Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2023 | OriginalPaper | Chapter

6. 3D Printed Supercapacitors

Authors : Naga S. Korivi, Vijaya Rangari

Published in: Handbook of Nanocomposite Supercapacitor Materials IV

Publisher: Springer International Publishing

Abstract

Supercapacitors are devices that store energy for a large variety of applications. There has been recent interest in sustainable technologies to fabricate energy storage devices. Additive manufacturing methods such as three-dimensional (3D) printing are being developed to manufacture such devices. There have been numerous ongoing developments in the 3D printing of supercapacitors. 3D printing of supercapacitors offers advantages over conventional fabrication methods. In a consistently changing technological landscape, it is critical to take stock of the developments till date and understand how 3D printing could evolve in the future in the supercapacitor technology. This chapter presents an overview of the main 3D printing technologies to make supercapacitors. The chapter describes the methods, their salient features, merits, and limitations, from the perspective of their application in developing supercapacitors. The chapter also delves into the materials used to 3D print supercapacitors, primarily those related to electrodes and electrolytes. Finally, the chapter presents an outlook into the future prospects of 3D printing-based development of supercapacitors.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J.R. Miller, Engineering electrochemical capacitor applications. J. Power Sour. 326, 726–735 (2016) CrossRef J.R. Miller, Engineering electrochemical capacitor applications. J. Power Sour. 326, 726–735 (2016) CrossRef
2.
go back to reference A. Subasri, K. Balakrishnan, E.R. Nagarajan, V. Devadoss, A. Subramania, Development of 2D La(OH)3/graphene nanohybrid by a facile solvothermal reduction process for high-performance supercapacitors. Electrochim. Acta. 281, 329–337 (2018) CrossRef A. Subasri, K. Balakrishnan, E.R. Nagarajan, V. Devadoss, A. Subramania, Development of 2D La(OH)3/graphene nanohybrid by a facile solvothermal reduction process for high-performance supercapacitors. Electrochim. Acta. 281, 329–337 (2018) CrossRef
3.
go back to reference D. Majumdar, M. Mandal, S.K. Bhattacharya, Journey from supercapacitors to supercapatteries: recent advancements in electrochemical energy storage systems. Emerg. Mater. 3, 347–367 (2020) CrossRef D. Majumdar, M. Mandal, S.K. Bhattacharya, Journey from supercapacitors to supercapatteries: recent advancements in electrochemical energy storage systems. Emerg. Mater. 3, 347–367 (2020) CrossRef
4.
go back to reference M.U. Rani, K. Nanaji, T.N. Rao, A.S. Deshpande, Corn husk derived activated carbon with enhanced electrochemical performance for high-voltage supercapacitors. J. Power Sour. 471, 228387 (2020) CrossRef M.U. Rani, K. Nanaji, T.N. Rao, A.S. Deshpande, Corn husk derived activated carbon with enhanced electrochemical performance for high-voltage supercapacitors. J. Power Sour. 471, 228387 (2020) CrossRef
5.
go back to reference G.K. Gupta, P. Sagar, S.K. Pandey, M. Srivastava, A.K. Singh, J. Singh, A. Srivastava, S.K. Srivastava, A. Srivastava, In Situ fabrication of activated carbon from a bio waste desmostachya bipinnata for the improved supercapacitor performance. Nanoscale Res. Lett. 16, 85 (2021) CrossRef G.K. Gupta, P. Sagar, S.K. Pandey, M. Srivastava, A.K. Singh, J. Singh, A. Srivastava, S.K. Srivastava, A. Srivastava, In Situ fabrication of activated carbon from a bio waste desmostachya bipinnata for the improved supercapacitor performance. Nanoscale Res. Lett. 16, 85 (2021) CrossRef
6.
go back to reference S. Kaipannan, K. Govindarajan, S. Sundaramoorthy, S. Marappan, Waste toner-derived carbon/Fe3O4 nanocomposite for high-performance supercapacitor. ACS Omega 4, 15798–15805 (2019) CrossRef S. Kaipannan, K. Govindarajan, S. Sundaramoorthy, S. Marappan, Waste toner-derived carbon/Fe3O4 nanocomposite for high-performance supercapacitor. ACS Omega 4, 15798–15805 (2019) CrossRef
7.
