Skip to main content
Top

2018 | OriginalPaper | Chapter

4D Textiles: Hybrid Textile Structures that Can Change Structural Form with Time by 3D Printing

Authors : David Schmelzeisen, Hannah Koch, Chris Pastore, Thomas Gries

Published in: Narrow and Smart Textiles

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Additive manufacturing combined with highly elastic, extensible textile materials provides the opportunity to explore a new range of materials: 4D textiles. The name is derived from “4D Printing”, a combination of 3D printing and a time change element, providing the fourth dimension. In the case of 4D textiles, the time response is necessary, but also the textile material provides a crucial role in responding to external stimuli. Whereas 4D printing is currently limited to very small deformations and very slow changes in time, 4D textiles offer the opportunity to increase deformation and response time. This paper covers the concepts of 4D printing, achievements in 3D printing, and the concept of 4D textiles. The role of materials, critical process parameters, critical textile processes, and potential application areas are presented. Strengths and weaknesses of 4D textiles are discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Brinks, G. J., Warmöskerken, M. M. C., Akkerman, R., et al. (2013). The added value of 3D polymer deposition on textiles. Dresden. Brinks, G. J., Warmöskerken, M. M. C., Akkerman, R., et al. (2013). The added value of 3D polymer deposition on textiles. Dresden.
2.
go back to reference Pei, E., Shen, J., & Watling, J. (2015). Direct 3D printing of polymers onto textiles: Experimental studies and applications. Rapid Prototyping Journal, 21, 556–571.CrossRef Pei, E., Shen, J., & Watling, J. (2015). Direct 3D printing of polymers onto textiles: Experimental studies and applications. Rapid Prototyping Journal, 21, 556–571.CrossRef
3.
go back to reference Sabantina, L., Kinzel, F., Ehrmann, A., et al. (2015). Combining 3D printed forms with textile structures—mechanical and geometrical properties of multi-material systems. IOP Conference Series: Materials Science and Engineering, 87, 1–5.CrossRef Sabantina, L., Kinzel, F., Ehrmann, A., et al. (2015). Combining 3D printed forms with textile structures—mechanical and geometrical properties of multi-material systems. IOP Conference Series: Materials Science and Engineering, 87, 1–5.CrossRef
4.
go back to reference Simonis, K., Schmelzeisen, D., Gesché, V., et al. (2017). 4D textiles: application in sports industry. Future Textiles, 2, 38–39. Simonis, K., Schmelzeisen, D., Gesché, V., et al. (2017). 4D textiles: application in sports industry. Future Textiles, 2, 38–39.
5.
go back to reference Ge, Q., Qi, H. J., & Dunn, M. L. (2013). Active materials by four-dimension printing. Applied Physics Letters, 103. Epub ahead of print. doi:10.1063/1.4819837. Ge, Q., Qi, H. J., & Dunn, M. L. (2013). Active materials by four-dimension printing. Applied Physics Letters, 103. Epub ahead of print. doi:10.​1063/​1.​4819837.
6.
go back to reference Bahr, R., Tehrani, B., Hester, J., et al. (2016). Additive manufacturing techniques for origami inspired 4D printed RF components and modules. (pp. 1–4). IEEE. Bahr, R., Tehrani, B., Hester, J., et al. (2016). Additive manufacturing techniques for origami inspired 4D printed RF components and modules. (pp. 1–4). IEEE.
7.
go back to reference Choi, J., Kwon, O-C., Jo, W., et al. (2015). 4D Printing Technology: A Review. 3D Printing and Additive Manufacturing; 2, 159–167. Choi, J., Kwon, O-C., Jo, W., et al. (2015). 4D Printing Technology: A Review. 3D Printing and Additive Manufacturing; 2, 159–167.
8.
go back to reference Korger, M., Bergschneider, J., Lutz, M., et al. (2016). Possible applications of 3D printing technology on textile substrates. IOP Conference Series: Materials Science and Engineering, 141, 012011.CrossRef Korger, M., Bergschneider, J., Lutz, M., et al. (2016). Possible applications of 3D printing technology on textile substrates. IOP Conference Series: Materials Science and Engineering, 141, 012011.CrossRef
9.
go back to reference Melnikova, R., Ehrmann, A., & Finsterbusch, K. (2014). 3D printing of textile-based structures by Fused Deposition Modelling (FDM) with different polymer materials. IOP Conference Series: Materials Science and Engineering, 62, 012018.CrossRef Melnikova, R., Ehrmann, A., & Finsterbusch, K. (2014). 3D printing of textile-based structures by Fused Deposition Modelling (FDM) with different polymer materials. IOP Conference Series: Materials Science and Engineering, 62, 012018.CrossRef
10.
