Skip to main content
Top

2021 | OriginalPaper | Chapter

2. A 2D Lattice with Dense Packing of the Particles

Authors : Vladimir I. Erofeev, Igor S. Pavlov

Published in: Structural Modeling of Metamaterials

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Mechanical properties of a granular consolidated medium depend on the geometry of the microparticles, their location, and the forces of interaction between them. One of the main goals of mathematical modeling of such media is obtaining equations of motion and equations of state, which are capable to describe a discrete nature of a medium.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Hereinafter, we will use the terms “grains” and “granules” as synonyms for the word “particles.” However, these terms do not have such a meaning, as in materials science.
 
Literature
1.
go back to reference Belyaeva, I.Y., Zaitsev, V.Y., Ostrovsky, L.A.: Nonlinear acoustical properties of granular media. Acoust. Phys. 39, 11–16 (1993) Belyaeva, I.Y., Zaitsev, V.Y., Ostrovsky, L.A.: Nonlinear acoustical properties of granular media. Acoust. Phys. 39, 11–16 (1993)
2.
go back to reference Bykov, V.G.: Solitary shear waves in a granular medium. Acoust. Phys. 45(2), 138–142 (1999) Bykov, V.G.: Solitary shear waves in a granular medium. Acoust. Phys. 45(2), 138–142 (1999)
3.
go back to reference Goldstein, R.V., Gorodtsov, V.A., Lisovenko, D.S.: Young’s moduli and Poisson’s ratio of curvilinear anisotropic hexagonal and rhombohedral nanotubes. Nanotubes-auxetics. Dokl. Phys. 58(9), 400–404 (2013) Goldstein, R.V., Gorodtsov, V.A., Lisovenko, D.S.: Young’s moduli and Poisson’s ratio of curvilinear anisotropic hexagonal and rhombohedral nanotubes. Nanotubes-auxetics. Dokl. Phys. 58(9), 400–404 (2013)
4.
go back to reference Chang, C.S., Gao, J.: Wave propagation in granular rod using high-gradient theory. J. Engn. Mech.-ASCE 1, 52–59 (1997) Chang, C.S., Gao, J.: Wave propagation in granular rod using high-gradient theory. J. Engn. Mech.-ASCE 1, 52–59 (1997)
5.
go back to reference Chang, C.S., Ma, L.: A micromechanical-based micropolar theory for deformation of granular solids. Int. J. Solids Struct. 28(1), 67–87 (1994) Chang, C.S., Ma, L.: A micromechanical-based micropolar theory for deformation of granular solids. Int. J. Solids Struct. 28(1), 67–87 (1994)
6.
go back to reference Christoffersen, J., Mehrabadi, M.M., Nemat-Nasser, S.A.: A micromechanical description of granular material behavior. Trans. ASME J. Appl. Mech. 48(2), 339–344 (1981)CrossRef Christoffersen, J., Mehrabadi, M.M., Nemat-Nasser, S.A.: A micromechanical description of granular material behavior. Trans. ASME J. Appl. Mech. 48(2), 339–344 (1981)CrossRef
7.
go back to reference Lisina, S.A., Potapov, A.I., Nesterenko, V.F.: Nonlinear granular medium with rotations of the particles one-dimensional model. Phys. Acoust. 47(5), 666–674 (2001)CrossRef Lisina, S.A., Potapov, A.I., Nesterenko, V.F.: Nonlinear granular medium with rotations of the particles one-dimensional model. Phys. Acoust. 47(5), 666–674 (2001)CrossRef
8.
go back to reference Pavlov, I.S., Potapov, A.I., Maugin, G.A.: A 2D Granular Medium With Rotating particles. Int. J. Solids Struct. 43(20), 6194–6207 (2006)CrossRef Pavlov, I.S., Potapov, A.I., Maugin, G.A.: A 2D Granular Medium With Rotating particles. Int. J. Solids Struct. 43(20), 6194–6207 (2006)CrossRef
9.
go back to reference Sadovskaya, O., Sadovskii, V.: Mathematical modeling in mechanics of granular materials. Springer, Heidelberg, New York, Dordrecht, London, 390 p (2012) Sadovskaya, O., Sadovskii, V.: Mathematical modeling in mechanics of granular materials. Springer, Heidelberg, New York, Dordrecht, London, 390 p (2012)
10.
