Skip to main content
Top
Published in: Medical & Biological Engineering & Computing 6/2011

01-06-2011 | Original Article

3D network model of NO transport in tissue

Authors: Xuewen Chen, Donald G. Buerk, Kenneth A. Barbee, Patrick Kirby, Dov Jaron

Published in: Medical & Biological Engineering & Computing | Issue 6/2011

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We developed a mathematical model to simulate shear stress-dependent nitric oxide (NO) production and transport in a 3D microcirculatory network based on published data. The model consists of a 100 μm × 500 μm × 75 μm rectangular volume of tissue containing two arteriole-branching trees, and nine capillaries surrounding the vessels. Computed distributions for NO in blood, vascular walls, and surrounding tissue were affected by hematocrit (Hct) and wall shear stress (WSS) in the network. The model demonstrates that variations in the red blood cell (RBC) distribution and WSS in a branching network can have differential effects on computed NO concentrations due to NO consumption by RBCs and WSS-dependent changes in NO production. The model predicts heterogeneous distributions of WSS in the network. Vessel branches with unequal blood flow rates gave rise to a range of WSS values and therefore NO production rates. Despite increased NO production in a branch with higher blood flow and WSS, vascular wall NO was predicted to be lower due to greater NO consumption in blood, since the microvascular Hct increased with redistribution of RBCs at the vessel bifurcation. Within other regions, low WSS was combined with decreased NO consumption to enhance the NO concentration.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ando J, Yamamoto K (2009) Vascular mechanobiology: endothelial cell responses to fluid shear stress. Circ J 73(11):1983–1992PubMedCrossRef Ando J, Yamamoto K (2009) Vascular mechanobiology: endothelial cell responses to fluid shear stress. Circ J 73(11):1983–1992PubMedCrossRef
2.
go back to reference Arciero JC, Carlson BE, Secomb TW (2008) Theoretical model of metabolic blood flow regulation: roles of ATP release by red blood cells and conducted responses. Am J Physiol Heart Circ Physiol 295(4):H1562–H1571PubMedCrossRef Arciero JC, Carlson BE, Secomb TW (2008) Theoretical model of metabolic blood flow regulation: roles of ATP release by red blood cells and conducted responses. Am J Physiol Heart Circ Physiol 295(4):H1562–H1571PubMedCrossRef
3.
go back to reference Bohlen HG (1998) Mechanism of increased vessel wall nitric oxide concentrations during intestinal absorption. Am J Physiol 275(2 Pt 2):H542–H550PubMed Bohlen HG (1998) Mechanism of increased vessel wall nitric oxide concentrations during intestinal absorption. Am J Physiol 275(2 Pt 2):H542–H550PubMed
4.
go back to reference Buerk DG (2001) Can we model nitric oxide biotransport? A survey of mathematical models for a simple diatomic molecule with surprisingly complex biological activities. Annu Rev Biomed Eng 3:109–143PubMedCrossRef Buerk DG (2001) Can we model nitric oxide biotransport? A survey of mathematical models for a simple diatomic molecule with surprisingly complex biological activities. Annu Rev Biomed Eng 3:109–143PubMedCrossRef
5.
go back to reference Buerk DG (2007) Nitric oxide regulation of microvascular oxygen. Antioxid Redox Signal 9(7):829–843PubMedCrossRef Buerk DG (2007) Nitric oxide regulation of microvascular oxygen. Antioxid Redox Signal 9(7):829–843PubMedCrossRef
6.
go back to reference Buerk DG, Lamkin-Kennard K, Jaron D (2003) Modeling the influence of superoxide dismutase on superoxide and nitric oxide interactions, including reversible inhibition of oxygen consumption. Free Radic Biol Med 34(11):1488–1503PubMedCrossRef Buerk DG, Lamkin-Kennard K, Jaron D (2003) Modeling the influence of superoxide dismutase on superoxide and nitric oxide interactions, including reversible inhibition of oxygen consumption. Free Radic Biol Med 34(11):1488–1503PubMedCrossRef
7.
