Skip to main content
Top
Published in: Automatic Control and Computer Sciences 5/2018

01-09-2018

3D Deep Learning for Automatic Brain MR Tumor Segmentation with T-Spline Intensity Inhomogeneity Correction

Authors: G. Anand Kumar, P. V. Sridevi

Published in: Automatic Control and Computer Sciences | Issue 5/2018

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Automatic segmentation of brain tumor data is a herculean task for medical applications, particularly in cancer diagnosis. This paper emulates some challenging issues such as noise sensitivity, partial volume averaging, intensity inhomogeneity, inter-slice intensity variations, and intensity non-standardization. This paper intends a novel N3T-spline intensity inhomogeneity correction for bias field correction and the three dimension convolutional neural network (3DCNN) for automatic segmentation. The proposed work consists of four stages (i) pre-processing, (ii) feature extraction (iii) automatic segmentation and (iv) post-processing. In the pre-processing step, novel nonparametric non-uniformity normalization (N3) based T-spline approach is proposed to correct the bias field distortion, which recedes the noises and intensity variations. The extended gray level co-occurrence matrix (EGLCM) is a feature extraction technique, from which the texture patches more suitable for brain tumor segmentation can be extracted. The proposed 3DCNN automatically segments the brain tumor and divides the discrete abnormal tissues from the raw data and EGLCM features. Finally, a simple threshold scheme is adapted on the segmented result to correct the false labels and eliminate the 3D connected small regions. The simulation results in the proposed segmentation procedure could acquire competitive performance as compared with the existing procedure for the BRATS 2015 dataset.
Literature
1.
go back to reference Balafar, M.A., Ramli, A.R., Saripan, M.I., and Mashohor, S., Review of brain MRI image segmentation methods, Artif. Intell. Rev., 2010, vol. 33, no. 3, pp. 261–274.CrossRef Balafar, M.A., Ramli, A.R., Saripan, M.I., and Mashohor, S., Review of brain MRI image segmentation methods, Artif. Intell. Rev., 2010, vol. 33, no. 3, pp. 261–274.CrossRef
2.
go back to reference Khotanlou, H., Colliot, O., Atif, J., and Bloch, I., 3D brain tumor segmentation in MRI using fuzzy classification, symmetry analysis and spatially constrained deformable models, Fuzzy Sets Syst., 2009, vol. 160, no. 10, pp. 1457–1473.MathSciNetCrossRef Khotanlou, H., Colliot, O., Atif, J., and Bloch, I., 3D brain tumor segmentation in MRI using fuzzy classification, symmetry analysis and spatially constrained deformable models, Fuzzy Sets Syst., 2009, vol. 160, no. 10, pp. 1457–1473.MathSciNetCrossRef
3.
go back to reference Ahmed, N.M., Yamany, S.M., Mohamed, N., Farag, A.A., and Moriarty, T., A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data, IEEE Trans. Med. Imaging, 2002, vol. 21, no. 3, pp. 193–199.CrossRef Ahmed, N.M., Yamany, S.M., Mohamed, N., Farag, A.A., and Moriarty, T., A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data, IEEE Trans. Med. Imaging, 2002, vol. 21, no. 3, pp. 193–199.CrossRef
4.
go back to reference Zhang, N., Ruan, S., Lebonvallet, S., Liao, Q., and Zhu, Y., Kernel feature selection to fuse multi-spectral MRI images for brain tumor segmentation, Comput. Vision Image Understanding, 2011, vol. 115, no. 2, pp. 256–269.CrossRef Zhang, N., Ruan, S., Lebonvallet, S., Liao, Q., and Zhu, Y., Kernel feature selection to fuse multi-spectral MRI images for brain tumor segmentation, Comput. Vision Image Understanding, 2011, vol. 115, no. 2, pp. 256–269.CrossRef
5.
go back to reference Hall, L.O., Bensaid, A.M., Clarke, L.P., Velthuizen, R.P., Silbiger, M.S., and Bezdek, J.C., A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain, IEEE Trans. Neural Networks, 1992, vol. 3, no. 5, pp. 672–682.CrossRef Hall, L.O., Bensaid, A.M., Clarke, L.P., Velthuizen, R.P., Silbiger, M.S., and Bezdek, J.C., A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain, IEEE Trans. Neural Networks, 1992, vol. 3, no. 5, pp. 672–682.CrossRef