go back to reference Krivtsov, A.M., Podol’skaya E.A.: Modeling of elastic properties of crystals with hexagonal close-packed lattice. Mech. Solids. 45(3), 370–378 (2010) Krivtsov, A.M., Podol’skaya E.A.: Modeling of elastic properties of crystals with hexagonal close-packed lattice. Mech. Solids. 45(3), 370–378 (2010)
11.
go back to reference Krivtsov, A.M.: Deformation and destruction of microstructured solids. Fizmatlit Publ., Moscow, 304 p (2007). (in Russian) Krivtsov, A.M.: Deformation and destruction of microstructured solids. Fizmatlit Publ., Moscow, 304 p (2007). (in Russian)
12.
go back to reference Askar, A.: Lattice Dynamics Foundation of Continuum Theory. World-Scientific, Singapore (1985) Askar, A.: Lattice Dynamics Foundation of Continuum Theory. World-Scientific, Singapore (1985)
13.
go back to reference Berglund K.: Structural models of micropolar media. In: Mechanics of Micropolar Media. Brulin, O., Hsieh, R.K.T. (eds.) World Scientific, Singapore, pp. 35–86 (1982) Berglund K.: Structural models of micropolar media. In: Mechanics of Micropolar Media. Brulin, O., Hsieh, R.K.T. (eds.) World Scientific, Singapore, pp. 35–86 (1982)
14.
go back to reference Ostoja-Starzewski, M., Sheng, P.Y., Alzebdeh, K.: Spring network models in elasticity and fracture of composites and polycrystals. Comput. Mater. Sci. 7, 82–93 (1996)CrossRef Ostoja-Starzewski, M., Sheng, P.Y., Alzebdeh, K.: Spring network models in elasticity and fracture of composites and polycrystals. Comput. Mater. Sci. 7, 82–93 (1996)CrossRef
15.
go back to reference Pavlov, I.S.: Acoustic Identification of the anisotropic nanocrystalline medium with non-dense packing of particles. Acoust. Phys. 56(6), 924–934 (2010)CrossRef Pavlov, I.S.: Acoustic Identification of the anisotropic nanocrystalline medium with non-dense packing of particles. Acoust. Phys. 56(6), 924–934 (2010)CrossRef
16.
go back to reference Pavlov, I.S., Vasiliev, A.A., Porubov, A.V.: Dispersion properties of the phononic crystal consisting of ellipse-shaped particles. J. Sound Vibr. 384, 163–176 (2016)CrossRef Pavlov, I.S., Vasiliev, A.A., Porubov, A.V.: Dispersion properties of the phononic crystal consisting of ellipse-shaped particles. J. Sound Vibr. 384, 163–176 (2016)CrossRef
17.
go back to reference Pavlov, I.S., Potapov, A.I.: Structural Models in Mechanics of Nanocrystalline Media. Dokl. Phys. 53(7), 408–412 (2008)CrossRef Pavlov, I.S., Potapov, A.I.: Structural Models in Mechanics of Nanocrystalline Media. Dokl. Phys. 53(7), 408–412 (2008)CrossRef
18.
go back to reference Potapov, A.I., Pavlov, I.S., Lisina, S.A.: Acoustic identification of nanocrystalline media. J. Sound Vib. 322(3), 564–580 (2009)CrossRef Potapov, A.I., Pavlov, I.S., Lisina, S.A.: Acoustic identification of nanocrystalline media. J. Sound Vib. 322(3), 564–580 (2009)CrossRef
19.
go back to reference Suiker, A.S.J., Metrikine, A.V., de Borst, R.: Comparison of wave propagation characteristics of the Cosserat continuum model and corresponding discrete lattice models. Int. J. Solids Struct. 38, 1563–1583 (2001) Suiker, A.S.J., Metrikine, A.V., de Borst, R.: Comparison of wave propagation characteristics of the Cosserat continuum model and corresponding discrete lattice models. Int. J. Solids Struct. 38, 1563–1583 (2001)
20.
go back to reference Suiker, A.S.J., Metrikine, A.V., de Borst, R.: Dynamic behaviour of a layer of discrete particles. Part 1: analysis of body waves and eigenmodes. J Sound Vib. 240(1), 1–18 (2001) Suiker, A.S.J., Metrikine, A.V., de Borst, R.: Dynamic behaviour of a layer of discrete particles. Part 1: analysis of body waves and eigenmodes. J Sound Vib. 240(1), 1–18 (2001)
23.
