Skip to main content
Top
Published in: Computing and Visualization in Science 1-4/2020

01-12-2020 | Original Article

3d Modeling and simulation of a harpsichord

Authors: Lukas Larisch, Babett Lemke, Gabriel Wittum

Published in: Computing and Visualization in Science | Issue 1-4/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The mathematical characterization of the sound of a musical instrument still follows Schumann’s laws (Schumann in Physik der klangfarben, Leipzig, 1929). According to this theory, the resonances of the instrument body, “the formants”, filter the oscillations of the sound generator (e.g., strings) and produce the characteristic “timbre” of an instrument. This is a strong simplification of the actual situation. It applies to a point source and can be easily performed by a loudspeaker, disregarding the three dimensional structure of music instruments. To describe the effect of geometry and material of the instruments, we set up a 3d model and simulate it using the simulation system UG4 (Vogel et al. in Comput Vis Sci 16(4):165–179, 2013; Reiter et al. in Comput Vis Sci 16(4):151–164, 2014). We aim to capture the oscillation behavior of eigenfrequencies of a harpsichord soundboard and investigate how well a model for the oscillation behavior of the soundboard approximates the oscillation behavior of the whole instrument. We resolve the complicated geometry by several unstructured 3d grids and take into account the anisotropy of wood. The oscillation behavior of the soundboard is modeled following the laws of linear orthotropic elasticity with homogenous boundary conditions. The associated eigenproblem is discretized using FEM and solved with the iterative PINVIT method using an efficient GMG preconditioner (Neymeyr in A hierarchy of preconditioned eigensolvers for elliptic differential operators. Habilitation dissertation, University of Tübingen, 2001). The latter allows us to resolve the harpsichord with a high resolution hybrid grid, which is required to capture fine modes of the simulated eigenfrequencies. We computed the first 16 eigenmodes and eigenfrequencies with a resolution of 1.8 billion unknowns each on Shaheen II supercomputer (https://​www.​hpc.​kaust.​edu.​sa/​content/​shaheen-ii). To verify our results, we compare them with measurement data obtained from an experimental modal analysis of a real reference harpsichord.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Schumann, E.K.: Physik der klangfarben. Leipzig (1929) Schumann, E.K.: Physik der klangfarben. Leipzig (1929)
2.
go back to reference Vogel, A., Reiter, S., Rupp, M., Nägel, A., Wittum, G.: Ug 4: a novel flexible software system for simulating PDE based models on high performance computers. Comput. Vis. Sci. 16(4), 165–179 (2013)CrossRef Vogel, A., Reiter, S., Rupp, M., Nägel, A., Wittum, G.: Ug 4: a novel flexible software system for simulating PDE based models on high performance computers. Comput. Vis. Sci. 16(4), 165–179 (2013)CrossRef
3.
go back to reference Reiter, S., Vogel, A., Heppner, I., Wittum, G.: A massively parallel geometric multigrid solver on hierarchically distributed grids. Comput. Vis. Sci. 16(4), 151–164 (2014)CrossRef Reiter, S., Vogel, A., Heppner, I., Wittum, G.: A massively parallel geometric multigrid solver on hierarchically distributed grids. Comput. Vis. Sci. 16(4), 151–164 (2014)CrossRef
4.
go back to reference Neymeyr, K.: A hierarchy of preconditioned eigensolvers for elliptic differential operators. Habilitation dissertation, University of Tübingen (2001) Neymeyr, K.: A hierarchy of preconditioned eigensolvers for elliptic differential operators. Habilitation dissertation, University of Tübingen (2001)
6.
go back to reference Hackbusch, W.: Elliptic Differential Equations: Theory and Numerical Treatment. Volume 18 of Springer Series in Computational Mathematics. Springer, Berlin (2003)MATH Hackbusch, W.: Elliptic Differential Equations: Theory and Numerical Treatment. Volume 18 of Springer Series in Computational Mathematics. Springer, Berlin (2003)MATH
7.
