the rotating wall vessel to study host-pathogen interactions. Nat. Rev. Microbiol. 8, 791–801 (2010)CrossRef
39.
go back to reference Barzegari, A., Saei, A.A.: An update to space biomedical research: tissue engineering in microgravity bioreactors. BioImpacts 2, 23–32 (2012) Barzegari, A., Saei, A.A.: An update to space biomedical research: tissue engineering in microgravity bioreactors. BioImpacts 2, 23–32 (2012)
40.
go back to reference Grimm, D., Wehland, M., Pietsch, J., et al.: Growing tissues in real and simulated microgravity: new methods for tissue engineering. Tissue Eng. 20, 555–566 (2014)CrossRef Grimm, D., Wehland, M., Pietsch, J., et al.: Growing tissues in real and simulated microgravity: new methods for tissue engineering. Tissue Eng. 20, 555–566 (2014)CrossRef
41.
go back to reference Gardner, J.K., Herbst-Kralovetz, M.H.: Three-dimensional rotating wall vessel-derived cell culture models for studying virus-host interactions. Viruses 8, 304 (2016)CrossRef Gardner, J.K., Herbst-Kralovetz, M.H.: Three-dimensional rotating wall vessel-derived cell culture models for studying virus-host interactions. Viruses 8, 304 (2016)CrossRef
42.
go back to reference Sladkova, M., de Peppo, G.M.: Bioreactor systems for human bone tissue engineering. Processes 2, 494–525 (2014)CrossRef Sladkova, M., de Peppo, G.M.: Bioreactor systems for human bone tissue engineering. Processes 2, 494–525 (2014)CrossRef
43.
go back to reference Rauh, J., Milan, F., Gunther, K.-P., Stiehler, M.: Bioreactor systems for bone tissue engineering. Tissue Eng. Part B 17(4), 263–280 (2011)CrossRef Rauh, J., Milan, F., Gunther, K.-P., Stiehler, M.: Bioreactor systems for bone tissue engineering. Tissue Eng. Part B 17(4), 263–280 (2011)CrossRef
44.
go back to reference Anil-Inevi, M., Yaman, S., Yildiz, A.A., et al.: Biofabrication of in situ self assembled 3D cell cultures in a weightlessness environment generated using magnetic levitation. Sci. Rep. 8, 7239 (2018)CrossRef Anil-Inevi, M., Yaman, S., Yildiz, A.A., et al.: Biofabrication of in situ self assembled 3D cell cultures in a weightlessness environment generated using magnetic levitation. Sci. Rep. 8, 7239 (2018)CrossRef
45.
go back to reference de Peppo, G.M., Sladkova, M., Sjövall, P., et al.: Human embryonic stem cell-derived mesodermal progenitors display substantially increased tissue formation compared to human mesenchymal stem cells under dynamic culture conditions in a packed bed/column bioreactor. Tissue Eng. Part A 19, 175–187 (2013)CrossRef de Peppo, G.M., Sladkova, M., Sjövall, P., et al.: Human embryonic stem cell-derived mesodermal progenitors display substantially increased tissue formation compared to human mesenchymal stem cells under dynamic culture conditions in a packed bed/column bioreactor. Tissue Eng. Part A 19, 175–187 (2013)CrossRef
46.
go back to reference David, B., Bonnefont-Rousselot, D., Oudina, K., et al.: Perfusion bioreactor for engineering bone constructs: an in vitro and in vivo study. Tissue Eng. 17, 505–516 (2011)CrossRef David, B., Bonnefont-Rousselot, D., Oudina, K., et al.: Perfusion bioreactor for engineering bone constructs: an in vitro and in vivo study. Tissue Eng. 17, 505–516 (2011)CrossRef
47.
go back to reference Freed, L.E., Vunjak-Nopvakovic, G., Langer, R.: Cultivations of cell-polymer cartilage implants in bioreactors. J. Cell. Biochem. 51, 257–264 (1993)CrossRef Freed, L.E., Vunjak-Nopvakovic, G., Langer, R.: Cultivations of cell-polymer cartilage implants in bioreactors. J. Cell. Biochem. 51, 257–264 (1993)CrossRef
48.