go back to reference S. Ahmed, M. Parvaz, R. Johari, M. Rafat, Studies on activated carbon derived from neem (azadirachta indica) bio-waste, and its application as supercapacitor electrode. Mater. Res. Express 5, 045601 (2018) CrossRef S. Ahmed, M. Parvaz, R. Johari, M. Rafat, Studies on activated carbon derived from neem (azadirachta indica) bio-waste, and its application as supercapacitor electrode. Mater. Res. Express 5, 045601 (2018) CrossRef
8.
go back to reference S.A.M. Tofail, E.P. Koumoulos, A. Bandyopadhyay, S. Bose, L. O’Donoghue, C. Charitidis, Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Mater. Today 21, 22–37 (2018) CrossRef S.A.M. Tofail, E.P. Koumoulos, A. Bandyopadhyay, S. Bose, L. O’Donoghue, C. Charitidis, Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Mater. Today 21, 22–37 (2018) CrossRef
9.
go back to reference R.P. Magisetty, N.S. Cheekuramelli, Additive manufacturing technology empowered complex electromechanical energy conversion devices and transformers. Appl. Mater. Today. 14, 35–50 (2019) CrossRef R.P. Magisetty, N.S. Cheekuramelli, Additive manufacturing technology empowered complex electromechanical energy conversion devices and transformers. Appl. Mater. Today. 14, 35–50 (2019) CrossRef
10.
go back to reference A. Zhakeyev, P. Wang, L. Zhang, W. Shu, H. Wang, J. Xuan, Additive manufacturing: unlocking the evolution of energy materials. Adv. Sci. 4, 1700187 (2017) CrossRef A. Zhakeyev, P. Wang, L. Zhang, W. Shu, H. Wang, J. Xuan, Additive manufacturing: unlocking the evolution of energy materials. Adv. Sci. 4, 1700187 (2017) CrossRef
11.
go back to reference T.A. Campbell, O.S. Ivanova, 3D printing of multifunctional nanocomposites. Nano Today 8, 119–120 (2013) CrossRef T.A. Campbell, O.S. Ivanova, 3D printing of multifunctional nanocomposites. Nano Today 8, 119–120 (2013) CrossRef
12.
go back to reference A. Chaichi, G. Venugopalan, R. Devireddy, C. Arges, M.R. Gartia, A solid-state and flexible supercapacitor that operates across a wide temperature range. ACS Appl. Energy Mater. 3, 5693–5704 (2020) CrossRef A. Chaichi, G. Venugopalan, R. Devireddy, C. Arges, M.R. Gartia, A solid-state and flexible supercapacitor that operates across a wide temperature range. ACS Appl. Energy Mater. 3, 5693–5704 (2020) CrossRef
13.
go back to reference J. Cherusseri, D. Pandey, K.S. Kumar, J. Thomas, L. Zhai, Flexible supercapacitor electrodes using metal–organic frameworks. Nanoscale 12, 17649–17662 (2020) CrossRef J. Cherusseri, D. Pandey, K.S. Kumar, J. Thomas, L. Zhai, Flexible supercapacitor electrodes using metal–organic frameworks. Nanoscale 12, 17649–17662 (2020) CrossRef
14.
go back to reference T. Purkait, G. Singh, D. Kumar, M. Singh, R.S. Dey, High-performance flexible supercapacitors based on electrochemically tailored three-dimensional reduced graphene oxide networks. Sci. Rep. 8, 640 (2018) CrossRef T. Purkait, G. Singh, D. Kumar, M. Singh, R.S. Dey, High-performance flexible supercapacitors based on electrochemically tailored three-dimensional reduced graphene oxide networks. Sci. Rep. 8, 640 (2018) CrossRef
15.
go back to reference A. Cano-Vicent, M.M. Tambuwala, S. Sarif Hassan, D. Barh, A.A.A. Aljabali, M. Birkett, A. Arjunan, Á. Serrano-Aroca, Fused deposition modelling: Current status, methodology, applications and future prospects. Addit. Manuf. 47, 102378 (2021) A. Cano-Vicent, M.M. Tambuwala, S. Sarif Hassan, D. Barh, A.A.A. Aljabali, M. Birkett, A. Arjunan, Á. Serrano-Aroca, Fused deposition modelling: Current status, methodology, applications and future prospects. Addit. Manuf. 47, 102378 (2021)
16.