go back to reference Butler AR, Megson IL, Wright PG (1998) Diffusion of nitric oxide and scavenging by blood in the vasculature. Biochim Biophys Acta 1425(1):168–176PubMed Butler AR, Megson IL, Wright PG (1998) Diffusion of nitric oxide and scavenging by blood in the vasculature. Biochim Biophys Acta 1425(1):168–176PubMed
8.
go back to reference Carlsen E, Comroe JH (1958) The rate of uptake of carbon monoxide and of nitric oxide by normal human erythrocytes and experimentally produced spherocytes. J Gen Physiol 42(1):83–107PubMedCrossRef Carlsen E, Comroe JH (1958) The rate of uptake of carbon monoxide and of nitric oxide by normal human erythrocytes and experimentally produced spherocytes. J Gen Physiol 42(1):83–107PubMedCrossRef
9.
go back to reference Carlson BE, Arciero JC, Secomb TW (2008) Theoretical model of blood flow autoregulation: roles of myogenic, shear-dependent, and metabolic responses. Am J Physiol Heart Circ Physiol 295(4):H1572–H1579PubMedCrossRef Carlson BE, Arciero JC, Secomb TW (2008) Theoretical model of blood flow autoregulation: roles of myogenic, shear-dependent, and metabolic responses. Am J Physiol Heart Circ Physiol 295(4):H1572–H1579PubMedCrossRef
10.
go back to reference Carr RT, Lacoin M (2000) Nonlinear dynamics of microvascular blood flow. Ann Biomed Eng 28(6):641–652PubMedCrossRef Carr RT, Lacoin M (2000) Nonlinear dynamics of microvascular blood flow. Ann Biomed Eng 28(6):641–652PubMedCrossRef
11.
go back to reference Chen X, Buerk DG, Barbee KA, Jaron D (2007) A model of NO/O2 transport in capillary-perfused tissue containing an arteriole and venule pair. Ann Biomed Eng 35(4):517–529PubMedCrossRef Chen X, Buerk DG, Barbee KA, Jaron D (2007) A model of NO/O2 transport in capillary-perfused tissue containing an arteriole and venule pair. Ann Biomed Eng 35(4):517–529PubMedCrossRef
12.
go back to reference Chen X, Jaron D, Barbee KA, Buerk DG (2006) The influence of radial RBC distribution, blood velocity profiles, and glycocalyx on coupled NO/O2 transport. J Appl Physiol 100(2):482–492PubMedCrossRef Chen X, Jaron D, Barbee KA, Buerk DG (2006) The influence of radial RBC distribution, blood velocity profiles, and glycocalyx on coupled NO/O2 transport. J Appl Physiol 100(2):482–492PubMedCrossRef
13.
14.
go back to reference Comerford A, Plank MJ, David T (2008) Endothelial nitric oxide synthase and calcium production in arterial geometries: an integrated fluid mechanics/cell model. J Biomech Eng 130(1):011010PubMedCrossRef Comerford A, Plank MJ, David T (2008) Endothelial nitric oxide synthase and calcium production in arterial geometries: an integrated fluid mechanics/cell model. J Biomech Eng 130(1):011010PubMedCrossRef
15.
go back to reference Cornelissen AJ, Dankelman J, VanBavel E, Spaan JA (2002) Balance between myogenic, flow-dependent, and metabolic flow control in coronary arterial tree: a model study. Am J Physiol Heart Circ Physiol 282(6):H2224–H2237PubMed Cornelissen AJ, Dankelman J, VanBavel E, Spaan JA (2002) Balance between myogenic, flow-dependent, and metabolic flow control in coronary arterial tree: a model study. Am J Physiol Heart Circ Physiol 282(6):H2224–H2237PubMed
16.
go back to reference Davis MJ, Ferrer PN, Gore RW (1986) Vascular anatomy and hydrostatic pressure profile in the hamster cheek pouch. Am J Physiol 250(2 Pt 2):H291–H303PubMed Davis MJ, Ferrer PN, Gore RW (1986) Vascular anatomy and hydrostatic pressure profile in the hamster cheek pouch. Am J Physiol 250(2 Pt 2):H291–H303PubMed
17.