go back to reference Grier, D.G.: A revolution in optical manipulation. Nature 424(6950), 810–816 (2003)CrossRef Grier, D.G.: A revolution in optical manipulation. Nature 424(6950), 810–816 (2003)CrossRef
49.
go back to reference Molloy, J.E.: Optical chopsticks: digital synthesis of multiple optical traps. Methods Cell Biol. 55, 205–216 (2018)CrossRef Molloy, J.E.: Optical chopsticks: digital synthesis of multiple optical traps. Methods Cell Biol. 55, 205–216 (2018)CrossRef
50.
go back to reference Rodrigo, P.J., Daria V.R., Gluckstad, J.: Real-time three-dimensional optical micromanipulation of multiple particles and living cells. Opt. Lett. 29(19), 2270–2272 (2019) Rodrigo, P.J., Daria V.R., Gluckstad, J.: Real-time three-dimensional optical micromanipulation of multiple particles and living cells. Opt. Lett. 29(19), 2270–2272 (2019)
51.
go back to reference Winkleman, A., Gudiksen, K.L., Ryan, D., et al.: A magnetic trap for living cells suspended in a paramagnetic buffer. Appl. Phys. Lett. 85(12), 2411–2413 (2004)CrossRef Winkleman, A., Gudiksen, K.L., Ryan, D., et al.: A magnetic trap for living cells suspended in a paramagnetic buffer. Appl. Phys. Lett. 85(12), 2411–2413 (2004)CrossRef
52.
go back to reference Bassett, C.A., Pilla, A.A., Pawluk, R.J.: A non-operative salvage of surgically-resistant pseudarthroses and nonunions by pulsing electromagnetic fields. A preliminary report. Clin. Orthop. Relat. Res. 124 128–133 (1977) Bassett, C.A., Pilla, A.A., Pawluk, R.J.: A non-operative salvage of surgically-resistant pseudarthroses and nonunions by pulsing electromagnetic fields. A preliminary report. Clin. Orthop. Relat. Res. 124 128–133 (1977)
53.
go back to reference Gossling, H.R., Bernstein, R.A., Abbott, J.: Treatment of ununited tibial fractures: a comparison of surgery and pulsed electromagnetic fields. Orthopedics 15, 711 (1992)CrossRef Gossling, H.R., Bernstein, R.A., Abbott, J.: Treatment of ununited tibial fractures: a comparison of surgery and pulsed electromagnetic fields. Orthopedics 15, 711 (1992)CrossRef
54.
go back to reference Eyres, K.S., Saleh, M., Kanis, J.A.: Effect of pulsed electromagnetic fields on bone formation and bone loss during limb lengthening. Bone 18, 505 (1996)CrossRef Eyres, K.S., Saleh, M., Kanis, J.A.: Effect of pulsed electromagnetic fields on bone formation and bone loss during limb lengthening. Bone 18, 505 (1996)CrossRef
55.
go back to reference Aaron, R.K., Ciombor, D.M., Simon, B.J.: Treatment of nonunions with electric and electromagnetic fields. Clin. Orthop. Relat. Res. 419, 21 (2004)CrossRef Aaron, R.K., Ciombor, D.M., Simon, B.J.: Treatment of nonunions with electric and electromagnetic fields. Clin. Orthop. Relat. Res. 419, 21 (2004)CrossRef
56.
go back to reference Dallari, D.: Effects of pulsed electromagnetic stimulation on patients undergoing hip revision prostheses: a randomized prospective double-blind study. Bioelectromag. 30, 423 (2009)CrossRef Dallari, D.: Effects of pulsed electromagnetic stimulation on patients undergoing hip revision prostheses: a randomized prospective double-blind study. Bioelectromag. 30, 423 (2009)CrossRef
57.