go back to reference K. Fu, Y. Wang, C. Yan, Y. Yao, Y. Chen, J. Dai, S. Lacey, Y. Wang, J. Wan, T. Li, Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries. Adv. Mater. 28, 2587–2594 (2016) CrossRef K. Fu, Y. Wang, C. Yan, Y. Yao, Y. Chen, J. Dai, S. Lacey, Y. Wang, J. Wan, T. Li, Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries. Adv. Mater. 28, 2587–2594 (2016) CrossRef
17.
go back to reference K. Shen, J. Ding, S. Yang, 3D printing quasi-solid-state asymmetric micro-supercapacitors with ultrahigh areal energy density. Adv. Energy Mater. 8, 1800408 (2018) CrossRef K. Shen, J. Ding, S. Yang, 3D printing quasi-solid-state asymmetric micro-supercapacitors with ultrahigh areal energy density. Adv. Energy Mater. 8, 1800408 (2018) CrossRef
18.
go back to reference G. Sun, J. An, C.K. Chua, H. Pang, J. Zhang, P. Chen, Layer-by-layer printing of laminated graphene-based interdigitated microelectrodes for flexible planar micro-supercapacitors. Electrochem. Commun. 51, 33–36 (2015) CrossRef G. Sun, J. An, C.K. Chua, H. Pang, J. Zhang, P. Chen, Layer-by-layer printing of laminated graphene-based interdigitated microelectrodes for flexible planar micro-supercapacitors. Electrochem. Commun. 51, 33–36 (2015) CrossRef
19.
go back to reference Y. Liu, B. Zhang, Q. Xu, Y. Hou, S. Seyedin, S. Qin, G.G. Wallace, S. Beirne, J.M. Razal, J. Chen, Development of graphene oxide/polyaniline inks for high performance flexible microsupercapacitors via extrusion printing. Adv. Funct. Mater. 28, 1706592 (2018) CrossRef Y. Liu, B. Zhang, Q. Xu, Y. Hou, S. Seyedin, S. Qin, G.G. Wallace, S. Beirne, J.M. Razal, J. Chen, Development of graphene oxide/polyaniline inks for high performance flexible microsupercapacitors via extrusion printing. Adv. Funct. Mater. 28, 1706592 (2018) CrossRef
20.
go back to reference C. Zhu, T. Liu, F. Qian, T. Yong-Jin Han, E.B. Duoss, J.D. Kuntz, C.M. Spadaccini, M.A. Worsley, Y. Li, Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett. 16, 3448–3456 (2016) C. Zhu, T. Liu, F. Qian, T. Yong-Jin Han, E.B. Duoss, J.D. Kuntz, C.M. Spadaccini, M.A. Worsley, Y. Li, Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett. 16, 3448–3456 (2016)
21.
go back to reference C.W. Foster, M.P. Down, Y. Zhang, X. Ji, S.J. Rowley-Neale, G.C. Smith, P.J. Kelly, C.E. Banks, 3D printed graphene based energy storage devices. Sci. Rep. 7, 42233 (2017) CrossRef C.W. Foster, M.P. Down, Y. Zhang, X. Ji, S.J. Rowley-Neale, G.C. Smith, P.J. Kelly, C.E. Banks, 3D printed graphene based energy storage devices. Sci. Rep. 7, 42233 (2017) CrossRef
22.
go back to reference C.Y. Foo, H.N. Lee, M.A. Mahdi, M.H. Wahid, N.M. Huang, Three-dimensional printed electrode and its novel applications in electronic devices. Sci. Rep. 8, 7399 (2018) CrossRef C.Y. Foo, H.N. Lee, M.A. Mahdi, M.H. Wahid, N.M. Huang, Three-dimensional printed electrode and its novel applications in electronic devices. Sci. Rep. 8, 7399 (2018) CrossRef
23.
go back to reference B. Yao, S. Chandrasekaran, J. Zhang, W. Xiao, F. Qian, C. Zhu, E.B. Duoss, C.M. Spadaccini, M.A. Worsley, Y. Li, Efficient 3D printed pseudocapacitive electrodes with ultrahigh MnO2 loading. Joule 3, 459–470 (2019) CrossRef B. Yao, S. Chandrasekaran, J. Zhang, W. Xiao, F. Qian, C. Zhu, E.B. Duoss, C.M. Spadaccini, M.A. Worsley, Y. Li, Efficient 3D printed pseudocapacitive electrodes with ultrahigh MnO2 loading. Joule 3, 459–470 (2019) CrossRef
24.