go back to reference Ellsworth ML, Pittman RN (1990) Arterioles supply oxygen to capillaries by diffusion as well as by convection. Am J Physiol 258(4 Pt 2):H1240–H1243PubMed Ellsworth ML, Pittman RN (1990) Arterioles supply oxygen to capillaries by diffusion as well as by convection. Am J Physiol 258(4 Pt 2):H1240–H1243PubMed
18.
go back to reference Ellsworth ML, Popel AS, Pittman RN (1988) Assessment and impact of heterogeneities of convective oxygen transport parameters in capillaries of striated muscle: experimental and theoretical. Microvasc Res 35(3):341–362PubMedCrossRef Ellsworth ML, Popel AS, Pittman RN (1988) Assessment and impact of heterogeneities of convective oxygen transport parameters in capillaries of striated muscle: experimental and theoretical. Microvasc Res 35(3):341–362PubMedCrossRef
19.
go back to reference Fung YC (1997) Biomechanics: circulation. New York, Springer-Verlag Fung YC (1997) Biomechanics: circulation. New York, Springer-Verlag
20.
go back to reference Goldman D, Popel AS (2000) A computational study of the effect of capillary network anastomoses and tortuosity on oxygen transport. J Theor Biol 206(2):181–194PubMedCrossRef Goldman D, Popel AS (2000) A computational study of the effect of capillary network anastomoses and tortuosity on oxygen transport. J Theor Biol 206(2):181–194PubMedCrossRef
21.
go back to reference Hoogstraten HW, Kootstra JG, Hillen B, Krijger JK, Wensing PJ (1996) Numerical simulation of blood flow in an artery with two successive bends. J Biomech 29(8):1075–1083PubMedCrossRef Hoogstraten HW, Kootstra JG, Hillen B, Krijger JK, Wensing PJ (1996) Numerical simulation of blood flow in an artery with two successive bends. J Biomech 29(8):1075–1083PubMedCrossRef
22.
go back to reference House SD, Lipowsky HH (1987) Microvascular hematocrit and red cell flux in rat cremaster muscle. Am J Physiol 252(1 Pt 2):H211–H222PubMed House SD, Lipowsky HH (1987) Microvascular hematocrit and red cell flux in rat cremaster muscle. Am J Physiol 252(1 Pt 2):H211–H222PubMed
23.
go back to reference Hudlicka O, Brown MD, May S, Zakrzewicz A, Pries AR (2006) Changes in capillary shear stress in skeletal muscles exposed to long-term activity: role of nitric oxide. Microcirculation 13(3):249–259PubMedCrossRef Hudlicka O, Brown MD, May S, Zakrzewicz A, Pries AR (2006) Changes in capillary shear stress in skeletal muscles exposed to long-term activity: role of nitric oxide. Microcirculation 13(3):249–259PubMedCrossRef
24.
go back to reference Jensen FB (2009) The dual roles of red blood cells in tissue oxygen delivery: oxygen carriers and regulators of local blood flow. J Exp Biol 212(Pt 21):3387–3393PubMedCrossRef Jensen FB (2009) The dual roles of red blood cells in tissue oxygen delivery: oxygen carriers and regulators of local blood flow. J Exp Biol 212(Pt 21):3387–3393PubMedCrossRef
25.
go back to reference Jou LD, van Tyen R, Berger SA, Saloner D (1996) Calculation of the magnetization distribution for fluid flow in curved vessels. Magn Reson Med 35(4):577–584PubMedCrossRef Jou LD, van Tyen R, Berger SA, Saloner D (1996) Calculation of the magnetization distribution for fluid flow in curved vessels. Magn Reson Med 35(4):577–584PubMedCrossRef
26.
go back to reference Kavdia M, Popel AS (2003) Wall shear stress differentially affects NO level in arterioles for volume expanders and Hb-based O2 carriers. Microvasc Res 66(1):49–58PubMedCrossRef Kavdia M, Popel AS (2003) Wall shear stress differentially affects NO level in arterioles for volume expanders and Hb-based O2 carriers. Microvasc Res 66(1):49–58PubMedCrossRef
27.