go back to reference Midura, R.J.: Pulsed electromagnetic field treatments enhance the healing of fibular osteotomies. J. Orthop. Res. 23, 1035 (2005)CrossRef Midura, R.J.: Pulsed electromagnetic field treatments enhance the healing of fibular osteotomies. J. Orthop. Res. 23, 1035 (2005)CrossRef
58.
go back to reference Funk, R.H., Monsees, T., Ozkucur, N.: Electromagnetic effectsFrom cell biology to medicine. Prog. Histochem. Cytochem. 43, 177 (2009)CrossRef Funk, R.H., Monsees, T., Ozkucur, N.: Electromagnetic effectsFrom cell biology to medicine. Prog. Histochem. Cytochem. 43, 177 (2009)CrossRef
59.
go back to reference Antonsson, E.K., Mann, R.W.: The frequency content of gait. J. Biomech. 18, 39 (1985)CrossRef Antonsson, E.K., Mann, R.W.: The frequency content of gait. J. Biomech. 18, 39 (1985)CrossRef
60.
go back to reference Rubin, C.T., Donahue, H.J., Rubin, J.E., McLeod, K.J.: Optimization of electric field parameters for the control of bone remodeling: exploitation of an indigenous mechanism for the prevention of osteopenia. J. Bone Miner. Res. 8(2), S573 (1993) Rubin, C.T., Donahue, H.J., Rubin, J.E., McLeod, K.J.: Optimization of electric field parameters for the control of bone remodeling: exploitation of an indigenous mechanism for the prevention of osteopenia. J. Bone Miner. Res. 8(2), S573 (1993)
61.
go back to reference Aaron, R.K., Ciombor, D.M., Wang, S., Simon, B.: Clinical biophysics: the promotion of skeletal repair by physical forces. Ann. NY Acad. Sci. 1068, 513–519 (2006) Aaron, R.K., Ciombor, D.M., Wang, S., Simon, B.: Clinical biophysics: the promotion of skeletal repair by physical forces. Ann. NY Acad. Sci. 1068, 513–519 (2006)
62.
go back to reference Schwartz, Z.: Pulsed electromagnetic fields enhance BMP-2 dependent osteoblastic differentiation of human mesenchymal stem cells. J. Orthop. Res. 26, 1250 (2008)CrossRef Schwartz, Z.: Pulsed electromagnetic fields enhance BMP-2 dependent osteoblastic differentiation of human mesenchymal stem cells. J. Orthop. Res. 26, 1250 (2008)CrossRef
63.
go back to reference Sun, L.Y., Hsieh, D.K., Lin, P.C., et al.: Pulsed electromagnetic fields accelerate proliferation and osteogenic gene expression in human bone marrow mesenchymal stem cells during osteogenic differentiation. Bioelectromag. 31, 209–218 (2010) Sun, L.Y., Hsieh, D.K., Lin, P.C., et al.: Pulsed electromagnetic fields accelerate proliferation and osteogenic gene expression in human bone marrow mesenchymal stem cells during osteogenic differentiation. Bioelectromag. 31, 209–218 (2010)
64.
go back to reference Bodamyali, T., Bhatt, B., Hughes, F.J., et al.: Pulsed electromagnetic fields simultaneously induce osteogenesis and upregulate trantranscription of bone morphogenetic proteins 2 and 4 in rat osteoblasts in vitro. Biochem. Biophys. Res. Commun. 250, 458–464 (1998)CrossRef Bodamyali, T., Bhatt, B., Hughes, F.J., et al.: Pulsed electromagnetic fields simultaneously induce osteogenesis and upregulate trantranscription of bone morphogenetic proteins 2 and 4 in rat osteoblasts in vitro. Biochem. Biophys. Res. Commun. 250, 458–464 (1998)CrossRef
65.
go back to reference Wiesmann, H., Hartig, M., Stratmann, U., et al.: Electrical stimulation influences mineral formation of osteoblast-like cells in vitro. Biochim. Biophys. Acta. 1538, 28–37 (2001)CrossRef Wiesmann, H., Hartig, M., Stratmann, U., et al.: Electrical stimulation influences mineral formation of osteoblast-like cells in vitro. Biochim. Biophys. Acta. 1538, 28–37 (2001)CrossRef
66.