go back to reference K. Ghosh, M. Pumera, Free-standing electrochemically coated MoSx based 3D-printed nanocarbon electrode for solid-state supercapacitor application. Nanoscale 13, 5744–5756 (2021) CrossRef K. Ghosh, M. Pumera, Free-standing electrochemically coated MoSx based 3D-printed nanocarbon electrode for solid-state supercapacitor application. Nanoscale 13, 5744–5756 (2021) CrossRef
25.
go back to reference X. Tian, K. Tang, H. Jin, T. Wang, X. Liu, W. Yang, Z. Zou, S. Hou, K. Zhou, Boosting capactive charge storage of 3D-printed micro-pseudocapacitors via rational holey graphene engineering. Carbon 155, 562–569 (2019) CrossRef X. Tian, K. Tang, H. Jin, T. Wang, X. Liu, W. Yang, Z. Zou, S. Hou, K. Zhou, Boosting capactive charge storage of 3D-printed micro-pseudocapacitors via rational holey graphene engineering. Carbon 155, 562–569 (2019) CrossRef
26.
go back to reference M. Areir, Y. Xu, D. Harrison, J. Fyson, 3D printing of highly flexible supercapacitor designed for wearable energy. Mater. Sci. Eng. B. 226, 29–38 (2017) CrossRef M. Areir, Y. Xu, D. Harrison, J. Fyson, 3D printing of highly flexible supercapacitor designed for wearable energy. Mater. Sci. Eng. B. 226, 29–38 (2017) CrossRef
27.
go back to reference M. Areir, Y. Xu, R. Zhang, D. Harrison, J. Fyson, E. Pei, A study of 3D printed active carbon electrode for the manufacture of electric double-layer capacitors. J. Manuf. Process. 25, 351–356 (2017) CrossRef M. Areir, Y. Xu, R. Zhang, D. Harrison, J. Fyson, E. Pei, A study of 3D printed active carbon electrode for the manufacture of electric double-layer capacitors. J. Manuf. Process. 25, 351–356 (2017) CrossRef
28.
go back to reference M. Idrees, S. Ahmed, Z. Mohammed, N.S. Korivi, V. Rangari, 3D printed supercapacitor using porous carbon derived from packaging waste. Addit. Manuf. 36, 101525 (2020) M. Idrees, S. Ahmed, Z. Mohammed, N.S. Korivi, V. Rangari, 3D printed supercapacitor using porous carbon derived from packaging waste. Addit. Manuf. 36, 101525 (2020)
29.
go back to reference B. Chen, Y. Jiang, X. Tang, Y. Pan, S. Hu, Fully packaged carbon nanotube supercapacitors by direct ink writing on flexible substrates. ACS Appl. Mater. Interfaces. 9, 28433–28440 (2017) CrossRef B. Chen, Y. Jiang, X. Tang, Y. Pan, S. Hu, Fully packaged carbon nanotube supercapacitors by direct ink writing on flexible substrates. ACS Appl. Mater. Interfaces. 9, 28433–28440 (2017) CrossRef
30.
go back to reference J. Yang, Q. Cao, X. Tang, J. Du, T. Yu, X. Xu, D. Cai, C. Guan, W. Huang, 3D-Printed highly stretchable conducting polymer electrodes for flexible supercapacitors. J. Mater. Chem. A 9, 19649 (2021) CrossRef J. Yang, Q. Cao, X. Tang, J. Du, T. Yu, X. Xu, D. Cai, C. Guan, W. Huang, 3D-Printed highly stretchable conducting polymer electrodes for flexible supercapacitors. J. Mater. Chem. A 9, 19649 (2021) CrossRef
31.
go back to reference B. Soundiraraju, B.K. George, Two-dimensional Titanium Nitride (Ti2N) MXene: synthesis, characterization, and potential application as surface-enhanced raman scattering substrate. ACS Nano 11, 8892–8900 (2017) CrossRef B. Soundiraraju, B.K. George, Two-dimensional Titanium Nitride (Ti2N) MXene: synthesis, characterization, and potential application as surface-enhanced raman scattering substrate. ACS Nano 11, 8892–8900 (2017) CrossRef
32.
go back to reference M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-dimensional transition metal carbides. ACS Nano 6, 1322–1331 (2012) CrossRef M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-dimensional transition metal carbides. ACS Nano 6, 1322–1331 (2012) CrossRef
33.