go back to reference Kavdia M, Popel AS (2006) Venular endothelium-derived NO can affect paired arteriole: a computational model. Am J Physiol Heart Circ Physiol 290(2):H716–H723PubMedCrossRef Kavdia M, Popel AS (2006) Venular endothelium-derived NO can affect paired arteriole: a computational model. Am J Physiol Heart Circ Physiol 290(2):H716–H723PubMedCrossRef
28.
go back to reference Kleinbongard P, Keymel S, Kelm M (2007) New functional aspects of the l-arginine-nitric oxide metabolism within the circulating blood. Thromb Haemost 98(5):970–974PubMed Kleinbongard P, Keymel S, Kelm M (2007) New functional aspects of the l-arginine-nitric oxide metabolism within the circulating blood. Thromb Haemost 98(5):970–974PubMed
29.
go back to reference Kleinbongard P, Schulz R, Rassaf T, Lauer T, Dejam A, Jax T, Kumara I, Gharini P, Kabanova S, Ozuyaman B, Schnurch HG, Godecke A, Weber AA, Robenek M, Robenek H, Bloch W, Rosen P, Kelm M (2006) Red blood cells express a functional endothelial nitric oxide synthase. Blood 107(7):2943–2951PubMedCrossRef Kleinbongard P, Schulz R, Rassaf T, Lauer T, Dejam A, Jax T, Kumara I, Gharini P, Kabanova S, Ozuyaman B, Schnurch HG, Godecke A, Weber AA, Robenek M, Robenek H, Bloch W, Rosen P, Kelm M (2006) Red blood cells express a functional endothelial nitric oxide synthase. Blood 107(7):2943–2951PubMedCrossRef
30.
go back to reference Kuchan MJ, Frangos JA (1994) Role of calcium and calmodulin in flow-induced nitric oxide production in endothelial cells. Am J Physiol 266(3 Pt 1):C628–C636PubMed Kuchan MJ, Frangos JA (1994) Role of calcium and calmodulin in flow-induced nitric oxide production in endothelial cells. Am J Physiol 266(3 Pt 1):C628–C636PubMed
31.
go back to reference Kuo L, Davis MJ, Chilian WM (1995) Longitudinal gradients for endothelium-dependent and -independent vascular responses in the coronary microcirculation. Circulation 92(3):518–525PubMed Kuo L, Davis MJ, Chilian WM (1995) Longitudinal gradients for endothelium-dependent and -independent vascular responses in the coronary microcirculation. Circulation 92(3):518–525PubMed
32.
go back to reference Lamkin-Kennard KA, Buerk DG, Jaron D (2004) Interactions between NO and O2 in the microcirculation: a mathematical analysis. Microvasc Res 68(1):38–50PubMedCrossRef Lamkin-Kennard KA, Buerk DG, Jaron D (2004) Interactions between NO and O2 in the microcirculation: a mathematical analysis. Microvasc Res 68(1):38–50PubMedCrossRef
33.
go back to reference Lamkin-Kennard KA, Jaron D, Buerk DG (2004) Impact of the Fahraeus effect on NO and O2 biotransport: a computer model. Microcirculation 11(4):337–349PubMedCrossRef Lamkin-Kennard KA, Jaron D, Buerk DG (2004) Impact of the Fahraeus effect on NO and O2 biotransport: a computer model. Microcirculation 11(4):337–349PubMedCrossRef
34.
go back to reference Liao JC, Kuo L (1997) Interaction between adenosine and flow-induced dilation in coronary microvascular network. Am J Physiol 272(4 Pt 2):H1571–H1581PubMed Liao JC, Kuo L (1997) Interaction between adenosine and flow-induced dilation in coronary microvascular network. Am J Physiol 272(4 Pt 2):H1571–H1581PubMed
35.
go back to reference Mashour GA, Boock RJ (1999) Effects of shear stress on nitric oxide levels of human cerebral endothelial cells cultured in an artificial capillary system. Brain Res 842(1):233–238PubMedCrossRef Mashour GA, Boock RJ (1999) Effects of shear stress on nitric oxide levels of human cerebral endothelial cells cultured in an artificial capillary system. Brain Res 842(1):233–238PubMedCrossRef
36.