go back to reference Icaro, C.A., Casasco, M., Riva, F., et al.: Stimulation of osteoblast growth by an electromagnetic field in a model of bone-like construct. Eur. J. Histochem. 50, 199–209 (2006) Icaro, C.A., Casasco, M., Riva, F., et al.: Stimulation of osteoblast growth by an electromagnetic field in a model of bone-like construct. Eur. J. Histochem. 50, 199–209 (2006)
67.
go back to reference Fassina, L.: Effects of electromagnetic stimulation on calcified matrix production by SAOS-2 cells over a polyurethane porous scaffold. Tissue Eng. 12, 1985–1994 (2006)CrossRef Fassina, L.: Effects of electromagnetic stimulation on calcified matrix production by SAOS-2 cells over a polyurethane porous scaffold. Tissue Eng. 12, 1985–1994 (2006)CrossRef
68.
go back to reference Tsai, M.T., Chang, W.H., Chang, K., et al.: Pulsed electromagnetic fields affect osteoblast proliferation and differentiation in bone tissue engineering. Bioelectromagn. 28, 519–526 (2017)CrossRef Tsai, M.T., Chang, W.H., Chang, K., et al.: Pulsed electromagnetic fields affect osteoblast proliferation and differentiation in bone tissue engineering. Bioelectromagn. 28, 519–526 (2017)CrossRef
69.
go back to reference Walter, A., Marcoux, C., Desloges, B., et al.: Micro-patterning of NdFeB and SmCo magnet films for integration into micro-electro-mechanical-systems. J. Magn. Magnet. Mater. 321, 590–594 (2009)CrossRef Walter, A., Marcoux, C., Desloges, B., et al.: Micro-patterning of NdFeB and SmCo magnet films for integration into micro-electro-mechanical-systems. J. Magn. Magnet. Mater. 321, 590–594 (2009)CrossRef
70.
go back to reference Dijkstra, C.E., Larkin, O.J., Anthony, P., et al.: Diamagnetic levitation enhances growth of liquid bacterial cultures by increasing oxygen availability. J. R. Soc. Interface 8, 334–344 (2011)CrossRef Dijkstra, C.E., Larkin, O.J., Anthony, P., et al.: Diamagnetic levitation enhances growth of liquid bacterial cultures by increasing oxygen availability. J. R. Soc. Interface 8, 334–344 (2011)CrossRef
71.
go back to reference Hammer, B.E., Kidder, L.S., Williams, P.C., Xu, W.W.: Magnetic levitation of MC3T3 osteoblast cells as a ground-based simulation of microgravity. Microgravity Sci. Technol. 21(4), 311–318 (2009)CrossRef Hammer, B.E., Kidder, L.S., Williams, P.C., Xu, W.W.: Magnetic levitation of MC3T3 osteoblast cells as a ground-based simulation of microgravity. Microgravity Sci. Technol. 21(4), 311–318 (2009)CrossRef
72.
go back to reference Souza, G.R., Molina, J.R., Raphael, R.M., et al.: Three-dimensional tissue culture based on magnetic cell levitation. Nat. Nanotechnol. 5, 291–296 (2010)CrossRef Souza, G.R., Molina, J.R., Raphael, R.M., et al.: Three-dimensional tissue culture based on magnetic cell levitation. Nat. Nanotechnol. 5, 291–296 (2010)CrossRef
73.
go back to reference Coleman, C., Gonzalez-Villalobos, R.A., Allen, P.L., et al.: Hammond diamagnetic levitation changes growth, cell cycle, and gene expression of Saccharomyces cerevisiae. Biotechnol. Bioengin. 98(4), 854–863 (2007)CrossRef Coleman, C., Gonzalez-Villalobos, R.A., Allen, P.L., et al.: Hammond diamagnetic levitation changes growth, cell cycle, and gene expression of Saccharomyces cerevisiae. Biotechnol. Bioengin. 98(4), 854–863 (2007)CrossRef
74.
