Skip to main content
Top

2024 | OriginalPaper | Chapter

3D Printable Analogue Spine Models: Towards Cost and Time Effective Spinal Biomechanical Research

Authors : Siril Teja Dukkipati, Mark Driscoll

Published in: Special Topics in Structural Dynamics & Experimental Techniques, Vol. 5

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Biomechanical studies of the spine have traditionally employed either cadavers or finite element modelling techniques, but both of these approaches have inherent cost and time limitations. Cadaveric studies introduce significant variability in measurements across patients, while finite element modelling can be computationally demanding depending on the required level of detail. 3D printable analogue spine models have been proposed in this research as a low-cost and high-fidelity approach to support these conventional methods. An L1–S1 analogue spine model was developed, incorporating vertebral bodies, intervertebral discs, and intertransverse and interspinous ligaments. Stereolithography 3D printing was used exclusively to manufacture the model. A custom bending jig was employed to apply load-controlled pure bending moments of up to 7.5 Nm in flexion–extension, lateral bending, and axial rotation to the model. The results were then compared to historical ex vivo L1–S1 data to evaluate model accuracy. The use of viscoelastic materials in the construction of the analogue model contributed to a hysteretic response during loading and unloading, simulating the mechanical behaviour of a human spine. Specifically, the model’s range of motion (ROM) during flexion was estimated to be \(12.92\pm 0.11^\circ \) when subjected to a load of \(+\)7.5 Nm, as compared to an ex vivo ROM of 16.58\({ }^\circ \). The model exhibited bilateral symmetry during lateral bending (LB) and axial rotation (AR). Notably, the ROM in LB was measured at \(13.55\pm 0.11^\circ \) under \(+\)7.5 Nm (ex vivo: \(13.32^\circ \)), and \(-13.79\pm 0.19^\circ \) under \(-\)7.5 Nm (ex vivo: \(-17.1^\circ \)), whereas the ROM in AR was recorded as \(19.82\pm 0.19^\circ \) under \(+\)7.5 Nm (ex vivo: \(14.44^\circ \)) and \(-15.57\pm 0.12^\circ \) under \(-\)7.5 Nm (ex vivo: \(-13.81^\circ \)). The 3D printed analogue model of the lumbar spine presented in this study demonstrated rotational stiffness within 20% of the ex vivo responses, with a high degree of repeatability. Further testing incorporating a wider range of materials is necessary to improve model stiffness control and statistical significance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Food and Drug Administration: Guidance document for the preparation of IDEs for spinal systems (2000) Food and Drug Administration: Guidance document for the preparation of IDEs for spinal systems (2000)
2.
go back to reference El Bojairami, I., El-Monajjed, K., Driscoll, M.: Development and validation of a timely and representative finite element human spine model for biomechanical simulations. Sci. Rep. 10(1), 21519 (2020)CrossRef El Bojairami, I., El-Monajjed, K., Driscoll, M.: Development and validation of a timely and representative finite element human spine model for biomechanical simulations. Sci. Rep. 10(1), 21519 (2020)CrossRef
3.
go back to reference Maasrani, M., Verhoye, J.P., Corbineau, H., Drochon, A.: Analog electrical model of the coronary circulation in case of multiple revascularizations. Ann. Biomed. Eng. 36, 1163–1174 (2008)CrossRef Maasrani, M., Verhoye, J.P., Corbineau, H., Drochon, A.: Analog electrical model of the coronary circulation in case of multiple revascularizations. Ann. Biomed. Eng. 36, 1163–1174 (2008)CrossRef
4.
go back to reference Nikooyan, A.A., Zadpoor, A.A.: Mass–spring–damper modelling of the human body to study running and hopping–an overview. Proc. Instit. Mech. Eng. Part H J. Eng. Med. 225(12), 1121–1135 (2011)CrossRef Nikooyan, A.A., Zadpoor, A.A.: Mass–spring–damper modelling of the human body to study running and hopping–an overview. Proc. Instit. Mech. Eng. Part H J. Eng. Med. 225(12), 1121–1135 (2011)CrossRef