37.
go back to reference Nase GP, Tuttle J, Bohlen HG (2003) Reduced perivascular PO2 increases nitric oxide release from endothelial cells. Am J Physiol Heart Circ Physiol 285(2):H507–H515PubMed Nase GP, Tuttle J, Bohlen HG (2003) Reduced perivascular PO2 increases nitric oxide release from endothelial cells. Am J Physiol Heart Circ Physiol 285(2):H507–H515PubMed
38.
go back to reference Pries AR, Ley K, Claassen M, Gaehtgens P (1989) Red cell distribution at microvascular bifurcations. Microvasc Res 38(1):81–101PubMedCrossRef Pries AR, Ley K, Claassen M, Gaehtgens P (1989) Red cell distribution at microvascular bifurcations. Microvasc Res 38(1):81–101PubMedCrossRef
39.
go back to reference Pries AR, Secomb TW, Gaehtgens P (1990) Blood flow in microvascular networks. Experiments and simulation. Circ Res 67(4):826–834PubMed Pries AR, Secomb TW, Gaehtgens P (1990) Blood flow in microvascular networks. Experiments and simulation. Circ Res 67(4):826–834PubMed
40.
go back to reference Pries AR, Secomb TW, Gaehtgens P, Gross JF (1994) Resistance to blood flow in microvessels in vivo. Circ Res 75(5):904–915PubMed Pries AR, Secomb TW, Gaehtgens P, Gross JF (1994) Resistance to blood flow in microvessels in vivo. Circ Res 75(5):904–915PubMed
41.
go back to reference Pries AR, Secomb TW, Gessner T, Sperandio MB, Gross JF, Gaehtgens P (1996) Biophysical aspects of blood flow in the microvasculature. Cardiovasc Res 32(4):654–667PubMed Pries AR, Secomb TW, Gessner T, Sperandio MB, Gross JF, Gaehtgens P (1996) Biophysical aspects of blood flow in the microvasculature. Cardiovasc Res 32(4):654–667PubMed
42.
go back to reference Reber KM, Mager GM, Miller CE, Nowicki PT (2001) Relationship between flow rate and NO production in postnatal mesenteric arteries. Am J Physiol Gastrointest Liver Physiol 280(1):G43–G50PubMed Reber KM, Mager GM, Miller CE, Nowicki PT (2001) Relationship between flow rate and NO production in postnatal mesenteric arteries. Am J Physiol Gastrointest Liver Physiol 280(1):G43–G50PubMed
43.
go back to reference Sarelius IH, Damon DN, Duling BR (1981) Microvascular adaptations during maturation of striated muscle. Am J Physiol 241(3):H317–H324PubMed Sarelius IH, Damon DN, Duling BR (1981) Microvascular adaptations during maturation of striated muscle. Am J Physiol 241(3):H317–H324PubMed
44.
go back to reference Secomb TW, Hsu R (1994) Simulation of O2 transport in skeletal muscle: diffusive exchange between arterioles and capillaries. Am J Physiol 267(3 Pt 2):H1214–H1221PubMed Secomb TW, Hsu R (1994) Simulation of O2 transport in skeletal muscle: diffusive exchange between arterioles and capillaries. Am J Physiol 267(3 Pt 2):H1214–H1221PubMed
45.
go back to reference Sessa WC (2009) Molecular control of blood flow and angiogenesis: role of nitric oxide. J Thromb Haemost 7(Suppl 1):35–37PubMedCrossRef Sessa WC (2009) Molecular control of blood flow and angiogenesis: role of nitric oxide. J Thromb Haemost 7(Suppl 1):35–37PubMedCrossRef
46.