go back to reference Erofeev, V.I., Pavlov, I.S., Vasiliev, A.A., Porubov, A.V.: Dispersion properties of a closed-packed lattice consisting of round particles. In: Altenbach, H., et al. (eds.) Generalized Models and Non-classical Approaches in Complex Materials 2, Advanced Structured Materials 90. © Springer International Publishing AG, part of Springer Nature 2018, pp. 101–117 Erofeev, V.I., Pavlov, I.S., Vasiliev, A.A., Porubov, A.V.: Dispersion properties of a closed-packed lattice consisting of round particles. In: Altenbach, H., et al. (eds.) Generalized Models and Non-classical Approaches in Complex Materials 2, Advanced Structured Materials 90. © Springer International Publishing AG, part of Springer Nature 2018, pp. 101–117
24.
go back to reference Sedov, L.I.: Models of continuous media with internal degrees of freedom. J. Appl. Math. Mech. 32(5), 803–819 (1968)CrossRef Sedov, L.I.: Models of continuous media with internal degrees of freedom. J. Appl. Math. Mech. 32(5), 803–819 (1968)CrossRef
25.
go back to reference Sedov, L.I.: Mechanics of continuous medium. World Scientific Publ, Singapore, vol. 1, (1997) Sedov, L.I.: Mechanics of continuous medium. World Scientific Publ, Singapore, vol. 1, (1997)
26.
go back to reference Potapov, A.I., Pavlov, I.S., Maugin, G.A.: Nonlinear wave interactions in 1D crystals with complex lattice. Wave Motion 29, 297–312 (1999) Potapov, A.I., Pavlov, I.S., Maugin, G.A.: Nonlinear wave interactions in 1D crystals with complex lattice. Wave Motion 29, 297–312 (1999)
27.
go back to reference Bogomolov, V.N., Parfen’eva, L.S., Smirnov, I.A., Misiorek, H., Jzowski, A.: Phonon propagation through photonic crystals—media with spatially modulated acoustic properties. Phys. Solis State 44, 181–185 (2002) Bogomolov, V.N., Parfen’eva, L.S., Smirnov, I.A., Misiorek, H., Jzowski, A.: Phonon propagation through photonic crystals—media with spatially modulated acoustic properties. Phys. Solis State 44, 181–185 (2002)
28.
go back to reference Vetrov, S.Y., Timofeev, I.V., Rudakova, N.V.: Band structure of a two-dimensional resonant photonic crystal. Phys. Solid State 52, 527–532 (2010) Vetrov, S.Y., Timofeev, I.V., Rudakova, N.V.: Band structure of a two-dimensional resonant photonic crystal. Phys. Solid State 52, 527–532 (2010)
29.
go back to reference Yablonovitch, E., Gmitter, T.J., Leung, K.M.: Photonic band structure: The face-centered cubic case employing nonspherical atoms. Phys. Rev. Lett. 67, 2295 (1991) Yablonovitch, E., Gmitter, T.J., Leung, K.M.: Photonic band structure: The face-centered cubic case employing nonspherical atoms. Phys. Rev. Lett. 67, 2295 (1991)
30.
go back to reference Fujii, M., Kanzaea, Y., Hayashi, S., Yamamoto, K.: Raman scattering from acoustic phonons confined in Si nanocrystals. Phys Rev. B 54, R8373 (1996)CrossRef Fujii, M., Kanzaea, Y., Hayashi, S., Yamamoto, K.: Raman scattering from acoustic phonons confined in Si nanocrystals. Phys Rev. B 54, R8373 (1996)CrossRef
31.
go back to reference Kushwaha, M.S., Halevi, P., Martinez, G., Dobrzynski, L., Djafari-Rouhani, B.: Theory of band structure of periodic elastic composites. Phys. Rev. B 49, 2313 (1994) Kushwaha, M.S., Halevi, P., Martinez, G., Dobrzynski, L., Djafari-Rouhani, B.: Theory of band structure of periodic elastic composites. Phys. Rev. B 49, 2313 (1994)
32.