go back to reference C. Zhang, L. McKeon, M.P. Kremer, S.-H. Park, O. Ronan, A. Seral-Ascaso, S. Barwich, C. Coileáin, N. McEvoy, H.C. Nerl, B. Anasori, J.N. Coleman, Y. Gogotsi, V. Nicolosi, Additive-free MXene inks and direct printing of micro-supercapacitors. Nat. Commun. 10, 1795 (2019) CrossRef C. Zhang, L. McKeon, M.P. Kremer, S.-H. Park, O. Ronan, A. Seral-Ascaso, S. Barwich, C. Coileáin, N. McEvoy, H.C. Nerl, B. Anasori, J.N. Coleman, Y. Gogotsi, V. Nicolosi, Additive-free MXene inks and direct printing of micro-supercapacitors. Nat. Commun. 10, 1795 (2019) CrossRef
34.
go back to reference J. Orangi, F. Hamade, V.A. Davis, M. Beidaghi, 3D printing of additive-free 2D Ti3C2Tx (MXene) ink for fabrication of micro-supercapacitors with ultra-high energy densities. ACS Nano 14, 640–650 (2020) CrossRef J. Orangi, F. Hamade, V.A. Davis, M. Beidaghi, 3D printing of additive-free 2D Ti3C2Tx (MXene) ink for fabrication of micro-supercapacitors with ultra-high energy densities. ACS Nano 14, 640–650 (2020) CrossRef
35.
go back to reference D.P. Dubal, N.R. Chodankar, D.-H. Kim, P. Gomez-Romero, Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem. Soc. Rev. 47, 2065–2129 (2018) CrossRef D.P. Dubal, N.R. Chodankar, D.-H. Kim, P. Gomez-Romero, Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem. Soc. Rev. 47, 2065–2129 (2018) CrossRef
36.
go back to reference X. Yun, B. Lu, Z. Xiong, B. Jia, B. Tang, H. Mao, T. Zhang, X. Wang, Direct 3D printing of a graphene oxide hydrogel for fabrication of a high areal specific capacitance microsupercapacitor. RSC Adv. 9, 29384–29395 (2019) CrossRef X. Yun, B. Lu, Z. Xiong, B. Jia, B. Tang, H. Mao, T. Zhang, X. Wang, Direct 3D printing of a graphene oxide hydrogel for fabrication of a high areal specific capacitance microsupercapacitor. RSC Adv. 9, 29384–29395 (2019) CrossRef
37.
go back to reference T. Wang, L. Li, X. Tian, H. Jin, K. Tang, S. Hou, H. Zhou, X. Yu, 3D-printed interdigitated graphene framework as superior support of metal oxide nanostructures for remarkable micro-pseudocapacitors. Electrochim. Acta. 319, 245–252 (2019) CrossRef T. Wang, L. Li, X. Tian, H. Jin, K. Tang, S. Hou, H. Zhou, X. Yu, 3D-printed interdigitated graphene framework as superior support of metal oxide nanostructures for remarkable micro-pseudocapacitors. Electrochim. Acta. 319, 245–252 (2019) CrossRef
38.
go back to reference K.-C. Tsay, L. Zhang, J. Zhang, Effects of electrode layer composition/thickness and electrolyte concentration on both specific capacitance and energy density of supercapacitor. Electrochim. Acta. 60, 428–436 (2012) CrossRef K.-C. Tsay, L. Zhang, J. Zhang, Effects of electrode layer composition/thickness and electrolyte concentration on both specific capacitance and energy density of supercapacitor. Electrochim. Acta. 60, 428–436 (2012) CrossRef
39.
go back to reference W. Yang, J. Yang, J.J. Byun, F.P. Moissinac, J. Xu, S.J. Haigh, M. Domingos, M.A. Bissett, R.A.W. Dryfe, S. Barg, 3D printing of freestanding MXene architectures for current-collector-free supercapacitors. Adv. Mater. 31, 1902725 (2019) CrossRef W. Yang, J. Yang, J.J. Byun, F.P. Moissinac, J. Xu, S.J. Haigh, M. Domingos, M.A. Bissett, R.A.W. Dryfe, S. Barg, 3D printing of freestanding MXene architectures for current-collector-free supercapacitors. Adv. Mater. 31, 1902725 (2019) CrossRef
40.
go back to reference A. Tanwilaisiri, Y. Xu, R. Zhang, D. Harrison, J. Fyson, M. Areir, Design and fabrication of modular supercapacitors using 3D printing. J. Energy Storage 16, 1–7 (2018) CrossRef A. Tanwilaisiri, Y. Xu, R. Zhang, D. Harrison, J. Fyson, M. Areir, Design and fabrication of modular supercapacitors using 3D printing. J. Energy Storage 16, 1–7 (2018) CrossRef
41.