go back to reference Johnson, C.A., Bilhuber, P.H.: The influence of the soundboard on piano tone quality. J. Acoust. Soc. Am. 11(3), 311–320 (1940)CrossRef Johnson, C.A., Bilhuber, P.H.: The influence of the soundboard on piano tone quality. J. Acoust. Soc. Am. 11(3), 311–320 (1940)CrossRef
8.
go back to reference Wogram, K.: Acoustical research on pianos: vibrational characteristics of the soundboard. Das Musikinstrument 24, 694–702 (1980) Wogram, K.: Acoustical research on pianos: vibrational characteristics of the soundboard. Das Musikinstrument 24, 694–702 (1980)
9.
go back to reference Wang, I.-C., Kindel, J.: Modal analysis and finite element analysis of a piano soundboard. In: IMAC, pp. 1545–1549 (1987) Wang, I.-C., Kindel, J.: Modal analysis and finite element analysis of a piano soundboard. In: IMAC, pp. 1545–1549 (1987)
10.
go back to reference Giordano, N.: Mechanical impedance of a piano soundboard. J. Acoust. Soc. Am. 103(4), 2128–2133 (1998)CrossRef Giordano, N.: Mechanical impedance of a piano soundboard. J. Acoust. Soc. Am. 103(4), 2128–2133 (1998)CrossRef
11.
go back to reference Chabassier, J., Chaigne, A., Joly, P.: Modeling and simulation of a grand piano. J. Acoust. Soc. Am. 134, 648–665 (2013)CrossRef Chabassier, J., Chaigne, A., Joly, P.: Modeling and simulation of a grand piano. J. Acoust. Soc. Am. 134, 648–665 (2013)CrossRef
13.
go back to reference Martin, D.: The Art of Making a Harpsichord. Robert Hale, London (2012) Martin, D.: The Art of Making a Harpsichord. Robert Hale, London (2012)
14.
go back to reference Joly, P.: The mathematical model for elastic wave propagation. In: Kampanis, N.A., Dougalis, V.A., Ekaterinaris, J.A. (eds.) Effective Computational Methods for Wave Propagation. CRC Press, New York (2008) Joly, P.: The mathematical model for elastic wave propagation. In: Kampanis, N.A., Dougalis, V.A., Ekaterinaris, J.A. (eds.) Effective Computational Methods for Wave Propagation. CRC Press, New York (2008)
15.
go back to reference Kollmann, F., Côté, W.A.: Principles of Wood Science and Technology. Volume 1: Solid Wood. Springer, Berlin (1968)CrossRef Kollmann, F., Côté, W.A.: Principles of Wood Science and Technology. Volume 1: Solid Wood. Springer, Berlin (1968)CrossRef
16.
go back to reference Rupp, M..: Ein filterndes algebraisches Mehrgitterverfahren mit Anwendungen in der Strukturmechanik. Dissertation, Universität Frankfurt (2017) (Unpublished manuscript) Rupp, M..: Ein filterndes algebraisches Mehrgitterverfahren mit Anwendungen in der Strukturmechanik. Dissertation, Universität Frankfurt (2017) (Unpublished manuscript)
18.
go back to reference Reiter, S.: Effiziente Algorithmen und Datenstrukturen für die Realisierung von adaptiven, hierarchischen Gittern auf massiv parallelen Systemen. Dissertation, Universität Frankfurt (2014) Reiter, S.: Effiziente Algorithmen und Datenstrukturen für die Realisierung von adaptiven, hierarchischen Gittern auf massiv parallelen Systemen. Dissertation, Universität Frankfurt (2014)
20.
go back to reference Piperkova, R.: Diplomarbeit. Dissertation, Universität Frankfurt (2014) Piperkova, R.: Diplomarbeit. Dissertation, Universität Frankfurt (2014)
22.
go back to reference Giordano, N.: Sound production by a vibrating piano soundboard: experiment. J. Acoust. Soc. Am. 104(3), 1648–1653 (1998)CrossRef Giordano, N.: Sound production by a vibrating piano soundboard: experiment. J. Acoust. Soc. Am. 104(3), 1648–1653 (1998)CrossRef
24.
go back to reference Corradi, R., Miccoli, S., Squicciarini, G., Fazioli, P.: Modal analysis of a grand piano soundboard at successive manufacturing stages. Appl. Acoust. 125, 113–127 (2017)CrossRef Corradi, R., Miccoli, S., Squicciarini, G., Fazioli, P.: Modal analysis of a grand piano soundboard at successive manufacturing stages. Appl. Acoust. 125, 113–127 (2017)CrossRef
Metadata
Title
3d Modeling and simulation of a harpsichord
Authors
Lukas Larisch
Babett Lemke
Gabriel Wittum
Publication date
01-12-2020
Publisher
Springer Berlin Heidelberg
Published in
Computing and Visualization in Science / Issue 1-4/2020
Print ISSN: 1432-9360
Electronic ISSN: 1433-0369
DOI
https://doi.org/10.1007/s00791-020-00326-1

Other articles of this Issue 1-4/2020

Computing and Visualization in Science 1-4/2020 Go to the issue

Premium Partner