go back to reference Samusev, K.B., Rybin, M.V., Limonov, M.F., Yushin, G.N.: Structural parameters of synthetic opals: statistical analysis of electron microscopy images. Phys. Solid State 50(7), 1280–1286 (2008)CrossRef Samusev, K.B., Rybin, M.V., Limonov, M.F., Yushin, G.N.: Structural parameters of synthetic opals: statistical analysis of electron microscopy images. Phys. Solid State 50(7), 1280–1286 (2008)CrossRef
33.
go back to reference Stroscio, M.A., Dutta, M.: Phonons in nanostructures. Cambridge University Press, 274 p (2001) Stroscio, M.A., Dutta, M.: Phonons in nanostructures. Cambridge University Press, 274 p (2001)
34.
go back to reference Pierce, J.R., Almost All about Waves, Dover Publications (2006) Pierce, J.R., Almost All about Waves, Dover Publications (2006)
35.
go back to reference Normal waves. In: Prokhorov, A.M., (ed.) The physical encyclopedia in 5 volumes. The Big Russian encyclopedia, Moscow, vol. 3. p. 360 (1992). (in Russian) Normal waves. In: Prokhorov, A.M., (ed.) The physical encyclopedia in 5 volumes. The Big Russian encyclopedia, Moscow, vol. 3. p. 360 (1992). (in Russian)
36.
go back to reference Ostrovsky, L.A., Papko, V.V., Pelinovsky, E.N.: Solitary electromagnetic waves in nonlinear lines. Radiophys. Quantum Electron. 15, 438–446 (1972)CrossRef Ostrovsky, L.A., Papko, V.V., Pelinovsky, E.N.: Solitary electromagnetic waves in nonlinear lines. Radiophys. Quantum Electron. 15, 438–446 (1972)CrossRef
37.
go back to reference Ostrovsky, L.A., Potapov, A.I.: Modulated waves: theory and applications. The Johns Hopkins University Press, Baltimore, MD (1999) Ostrovsky, L.A., Potapov, A.I.: Modulated waves: theory and applications. The Johns Hopkins University Press, Baltimore, MD (1999)
38.
go back to reference Vinogradova, M.B., Rudenko, O.V., Sukhorukov, A.P.: Theory of Waves. Nauka, Moscow (1990). (in Russian) Vinogradova, M.B., Rudenko, O.V., Sukhorukov, A.P.: Theory of Waves. Nauka, Moscow (1990). (in Russian)
39.
go back to reference Kittel, C.: Introduction to Solid State Physics. 8th edn. Wiley, Inc., (2005) Kittel, C.: Introduction to Solid State Physics. 8th edn. Wiley, Inc., (2005)
40.
go back to reference Kaganov, M.I.: Electrons, Phonons, Magnons, 268 pp. English Translation. Mir Publishers, Moscow (1981) Kaganov, M.I.: Electrons, Phonons, Magnons, 268 pp. English Translation. Mir Publishers, Moscow (1981)
41.
go back to reference Nikitenkova, S.P., Potapov, A.I.: Dispersion properties of two-dimensional phonon crystals with a hexagonal structure. Acoust. Phys. 56(6), 909–918 (2010)CrossRef Nikitenkova, S.P., Potapov, A.I.: Dispersion properties of two-dimensional phonon crystals with a hexagonal structure. Acoust. Phys. 56(6), 909–918 (2010)CrossRef
42.
go back to reference Potapov, A.I., Pavlov, I.S., Nikitenkova, S.P., Shudyaev, A.A.: Structural models in nanoacoustics: control of dispersion properties of phonon crystals. Acoustics of inhomogeneous media. In: Proceedings of the Russian acoustic society, GEOS, Moscow, no 10, pp. 9–16 (2009). (in Russian) Potapov, A.I., Pavlov, I.S., Nikitenkova, S.P., Shudyaev, A.A.: Structural models in nanoacoustics: control of dispersion properties of phonon crystals. Acoustics of inhomogeneous media. In: Proceedings of the Russian acoustic society, GEOS, Moscow, no 10, pp. 9–16 (2009). (in Russian)
43.
go back to reference Reisland, J.A.: Physics of Phonons. Wiley, London, New York, Sydney, Toronto (1973) Reisland, J.A.: Physics of Phonons. Wiley, London, New York, Sydney, Toronto (1973)
44.