go back to reference A. Tanwilaisiri, Y. Xu, D. Harrison, J. Fyson, M. Areir, A study of metal-free supercapacitors using 3D printing. Int. J. Precis. Eng. Manuf. 19, 1071–1079 (2018) CrossRef A. Tanwilaisiri, Y. Xu, D. Harrison, J. Fyson, M. Areir, A study of metal-free supercapacitors using 3D printing. Int. J. Precis. Eng. Manuf. 19, 1071–1079 (2018) CrossRef
42.
go back to reference X. Aeby, A. Poulin, G. Siqueira, M.K. Hausmann, G. Nyström, Fully 3D printed and disposable paper supercapacitors. Adv. Mater. 33, 2101328 (2021) CrossRef X. Aeby, A. Poulin, G. Siqueira, M.K. Hausmann, G. Nyström, Fully 3D printed and disposable paper supercapacitors. Adv. Mater. 33, 2101328 (2021) CrossRef
43.
go back to reference B. Yao, H. Peng, H. Zhang, J. Kang, C. Zhu, G. Delgado, D. Byrne, S. Faulkner, M. Freyman, X. Lu, M.A. Worsley, J.Q. Lu, Y. Li, Printing porous carbon aerogels for low temperature supercapacitors. Nano Lett. 21, 3731–3737 (2021) CrossRef B. Yao, H. Peng, H. Zhang, J. Kang, C. Zhu, G. Delgado, D. Byrne, S. Faulkner, M. Freyman, X. Lu, M.A. Worsley, J.Q. Lu, Y. Li, Printing porous carbon aerogels for low temperature supercapacitors. Nano Lett. 21, 3731–3737 (2021) CrossRef
44.
go back to reference N.A. Kyeremateng, T. Brousse, D. Pech, Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nat. Nanotechnol. 12, 7–15 (2017) CrossRef N.A. Kyeremateng, T. Brousse, D. Pech, Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nat. Nanotechnol. 12, 7–15 (2017) CrossRef
45.
go back to reference X. Zhang, H. Li, K. Zhang, Q. Wang, B. Qin, Q. Cao, L. Jin, Strategy for preparing porous graphitic carbon for supercapacitor: balance on porous structure and graphitization degree. J. Electrochem. Soc. 165, A2084 (2018) CrossRef X. Zhang, H. Li, K. Zhang, Q. Wang, B. Qin, Q. Cao, L. Jin, Strategy for preparing porous graphitic carbon for supercapacitor: balance on porous structure and graphitization degree. J. Electrochem. Soc. 165, A2084 (2018) CrossRef
46.
go back to reference E. Hari Mohan, K. Nanaji, S. Anandan, B.V. Appa Rao, T.N. Rao, Porous graphitic carbon sheets with high sulfur loading and dual confinement of polysulfide species for enhanced performance of Li–S batteries. J. Mater. Sci. 55, 16659–16673 (2020) E. Hari Mohan, K. Nanaji, S. Anandan, B.V. Appa Rao, T.N. Rao, Porous graphitic carbon sheets with high sulfur loading and dual confinement of polysulfide species for enhanced performance of Li–S batteries. J. Mater. Sci. 55, 16659–16673 (2020)
47.
go back to reference M. Wei, F. Zhang, W. Wang, P. Alexandridis, C. Zhou, G. Wu, 3D direct writing fabrication of electrodes for electrochemical storage devices. J. Power Sour. 354, 134–147 (2017) CrossRef M. Wei, F. Zhang, W. Wang, P. Alexandridis, C. Zhou, G. Wu, 3D direct writing fabrication of electrodes for electrochemical storage devices. J. Power Sour. 354, 134–147 (2017) CrossRef
48.
go back to reference D.J. Roach, C.M. Hamel, C.K. Dunn, M.V. Johnson, X. Kuang, H.J. Qi, The m4 3D printer: A multi-material multi-method additive manufacturing platform for future 3D printed structures. Addit. Manuf. 29, 100819 (2019) D.J. Roach, C.M. Hamel, C.K. Dunn, M.V. Johnson, X. Kuang, H.J. Qi, The m4 3D printer: A multi-material multi-method additive manufacturing platform for future 3D printed structures. Addit. Manuf. 29, 100819 (2019)
49.