go back to reference Thomas DD, Liu X, Kantrow SP, Lancaster JR Jr (2001) The biological lifetime of nitric oxide: implications for the perivascular dynamics of NO and O2. Proc Natl Acad Sci USA 98(1):355–360PubMedCrossRef Thomas DD, Liu X, Kantrow SP, Lancaster JR Jr (2001) The biological lifetime of nitric oxide: implications for the perivascular dynamics of NO and O2. Proc Natl Acad Sci USA 98(1):355–360PubMedCrossRef
47.
go back to reference Tsoukias NM (2008) Nitric oxide bioavailability in the microcirculation: insights from mathematical models. Microcirculation 15(8):813–834PubMedCrossRef Tsoukias NM (2008) Nitric oxide bioavailability in the microcirculation: insights from mathematical models. Microcirculation 15(8):813–834PubMedCrossRef
48.
go back to reference Tsoukias NM, Popel AS (2003) A model of nitric oxide capillary exchange. Microcirculation 10(6):479–495PubMed Tsoukias NM, Popel AS (2003) A model of nitric oxide capillary exchange. Microcirculation 10(6):479–495PubMed
49.
go back to reference van Faassen EE, Bahrami S, Feelisch M, Hogg N, Kelm M, Kim-Shapiro DB, Kozlov AV, Li H, Lundberg JO, Mason R, Nohl H, Rassaf T, Samouilov A, Slama-Schwok A, Shiva S, Vanin AF, Weitzberg E, Zweier J, Gladwin MT (2009) Nitrite as regulator of hypoxic signaling in mammalian physiology. Med Res Rev 29(5):683–741PubMedCrossRef van Faassen EE, Bahrami S, Feelisch M, Hogg N, Kelm M, Kim-Shapiro DB, Kozlov AV, Li H, Lundberg JO, Mason R, Nohl H, Rassaf T, Samouilov A, Slama-Schwok A, Shiva S, Vanin AF, Weitzberg E, Zweier J, Gladwin MT (2009) Nitrite as regulator of hypoxic signaling in mammalian physiology. Med Res Rev 29(5):683–741PubMedCrossRef
50.
go back to reference Vaughn MW, Kuo L, Liao JC (1998) Effective diffusion distance of nitric oxide in the microcirculation. Am J Physiol 274(5 Pt):H1705–H1714PubMed Vaughn MW, Kuo L, Liao JC (1998) Effective diffusion distance of nitric oxide in the microcirculation. Am J Physiol 274(5 Pt):H1705–H1714PubMed
51.
go back to reference Vaughn MW, Kuo L, Liao JC (1998) Estimation of nitric oxide production and reaction rates in tissue by use of a mathematical model. Am J Physiol 274(6 Pt 2):H2163–H2176PubMed Vaughn MW, Kuo L, Liao JC (1998) Estimation of nitric oxide production and reaction rates in tissue by use of a mathematical model. Am J Physiol 274(6 Pt 2):H2163–H2176PubMed
52.
go back to reference Vukosavljevic N, Jaron D, Barbee KA, Buerk DG (2006) Quantifying the l-arginine paradox in vivo. Microvasc Res 71(1):48–54PubMedCrossRef Vukosavljevic N, Jaron D, Barbee KA, Buerk DG (2006) Quantifying the l-arginine paradox in vivo. Microvasc Res 71(1):48–54PubMedCrossRef
53.
go back to reference Zarins CK, Giddens DP, Bharadvaj BK, Sottiurai VS, Mabon RF, Glagov S (1983) Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ Res 53(4):502–514PubMed Zarins CK, Giddens DP, Bharadvaj BK, Sottiurai VS, Mabon RF, Glagov S (1983) Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ Res 53(4):502–514PubMed
Metadata
Title
3D network model of NO transport in tissue
Authors
Xuewen Chen
Donald G. Buerk
Kenneth A. Barbee
Patrick Kirby
Dov Jaron
Publication date
01-06-2011
Publisher
Springer-Verlag
Published in
Medical & Biological Engineering & Computing / Issue 6/2011
Print ISSN: 0140-0118
Electronic ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-011-0758-7

Other articles of this Issue 6/2011

Medical & Biological Engineering & Computing 6/2011 Go to the issue

Premium Partner