5.
go back to reference Friis, E.A., Pence, C.D., Graber, C.D., Montoya, J.A.: Mechanical analogue model of the human lumbar spine: development and initial evaluation. In: Spinal Implants: Are We Evaluating Them Appropriately? ASTM International, Pennsylvania (2003) Friis, E.A., Pence, C.D., Graber, C.D., Montoya, J.A.: Mechanical analogue model of the human lumbar spine: development and initial evaluation. In: Spinal Implants: Are We Evaluating Them Appropriately? ASTM International, Pennsylvania (2003)
6.
go back to reference Dayal, A.: Validation of a synthetic mechanically and anatomically analogue lumbar spine model. PhD Thesis, University of Kansas (2006) Dayal, A.: Validation of a synthetic mechanically and anatomically analogue lumbar spine model. PhD Thesis, University of Kansas (2006)
7.
go back to reference Domann, J., Mar, D., Johnson, A., James, J., Friis, E.: The analogue spine model: The first anatomically and mechanically correct synthetic physical model of the lumbar spine. Spine J. 11(10), S155–S156 (2011)CrossRef Domann, J., Mar, D., Johnson, A., James, J., Friis, E.: The analogue spine model: The first anatomically and mechanically correct synthetic physical model of the lumbar spine. Spine J. 11(10), S155–S156 (2011)CrossRef
8.
go back to reference DiAngelo, D., Hoyer, D., Chung, C.: Biomechanical evaluation of a full-length (t12-s) synthetic lumbar spine model. MOJ Appl. Bionics Biomech. 3, 70–75 (2019)CrossRef DiAngelo, D., Hoyer, D., Chung, C.: Biomechanical evaluation of a full-length (t12-s) synthetic lumbar spine model. MOJ Appl. Bionics Biomech. 3, 70–75 (2019)CrossRef
9.
go back to reference Mitsuhashi, N., Fujieda, K., Tamura, T., Kawamoto, S., Takagi, T., Okubo, K.: Bodyparts3d: 3d structure database for anatomical concepts. Nucleic Acids Res. 37(suppl_1), D782–D785 (2009) Mitsuhashi, N., Fujieda, K., Tamura, T., Kawamoto, S., Takagi, T., Okubo, K.: Bodyparts3d: 3d structure database for anatomical concepts. Nucleic Acids Res. 37(suppl_1), D782–D785 (2009)
10.
go back to reference Beer, P., Knell, S.C., Pozzi, A., Park, B.H.: Biomechanical comparison of ex vivo lumbar vertebral fracture luxations stabilized with tension band or polymethylmethacrylate in cats. Vet. Surg. 49(8), 1517–1526 (2020)CrossRef Beer, P., Knell, S.C., Pozzi, A., Park, B.H.: Biomechanical comparison of ex vivo lumbar vertebral fracture luxations stabilized with tension band or polymethylmethacrylate in cats. Vet. Surg. 49(8), 1517–1526 (2020)CrossRef
11.
go back to reference Crawford, N.R., Peles, J.D., Dickman, C.A.: The spinal lax zone and neutral zone: measurement techniques and parameter comparisons. J. Spinal Disord. 11(5), 416–429 (1998)CrossRef Crawford, N.R., Peles, J.D., Dickman, C.A.: The spinal lax zone and neutral zone: measurement techniques and parameter comparisons. J. Spinal Disord. 11(5), 416–429 (1998)CrossRef
12.
go back to reference Rao, M.: Explicit finite element modeling of the human lumbar spine. PhD Thesis, University of Denver (2012) Rao, M.: Explicit finite element modeling of the human lumbar spine. PhD Thesis, University of Denver (2012)
13.
go back to reference Campbell, J., Coombs, D., Rao, M., Rullkoetter, P.J., Petrella, A.: Automated finite element meshing of the lumbar spine: verification and validation with 18 specimen-specific models. J. Biomech. 49(13), 2669–2676 (2016)CrossRef Campbell, J., Coombs, D., Rao, M., Rullkoetter, P.J., Petrella, A.: Automated finite element meshing of the lumbar spine: verification and validation with 18 specimen-specific models. J. Biomech. 49(13), 2669–2676 (2016)CrossRef
Metadata
Title
3D Printable Analogue Spine Models: Towards Cost and Time Effective Spinal Biomechanical Research
Authors
Siril Teja Dukkipati
Mark Driscoll
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-68901-7_3