go back to reference Porubov, A.V., Krivtsov, A.M., Osokina, A.E.: Two-dimensional waves in extended square lattice. Int. J. Non-Linear Mech. 99, 281–287 (2018) (бeз poтaциoнныx cтeпeнeй, yчeт нeлoкaльнocти, диcкpeтнaя мoдeль) Porubov, A.V., Krivtsov, A.M., Osokina, A.E.: Two-dimensional waves in extended square lattice. Int. J. Non-Linear Mech. 99, 281–287 (2018) (бeз poтaциoнныx cтeпeнeй, yчeт нeлoкaльнocти, диcкpeтнaя мoдeль)
45.
go back to reference Potapov, A.I., Pavlov, I.S., Lisina, S.A.: Identification of nanocrystalline media by acoustic spectroscopy methods. Acoust. Phys. 56(4), 588–596 (2010)CrossRef Potapov, A.I., Pavlov, I.S., Lisina, S.A.: Identification of nanocrystalline media by acoustic spectroscopy methods. Acoust. Phys. 56(4), 588–596 (2010)CrossRef
46.
go back to reference Berryman, J.G.: Long-wavelength propagation in composite elastic media I, II. J. Acoust. Soc. Am. 68(6), 1809–1831 (1980)CrossRef Berryman, J.G.: Long-wavelength propagation in composite elastic media I, II. J. Acoust. Soc. Am. 68(6), 1809–1831 (1980)CrossRef
47.
go back to reference Goldshtein, R.V., Chentsov, A.V.: A discrete-continual model for a nanotube. Mech. Solids 4, 57–74 (2005) Goldshtein, R.V., Chentsov, A.V.: A discrete-continual model for a nanotube. Mech. Solids 4, 57–74 (2005)
48.
go back to reference Porubov, A.V., Aero, E.L., Maugin, G.A.: Two approaches to study essentially nonlinear and dispersive properties of the internal structure of materials. Phys. Rev. E79. 046608 (2009) Porubov, A.V., Aero, E.L., Maugin, G.A.: Two approaches to study essentially nonlinear and dispersive properties of the internal structure of materials. Phys. Rev. E79. 046608 (2009)
49.
go back to reference Vasiliev, A.A., Dmitriev, S.V., Miroshnichenko, A.E.: Multi-field approach in mechanics of structural solids. Int. J. Solids Struct. 47, 510–525 (2010) Vasiliev, A.A., Dmitriev, S.V., Miroshnichenko, A.E.: Multi-field approach in mechanics of structural solids. Int. J. Solids Struct. 47, 510–525 (2010)
50.
go back to reference Vasiliev, A.A, Dmitriev, S.V., Miroshnichenko, A.E.: Multi-field continuum theory for medium with microscopic rotations. Int. J. Solids Struct. 42, pp. 6245–6260 (2005) Vasiliev, A.A, Dmitriev, S.V., Miroshnichenko, A.E.: Multi-field continuum theory for medium with microscopic rotations. Int. J. Solids Struct. 42, pp. 6245–6260 (2005)
51.
go back to reference Vasiliev, A.A., Miroshnichenko A.E., Ruzzene, M.: Multifield model for Cosserat media. J. Mech. Mater. Struct. 3(7), 1365–1382 (2008) Vasiliev, A.A., Miroshnichenko A.E., Ruzzene, M.: Multifield model for Cosserat media. J. Mech. Mater. Struct. 3(7), 1365–1382 (2008)
52.
go back to reference Vasiliev, A.A., Miroshnichenko A.E., Dmitriev, S.V.: Multi-field modeling of a cosserat lattice: models, wave filtering, and boundary effects. Eur. J. Mech. A/Solids. 46, 96–105 (2014) Vasiliev, A.A., Miroshnichenko A.E., Dmitriev, S.V.: Multi-field modeling of a cosserat lattice: models, wave filtering, and boundary effects. Eur. J. Mech. A/Solids. 46, 96–105 (2014)
53.
go back to reference Andrianov, I.V., Kholod, E.G., Weichert, D.: Application of quasi-continuum models for perturbation analysis of discrete kinks. Nonlinear Dyn. 68, 1–5 (2012)CrossRef Andrianov, I.V., Kholod, E.G., Weichert, D.: Application of quasi-continuum models for perturbation analysis of discrete kinks. Nonlinear Dyn. 68, 1–5 (2012)CrossRef
Metadata
Title
A 2D Lattice with Dense Packing of the Particles
Authors
Vladimir I. Erofeev
Igor S. Pavlov
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-60330-4_2

Premium Partners