go back to reference Herranz, R., Larkin, O.J., Dijkstra, C.E., et al.: Microgravity simulation by diamagnetic levitation: effects of a strong gradient magnetic field on the transcriptional profile of Drosophila melanogaster. BMC Genom. 13, 52–59 (2021)CrossRef Herranz, R., Larkin, O.J., Dijkstra, C.E., et al.: Microgravity simulation by diamagnetic levitation: effects of a strong gradient magnetic field on the transcriptional profile of Drosophila melanogaster. BMC Genom. 13, 52–59 (2021)CrossRef
75.
go back to reference Becker, J.L., Souza, G.R.: Using space-based investigations to inform cancer research on Earth. Nat. Rev. Cancer 13(5), 315–327 (2018)CrossRef Becker, J.L., Souza, G.R.: Using space-based investigations to inform cancer research on Earth. Nat. Rev. Cancer 13(5), 315–327 (2018)CrossRef
76.
go back to reference Markx, G.H.: The use of electric fields in tissue engineering. Organogenesis 4(1), 11–17 (2018)CrossRef Markx, G.H.: The use of electric fields in tissue engineering. Organogenesis 4(1), 11–17 (2018)CrossRef
77.
go back to reference Ulbrich, C., Wehland, M., Pietsch, J., et al.: The impact of simulated and real microgravity on bone cells and mesenchymal stem cells. Biomed. Res. Int. 2014, 928507 (2014) Ulbrich, C., Wehland, M., Pietsch, J., et al.: The impact of simulated and real microgravity on bone cells and mesenchymal stem cells. Biomed. Res. Int. 2014, 928507 (2014)
78.
go back to reference Lewis, M.L.: The cytoskeleton in spaceflown cells: an overview. Grav. Space Biol. Bull. 17, 1–11 (2004) Lewis, M.L.: The cytoskeleton in spaceflown cells: an overview. Grav. Space Biol. Bull. 17, 1–11 (2004)
79.
go back to reference Tabony, J.: Gravity dependence of microtubule selforganization. Grav. Space Biol. Bull. 17, 13–25 (2004) Tabony, J.: Gravity dependence of microtubule selforganization. Grav. Space Biol. Bull. 17, 13–25 (2004)
80.
go back to reference Papaseit, C., Pochon, N., Tabony, J.: Microtubule self-organization is gravity-dependent. Proc. Natl Acad. Sci. USA 97, 8364–8368 (2000)CrossRef Papaseit, C., Pochon, N., Tabony, J.: Microtubule self-organization is gravity-dependent. Proc. Natl Acad. Sci. USA 97, 8364–8368 (2000)CrossRef
81.
go back to reference Glade, N., Beaugnon, E., Tabony, J.: Ground-based methods reproduce space-flight experiments and show that weak vibrations trigger microtubule self-organization. Biophys. Biochem. 121, 1–6 (2006) Glade, N., Beaugnon, E., Tabony, J.: Ground-based methods reproduce space-flight experiments and show that weak vibrations trigger microtubule self-organization. Biophys. Biochem. 121, 1–6 (2006)
82.
go back to reference Korb, T.: Integrity of actin fibers and microtubules influences metastatic tumor adhesion. Exp. Cell Res. 299, 236–247 (2004)CrossRef Korb, T.: Integrity of actin fibers and microtubules influences metastatic tumor adhesion. Exp. Cell Res. 299, 236–247 (2004)CrossRef
83.
go back to reference Suresh, S.: Biomechanics and biophysics of cancer cells. Acta Biomater. 3, 413–438 (2007)CrossRef Suresh, S.: Biomechanics and biophysics of cancer cells. Acta Biomater. 3, 413–438 (2007)CrossRef
84.
go back to reference Kim, Y., Stolarska, M.A., Othmer, H.G.: The role of microenvironment in tumor growth and invasion. Prog. Biophys. Mol. Biol. 106, 353–379 (2011)CrossRef Kim, Y., Stolarska, M.A., Othmer, H.G.: The role of microenvironment in tumor growth and invasion. Prog. Biophys. Mol. Biol. 106, 353–379 (2011)CrossRef
85.