go back to reference M.A. Skylar-Scott, J. Mueller, C.W. Visser, J.A. Lewis, Voxelated soft matter via multimaterial multinozzle 3D printing. Nature 575, 330–335 (2019) CrossRef M.A. Skylar-Scott, J. Mueller, C.W. Visser, J.A. Lewis, Voxelated soft matter via multimaterial multinozzle 3D printing. Nature 575, 330–335 (2019) CrossRef
50.
go back to reference B. Anothumakkool, A. Torris, S. Veeliyath, V. Vijayakumar, M.V. Badiger, S. Kurungot, High-performance flexible solid-state supercapacitor with an extended nanoregime interface through in situ polymer electrolyte generation. ACS Appl. Mater. Interfaces. 8, 1233–1241 (2016) CrossRef B. Anothumakkool, A. Torris, S. Veeliyath, V. Vijayakumar, M.V. Badiger, S. Kurungot, High-performance flexible solid-state supercapacitor with an extended nanoregime interface through in situ polymer electrolyte generation. ACS Appl. Mater. Interfaces. 8, 1233–1241 (2016) CrossRef
51.
go back to reference J. Han, Y. Choi, J. Lee, S. Pyo, S. Jo, J. Yoo, UV curable ionogel for all-solid-state supercapacitor. Chem. Eng. J. 416, 129089 (2021) CrossRef J. Han, Y. Choi, J. Lee, S. Pyo, S. Jo, J. Yoo, UV curable ionogel for all-solid-state supercapacitor. Chem. Eng. J. 416, 129089 (2021) CrossRef
52.
go back to reference C. Pascual-González, P. San Martín, I. Lizarralde, A. Fernández, A. León, C.S. Lopes, J.P. Fernández-Blázquez, Post-processing effects on microstructure, interlaminar and thermal properties of 3D printed continuous carbon fibre composites. Compos. B Eng. 210, 108652 (2021) C. Pascual-González, P. San Martín, I. Lizarralde, A. Fernández, A. León, C.S. Lopes, J.P. Fernández-Blázquez, Post-processing effects on microstructure, interlaminar and thermal properties of 3D printed continuous carbon fibre composites. Compos. B Eng. 210, 108652 (2021)
53.
go back to reference M. Xia, J. Sanjayan, Method of formulating geopolymer for 3D printing for construction applications. Mater. Des. 110, 382–390 (2016) CrossRef M. Xia, J. Sanjayan, Method of formulating geopolymer for 3D printing for construction applications. Mater. Des. 110, 382–390 (2016) CrossRef
54.
go back to reference W. Piedra-Cascón, V.R. Krishnamurthy, W. Att, M. Revilla-León, 3D printing parameters, supporting structures, slicing, and post-processing procedures of vat-polymerization additive manufacturing technologies: A narrative review. J. Dent. 109, 103630 (2021) CrossRef W. Piedra-Cascón, V.R. Krishnamurthy, W. Att, M. Revilla-León, 3D printing parameters, supporting structures, slicing, and post-processing procedures of vat-polymerization additive manufacturing technologies: A narrative review. J. Dent. 109, 103630 (2021) CrossRef
55.
go back to reference P. Stavropoulos, P. Foteinopoulos, A. Papacharalampopoulos, H. Bikas, Addressing the challenges for the industrial application of additive manufacturing: towards a hybrid solution. Int. J. Lightweight Mater. Manuf. 1, 157–168 (2018) P. Stavropoulos, P. Foteinopoulos, A. Papacharalampopoulos, H. Bikas, Addressing the challenges for the industrial application of additive manufacturing: towards a hybrid solution. Int. J. Lightweight Mater. Manuf. 1, 157–168 (2018)
56.
go back to reference L.E.J. Thomas-Seale, J.C. Kirkman-Brown, M.M. Attalah, D.M. Espino, D.E.T. Shepard, The barriers to the progression of additive manufacture: Perspectives from UK industry. Int. J. Prod. Econ. 198, 104–118 (2018) CrossRef L.E.J. Thomas-Seale, J.C. Kirkman-Brown, M.M. Attalah, D.M. Espino, D.E.T. Shepard, The barriers to the progression of additive manufacture: Perspectives from UK industry. Int. J. Prod. Econ. 198, 104–118 (2018) CrossRef
57.