6.
go back to reference Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., et al., The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS), IEEE Trans. Med. Imaging, 2015, vol. 34, no. 10, pp. 1993–2024.CrossRef Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., et al., The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS), IEEE Trans. Med. Imaging, 2015, vol. 34, no. 10, pp. 1993–2024.CrossRef
7.
go back to reference Shen, S., Sandham, W., Granat, M., and Sterr, A., MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization, IEEE Trans. Inf. Technol. Biomed., 2005, vol. 9, no. 3, pp. 459–467.CrossRef Shen, S., Sandham, W., Granat, M., and Sterr, A., MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization, IEEE Trans. Inf. Technol. Biomed., 2005, vol. 9, no. 3, pp. 459–467.CrossRef
8.
go back to reference Dou, W., Ruan, S., Chen, Y., Bloyet, D., and Constans, J.M., A framework of fuzzy information fusion for the segmentation of brain tumor tissues on MR images, Image Vision Comput., 2007, vol. 25, no. 2, pp. 164–171.CrossRef Dou, W., Ruan, S., Chen, Y., Bloyet, D., and Constans, J.M., A framework of fuzzy information fusion for the segmentation of brain tumor tissues on MR images, Image Vision Comput., 2007, vol. 25, no. 2, pp. 164–171.CrossRef
9.
go back to reference Ho, S., Bullitt, E., and Gerig, G., Level-set evolution with region competition: Automatic 3-D segmentation of brain tumors, Pattern Recognition, 2002. Proceedings. 16th International Conference, 2002, vol. 1, pp. 532–535. Ho, S., Bullitt, E., and Gerig, G., Level-set evolution with region competition: Automatic 3-D segmentation of brain tumors, Pattern Recognition, 2002. Proceedings. 16th International Conference, 2002, vol. 1, pp. 532–535.
10.
go back to reference Gordillo, N., Montseny, E., and Sobrevilla, P., State of the art survey on MRI brain tumor segmentation, Magn. Reson. Imaging, 2013, vol. 31, no. 8, pp. 1426–1438.CrossRef Gordillo, N., Montseny, E., and Sobrevilla, P., State of the art survey on MRI brain tumor segmentation, Magn. Reson. Imaging, 2013, vol. 31, no. 8, pp. 1426–1438.CrossRef
11.
go back to reference Prastawa, M., Bullitt, E., Ho, S., and Gerig, G., A brain tumor segmentation framework based on outlier detection, Med. Image Anal., 2004, vol. 8, no. 3, pp. 275–283.CrossRef Prastawa, M., Bullitt, E., Ho, S., and Gerig, G., A brain tumor segmentation framework based on outlier detection, Med. Image Anal., 2004, vol. 8, no. 3, pp. 275–283.CrossRef
12.
go back to reference Kapur, T., Grimson, W.E., Wells, W.M., and Kikinis, R., Segmentation of brain tissue from magnetic resonance images, Med. Image Anal., 1996, vol. 1, no. 2, pp. 109–127.CrossRef Kapur, T., Grimson, W.E., Wells, W.M., and Kikinis, R., Segmentation of brain tissue from magnetic resonance images, Med. Image Anal., 1996, vol. 1, no. 2, pp. 109–127.CrossRef
13.
go back to reference Fletcher-Heath, L.M., Hall, L.O., Goldgof, D.B., and Murtagh, F.R., Automatic segmentation of non-enhancing brain tumors in magnetic resonance images, Artif. Intell. Med., 2001, vol. 21, no. 1, pp. 43–63.CrossRef Fletcher-Heath, L.M., Hall, L.O., Goldgof, D.B., and Murtagh, F.R., Automatic segmentation of non-enhancing brain tumors in magnetic resonance images, Artif. Intell. Med., 2001, vol. 21, no. 1, pp. 43–63.CrossRef
14.
go back to reference Prastawa, M., Bullitt, E., Moon, N., Van Leemput, K., and Gerig, G., Automatic brain tumor segmentation by subject specific modification of atlas priors, Acad. Radiol., 2003, vol. 10, no. 12, pp. 1341–1348.CrossRef Prastawa, M., Bullitt, E., Moon, N., Van Leemput, K., and Gerig, G., Automatic brain tumor segmentation by subject specific modification of atlas priors, Acad. Radiol., 2003, vol. 10, no. 12, pp. 1341–1348.CrossRef
15.