go back to reference Sanatgar, H. R., Campagne, C., & Nierstrasz, V. (2017). Investigation of the adhesion properties of direct 3D printing of polymers and nanocomposites on textiles: Effect of FDM printing process parameters. Applied Surface Science, 403, 551–563.CrossRef Sanatgar, H. R., Campagne, C., & Nierstrasz, V. (2017). Investigation of the adhesion properties of direct 3D printing of polymers and nanocomposites on textiles: Effect of FDM printing process parameters. Applied Surface Science, 403, 551–563.CrossRef
11.
go back to reference Tibbits S. The emergence of ‘4D printing’. Tibbits S. The emergence of ‘4D printing’.
12.
go back to reference Pei, E. (2014). 4D Printing: Dawn of an emerging technology cycle. Assembly Automation, 34, 310–314.CrossRef Pei, E. (2014). 4D Printing: Dawn of an emerging technology cycle. Assembly Automation, 34, 310–314.CrossRef
13.
go back to reference Momeni, F., Mehdi Hassani, M. N. S., Liu, X., et al. (2017). A review of 4D printing. Materials and Design, 122, 42–79.CrossRef Momeni, F., Mehdi Hassani, M. N. S., Liu, X., et al. (2017). A review of 4D printing. Materials and Design, 122, 42–79.CrossRef
14.
go back to reference Chae, M. P., Hunter-Smith, D. J., De-Silva, I., et al. (2015). Four-Dimensional (4D) printing: A new evolution in computed tomography-guided stereolithographic modeling. principles and application. Journal of Reconstructive Microsurgery, 31, 458–463.CrossRef Chae, M. P., Hunter-Smith, D. J., De-Silva, I., et al. (2015). Four-Dimensional (4D) printing: A new evolution in computed tomography-guided stereolithographic modeling. principles and application. Journal of Reconstructive Microsurgery, 31, 458–463.CrossRef
15.
go back to reference Truby, R. L., & Lewis, J. A. (2016). Printing soft matter in three dimensions. Nature, 540, 371–378.CrossRef Truby, R. L., & Lewis, J. A. (2016). Printing soft matter in three dimensions. Nature, 540, 371–378.CrossRef
16.
go back to reference Bodaghi, M., Damanpack, A. R., & Liao, W. H. (2016). Self-expanding/shrinking structures by 4D printing. Smart Materials and Structures, 25, 1–15. Bodaghi, M., Damanpack, A. R., & Liao, W. H. (2016). Self-expanding/shrinking structures by 4D printing. Smart Materials and Structures, 25, 1–15.
17.
go back to reference Rivera, M. L., Moukperian, M., Ashbrook D., et al. (2017). Stretching the bounds of 3D printing with embedded textiles. In G. Mark, S. Fussell, C. Lampe, et al. (Eds.), Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems—CHI’17 (pp. 497–508). New York: ACM Press. Rivera, M. L., Moukperian, M., Ashbrook D., et al. (2017). Stretching the bounds of 3D printing with embedded textiles. In G. Mark, S. Fussell, C. Lampe, et al. (Eds.), Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems—CHI’17 (pp. 497–508). New York: ACM Press.
18.
go back to reference Grimmelsmann, N., Martens, Y., Schäl, P., et al. (2016). Mechanical and electrical contacting of electronic components on textiles by 3D printing. Procedia Technology, 26, 66–71.CrossRef Grimmelsmann, N., Martens, Y., Schäl, P., et al. (2016). Mechanical and electrical contacting of electronic components on textiles by 3D printing. Procedia Technology, 26, 66–71.CrossRef
19.
go back to reference Cabral, I., Souto, A. P., Carvalho, H., et al. (2015). Exploring geometric morphology in shape memory textiles: Design of dynamic light filters. Textile Research Journal, 85, 1919–1933.CrossRef Cabral, I., Souto, A. P., Carvalho, H., et al. (2015). Exploring geometric morphology in shape memory textiles: Design of dynamic light filters. Textile Research Journal, 85, 1919–1933.CrossRef
20.
go back to reference Neuß, J., Kreuziger, M., Grimmelsmann N., et al. (2017). Interaction between 3D deformation of textile fabrics and imprinted lamellae. Neuß, J., Kreuziger, M., Grimmelsmann N., et al. (2017). Interaction between 3D deformation of textile fabrics and imprinted lamellae.
23.
go back to reference Pahl, G., & Beitz, W. (1978). Konstruktionslehre: Handbuch für Studium und Praxis. Berlin: Springer. Pahl, G., & Beitz, W. (1978). Konstruktionslehre: Handbuch für Studium und Praxis. Berlin: Springer.
24.
go back to reference Ashby, M, F. (1999). Materials selection in mechanical design (2nd ed.,) Oxford, OX ; Boston, MA: Butterworth-Heinemann. Ashby, M, F. (1999). Materials selection in mechanical design (2nd ed.,) Oxford, OX ; Boston, MA: Butterworth-Heinemann.
Metadata
Title
4D Textiles: Hybrid Textile Structures that Can Change Structural Form with Time by 3D Printing
Authors
David Schmelzeisen
Hannah Koch
Chris Pastore
Thomas Gries
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-69050-6_17

Premium Partners