go back to reference N. Yadav, M.K. Singh, N. Yadav, S.A. Hashmi, High performance quasi-solid-state supercapacitors with peanut-shell-derived porous carbon. J. Power Sources. 402, 133–146 (2018) CrossRef N. Yadav, M.K. Singh, N. Yadav, S.A. Hashmi, High performance quasi-solid-state supercapacitors with peanut-shell-derived porous carbon. J. Power Sources. 402, 133–146 (2018) CrossRef
58.
go back to reference M.D. Mehare, A.D. Deshmukh, S.J. Dhoble, Preparation of porous agro-waste-derived carbon from onion peel for supercapacitor application. J. Mater. Sci. 55, 4213–4224 (2020) CrossRef M.D. Mehare, A.D. Deshmukh, S.J. Dhoble, Preparation of porous agro-waste-derived carbon from onion peel for supercapacitor application. J. Mater. Sci. 55, 4213–4224 (2020) CrossRef
59.
go back to reference S. Sundriyal, V. Shrivastav, A. Kaur, P. Dubey, S. Mishra, A. Deep, S.R. Dhakate, Waste office papers as a cellulosic material reservoir to derive highly porous activated carbon for solid-state electrochemical capacitor. IEEE Trans. Nanotechnol. 20, 481–488 (2021) CrossRef S. Sundriyal, V. Shrivastav, A. Kaur, P. Dubey, S. Mishra, A. Deep, S.R. Dhakate, Waste office papers as a cellulosic material reservoir to derive highly porous activated carbon for solid-state electrochemical capacitor. IEEE Trans. Nanotechnol. 20, 481–488 (2021) CrossRef
60.
go back to reference S. Pandey, M. Karakoti, K. Surana, P.S. Dhapola, B. SanthiBhushan, S. Ganguly, P.K. Singh, A. Abbas, A. Srivastava, N.G. Sahoo, Graphene nanosheets derived from plastic waste for the application of DSSCs and supercapacitors. Sci. Rep. 11, 3916 (2021) CrossRef S. Pandey, M. Karakoti, K. Surana, P.S. Dhapola, B. SanthiBhushan, S. Ganguly, P.K. Singh, A. Abbas, A. Srivastava, N.G. Sahoo, Graphene nanosheets derived from plastic waste for the application of DSSCs and supercapacitors. Sci. Rep. 11, 3916 (2021) CrossRef
61.
go back to reference X. Zhao, M. Gnanaseelan, D. Jehnichen, F. Simon, J. Pionteck, Green and facile synthesis of polyaniline/tannic acid/rGO composites for supercapacitor purpose. J. Mater. Sci. 54, 10809–10824 (2019) CrossRef X. Zhao, M. Gnanaseelan, D. Jehnichen, F. Simon, J. Pionteck, Green and facile synthesis of polyaniline/tannic acid/rGO composites for supercapacitor purpose. J. Mater. Sci. 54, 10809–10824 (2019) CrossRef
62.
go back to reference S. Jha, S. Mehta, Y. Chen, R. Likhari, W. Stewart, D. Parkinson, H. Liang, Design and synthesis of high performance flexible and green supercapacitors made of manganese-dioxide-decorated alkali lignin. Energy Storage 2, e184 (2020) CrossRef S. Jha, S. Mehta, Y. Chen, R. Likhari, W. Stewart, D. Parkinson, H. Liang, Design and synthesis of high performance flexible and green supercapacitors made of manganese-dioxide-decorated alkali lignin. Energy Storage 2, e184 (2020) CrossRef
63.
go back to reference K.K. Kar (ed.), Handbook of Nanocomposite Supercapacitor Materials I Characteristics (Springer Cham, 2020) K.K. Kar (ed.), Handbook of Nanocomposite Supercapacitor Materials I Characteristics (Springer Cham, 2020)
64.
go back to reference K.K. Kar (ed.), Handbook of Nanocomposite Supercapacitor Materials II Performance (Springer Cham, 2020) K.K. Kar (ed.), Handbook of Nanocomposite Supercapacitor Materials II Performance (Springer Cham, 2020)
65.
go back to reference K.K. Kar (ed.), Handbook of Nanocomposite Supercapacitor Materials III Selection (Springer Cham, 2021) K.K. Kar (ed.), Handbook of Nanocomposite Supercapacitor Materials III Selection (Springer Cham, 2021)
Metadata
Title
3D Printed Supercapacitors
Authors
Naga S. Korivi
Vijaya Rangari
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-23701-0_6

Premium Partners