go back to reference Mazzara, G.P., Velthuizen, R.P., Pearlman, J.L., Greenberg, H.M., and Wagner, H., Brain tumor target volume determination for radiation treatment planning through automated MRI segmentation, Int. J. Radiat. Oncol. Biol. Phys., 2004, vol. 59, no. 1, pp. 300–312.CrossRef Mazzara, G.P., Velthuizen, R.P., Pearlman, J.L., Greenberg, H.M., and Wagner, H., Brain tumor target volume determination for radiation treatment planning through automated MRI segmentation, Int. J. Radiat. Oncol. Biol. Phys., 2004, vol. 59, no. 1, pp. 300–312.CrossRef
16.
go back to reference Pereira, S., Pinto, A., Alves, V., and Silva, C.A., Brain tumor segmentation using convolutional neural networks in MRI images, IEEE Trans. Med. Imaging, 2016, vol. 35, no. 5, pp. 1240–1251.CrossRef Pereira, S., Pinto, A., Alves, V., and Silva, C.A., Brain tumor segmentation using convolutional neural networks in MRI images, IEEE Trans. Med. Imaging, 2016, vol. 35, no. 5, pp. 1240–1251.CrossRef
17.
go back to reference Xie, K., Yang, J., Zhang, Z.G., and Zhu, Y.M., Semi-automated brain tumor and edema segmentation using MRI, Eur. J. Radiol., 2005, vol. 56, no. 1, pp. 12–19.CrossRef Xie, K., Yang, J., Zhang, Z.G., and Zhu, Y.M., Semi-automated brain tumor and edema segmentation using MRI, Eur. J. Radiol., 2005, vol. 56, no. 1, pp. 12–19.CrossRef
18.
go back to reference Zou, K.H., Warfield, S.K., Bharatha, A., Tempany, C.M., Kaus, M.R., Haker, S.J., Wells, W.M., Jolesz, F.A., and Kikinis, R., Statistical validation of image segmentation quality based on a spatial overlap index 1: Scientific reports, Acad. Radiol., 2004, vol. 11, no. 2, pp. 178–189.CrossRef Zou, K.H., Warfield, S.K., Bharatha, A., Tempany, C.M., Kaus, M.R., Haker, S.J., Wells, W.M., Jolesz, F.A., and Kikinis, R., Statistical validation of image segmentation quality based on a spatial overlap index 1: Scientific reports, Acad. Radiol., 2004, vol. 11, no. 2, pp. 178–189.CrossRef
19.
go back to reference Kaus, M., Warfield, S.K., Jolesz, F.A., and Kikinis, R., Adaptive template moderated brain tumor segmentation in MRI, in Bildverarbeitung für die Medizin, 1999, pp. 102–106. Kaus, M., Warfield, S.K., Jolesz, F.A., and Kikinis, R., Adaptive template moderated brain tumor segmentation in MRI, in Bildverarbeitung für die Medizin, 1999, pp. 102–106.
20.
go back to reference Clarke, L.P., Velthuizen, R.P., Clark, M., Gaviria, J., Hall, L., Goldgof, D., Murtagh, R., Phuphanich, S., and Brem, S., MRI measurement of brain tumor response: Comparison of visual metric and automatic segmentation, Magn. Reson. Imaging, 1998, vol. 16, no. 3, pp. 271–279.CrossRef Clarke, L.P., Velthuizen, R.P., Clark, M., Gaviria, J., Hall, L., Goldgof, D., Murtagh, R., Phuphanich, S., and Brem, S., MRI measurement of brain tumor response: Comparison of visual metric and automatic segmentation, Magn. Reson. Imaging, 1998, vol. 16, no. 3, pp. 271–279.CrossRef
21.
go back to reference Phillips, W.E., Velthuizen, R.P., Phuphanich, S., Hall, L.O., Clarke, L.P., and Silbiger, M.L., Application of fuzzy c-means segmentation technique for tissue differentiation in MR images of a hemorrhagic glioblastoma multiforme, Magn. Reson. Imaging, 1995, vol. 13, no. 2, pp. 277–290.CrossRef Phillips, W.E., Velthuizen, R.P., Phuphanich, S., Hall, L.O., Clarke, L.P., and Silbiger, M.L., Application of fuzzy c-means segmentation technique for tissue differentiation in MR images of a hemorrhagic glioblastoma multiforme, Magn. Reson. Imaging, 1995, vol. 13, no. 2, pp. 277–290.CrossRef
22.
go back to reference Cabezas, M., Oliver, A., Lladó, X., Freixenet, J., and Cuadra, M.B., A review of atlas-based segmentation for magnetic resonance brain images, Comput. Methods Programs Biomed., 2011, vol. 104, no. 3, pp. 158–177.CrossRef Cabezas, M., Oliver, A., Lladó, X., Freixenet, J., and Cuadra, M.B., A review of atlas-based segmentation for magnetic resonance brain images, Comput. Methods Programs Biomed., 2011, vol. 104, no. 3, pp. 158–177.CrossRef
23.
go back to reference Prastawa, M., Bullitt, E., and Gerig, G., Simulation of brain tumors in MR images for evaluation of segmentation efficacy, Med. Image Anal., 2009, vol. 13, no. 2, pp. 297–311.CrossRef Prastawa, M., Bullitt, E., and Gerig, G., Simulation of brain tumors in MR images for evaluation of segmentation efficacy, Med. Image Anal., 2009, vol. 13, no. 2, pp. 297–311.CrossRef