go back to reference Hutmacher, D.W., Singh, H.: Computational fluid dynamics for improved bioreactor design and 3D culture. Trends Biotechnol. 26, 166–172 (2008) Hutmacher, D.W., Singh, H.: Computational fluid dynamics for improved bioreactor design and 3D culture. Trends Biotechnol. 26, 166–172 (2008)
86.
go back to reference Vetsch, J.R., Müller, R., Hofmann, S.: The evolution of simulation techniques for dynamic bone tissue engineering in bioreactors. J. Tissue Eng. Regen. Med. 9(8), 903–917 (2015)CrossRef Vetsch, J.R., Müller, R., Hofmann, S.: The evolution of simulation techniques for dynamic bone tissue engineering in bioreactors. J. Tissue Eng. Regen. Med. 9(8), 903–917 (2015)CrossRef
87.
go back to reference Sucosky, P., Osorio, D.F., Brown, J.B., Neitzel, G.P.: Fluid mechanics of a spinner-flask bioreactor. Biotechnol. Bioeng. 85, 34–46 (2004)CrossRef Sucosky, P., Osorio, D.F., Brown, J.B., Neitzel, G.P.: Fluid mechanics of a spinner-flask bioreactor. Biotechnol. Bioeng. 85, 34–46 (2004)CrossRef
88.
go back to reference Milan, J.L., Planell, J.A., Lacroix, D.: Simulation of bone tissue formation within a porous scaffold under dynamic compression. Biomech. Model. Mech. 9, 583–596 (2010)CrossRef Milan, J.L., Planell, J.A., Lacroix, D.: Simulation of bone tissue formation within a porous scaffold under dynamic compression. Biomech. Model. Mech. 9, 583–596 (2010)CrossRef
89.
go back to reference Galbusera, F., Cioffi, M., Raimondi, M.T., Pietrabissa, R., et al.: Computational modeling of combined cell population dynamics and oxygen transport in engineered tissue subject to interstitial perfusion. Comput. Methods Biomech. Biomed. Eng. 10, 279–287 (2007)CrossRef Galbusera, F., Cioffi, M., Raimondi, M.T., Pietrabissa, R., et al.: Computational modeling of combined cell population dynamics and oxygen transport in engineered tissue subject to interstitial perfusion. Comput. Methods Biomech. Biomed. Eng. 10, 279–287 (2007)CrossRef
90.
go back to reference Lappa, M.: Organic tissues in rotating bioreactors: Fluid-mechanical aspects, dynamic growth models, and morphological evolution. Biotechnol. Bioeng. 84, 518–532 (2003)CrossRef Lappa, M.: Organic tissues in rotating bioreactors: Fluid-mechanical aspects, dynamic growth models, and morphological evolution. Biotechnol. Bioeng. 84, 518–532 (2003)CrossRef
91.
go back to reference Liu, T., Li, X., Sun, X., et al.: Analysis on forces and movement of cultivated particles in a rotating wall vessel bioreactor. Biochem. Engin. J. 18(2), 97–104 (2004)CrossRef Liu, T., Li, X., Sun, X., et al.: Analysis on forces and movement of cultivated particles in a rotating wall vessel bioreactor. Biochem. Engin. J. 18(2), 97–104 (2004)CrossRef
92.
go back to reference Verbruggen, S.W., Vaughan, T.J., McNamara, L.M.: Fluid flow in the osteocyte mechanical environment: a fluid-structure interaction approach. Biomech. Model. Mechanobiol. 13, 85–97 (2014)CrossRef Verbruggen, S.W., Vaughan, T.J., McNamara, L.M.: Fluid flow in the osteocyte mechanical environment: a fluid-structure interaction approach. Biomech. Model. Mechanobiol. 13, 85–97 (2014)CrossRef
Metadata
Title
3D Bioreactors for Cell Culture: Fluid Dynamics Aspects
Authors
Natalia Kizilova
Jacek Rokicki (Deceased)
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-86297-8_8