24.
go back to reference Ahmed, S., Iftekharuddin, K.M., and Vossough, A., Efficacy of texture, shape, and intensity feature fusion for posterior-fossa tumor segmentation in MRI, IEEE Trans. Inf. Technol. Biomed., 2011, vol. 15, no. 2, pp. 206–213.CrossRef Ahmed, S., Iftekharuddin, K.M., and Vossough, A., Efficacy of texture, shape, and intensity feature fusion for posterior-fossa tumor segmentation in MRI, IEEE Trans. Inf. Technol. Biomed., 2011, vol. 15, no. 2, pp. 206–213.CrossRef
25.
go back to reference Vaidyanathan, M., Clarke, L.P., Hall, L.O., Heidtman, C., Velthuizen, R., Gosche, K., Phuphanich, S., Wagner, H., Greenberg, H., and Silbiger, M.L., Monitoring brain tumor response to therapy using MRI segmentation, Magn. Reson. Imaging, 1997, vol. 15, no. 3, pp. 323–334.CrossRef Vaidyanathan, M., Clarke, L.P., Hall, L.O., Heidtman, C., Velthuizen, R., Gosche, K., Phuphanich, S., Wagner, H., Greenberg, H., and Silbiger, M.L., Monitoring brain tumor response to therapy using MRI segmentation, Magn. Reson. Imaging, 1997, vol. 15, no. 3, pp. 323–334.CrossRef
26.
go back to reference Kwon, D., Shinohara, R.T., Akbari, H., and Davatzikos, C., Combining generative models for multifocal glioma segmentation and registration, Medical Image Computing and Comput.-Assisted Intervention-MICCAI 2014, New York, 2014, pp. 763–770. Kwon, D., Shinohara, R.T., Akbari, H., and Davatzikos, C., Combining generative models for multifocal glioma segmentation and registration, Medical Image Computing and Comput.-Assisted Intervention-MICCAI 2014, New York, 2014, pp. 763–770.
27.
go back to reference Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., Wiest, R., and Lanczi, L., The multimodal brain tumor image segmentation benchmark (BRATS), IEEE Trans. Med. Imaging, 2015, vol. 34, no. 10, pp. 1993–2024.CrossRef Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., Wiest, R., and Lanczi, L., The multimodal brain tumor image segmentation benchmark (BRATS), IEEE Trans. Med. Imaging, 2015, vol. 34, no. 10, pp. 1993–2024.CrossRef
28.
go back to reference Urban, G., Bendszus, M., Hamprecht, F., and Kleesiek, J., Multi-modal brain tumor segmentation using deep convolutional neural networks, MICCAI Multimodal Brain Tumor Segmentation Challenge (BraTS), 2014, pp. 1–15. Urban, G., Bendszus, M., Hamprecht, F., and Kleesiek, J., Multi-modal brain tumor segmentation using deep convolutional neural networks, MICCAI Multimodal Brain Tumor Segmentation Challenge (BraTS), 2014, pp. 1–15.
29.
go back to reference Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., and Larochelle, H., Brain tumor segmentation with deep neural net-works 2015. http://arxiv.org/abs/1505.03540, ArXiv:1505.03540v. Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., and Larochelle, H., Brain tumor segmentation with deep neural net-works 2015. http://​arxiv.​org/​abs/​1505.​03540, ArXiv:1505.03540v.
30.
go back to reference Ma, C., Luo, G., and Wang, K., Concatenated and connected random forests with multiscale patch driven active contour model for automated brain tumor segmentation of MR images, IEEE Trans. Med. Imaging, 2018, vol. 37, no. 8, pp. 1943–1954.CrossRef Ma, C., Luo, G., and Wang, K., Concatenated and connected random forests with multiscale patch driven active contour model for automated brain tumor segmentation of MR images, IEEE Trans. Med. Imaging, 2018, vol. 37, no. 8, pp. 1943–1954.CrossRef
Metadata
Title
3D Deep Learning for Automatic Brain MR Tumor Segmentation with T-Spline Intensity Inhomogeneity Correction
Authors
G. Anand Kumar
P. V. Sridevi
Publication date
01-09-2018
Publisher
Pleiades Publishing
Published in
Automatic Control and Computer Sciences / Issue 5/2018
Print ISSN: 0146-4116
Electronic ISSN: 1558-108X
DOI
https://doi.org/10.3103/S0146411618050048

Other articles of this Issue 5/2018

Automatic Control and Computer Sciences 5/2018 Go to the issue