Skip to main content
Top
Published in: Journal of Materials Science 1/2015

01-01-2015 | Original Paper

A 3D micromechanical study of deformation curves and cell wall stresses in wood under transverse loading

Authors: Stefania Fortino, Petr Hradil, Lauri I. Salminen, Federica De Magistris

Published in: Journal of Materials Science | Issue 1/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The deformation of wood is analyzed using the finite element method to quantify the phenomena in wood cells and cell walls. The deformation curves of computed microstructures are compared to experimental observations in two different loading cases: compression and combination of shear and compression. Simulated and experimental shapes of deformation curves match qualitatively and the deformation shapes exhibit a similar response to change in the loading mode. We quantify the intra-cell-wall stresses to understand the effects of the different layers during the deformation. The results benefit the development of energy efficient mechanical and chemo-mechanical pulping processes for pulp, board, and composite manufacture. In addition, the aspects of cell deformation can be exploited to dismantle the wood to accelerate chemical reactions in biorefinery.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Modén CS, Berglund LA (2008) Elastic deformation mechanisms of softwood in radial tension: cell wall bending or stretching? Holzforschung 62:562–568CrossRef Modén CS, Berglund LA (2008) Elastic deformation mechanisms of softwood in radial tension: cell wall bending or stretching? Holzforschung 62:562–568CrossRef
2.
go back to reference Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties. Cambridge University Press, CambridgeCrossRef Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties. Cambridge University Press, CambridgeCrossRef
3.
go back to reference Kollmann FFP, Côté WA Jr (1968) Principles of wood science and technology. Springer- Verlag, HeidelbergCrossRef Kollmann FFP, Côté WA Jr (1968) Principles of wood science and technology. Springer- Verlag, HeidelbergCrossRef
4.
go back to reference Mishnaevsky L Jr, Qing H (2008) Micromechanical modelling of mechanical behaviour and strength of wood: state-of-the-art review. Comput Mater Sci 44:363–370CrossRef Mishnaevsky L Jr, Qing H (2008) Micromechanical modelling of mechanical behaviour and strength of wood: state-of-the-art review. Comput Mater Sci 44:363–370CrossRef
5.
go back to reference Qing H, Mishnaevsky L Jr (2010) 3D multiscale micromechanical model of wood: From annual rings to microfibrils. Int J Solids Struct 47:1253–1267CrossRef Qing H, Mishnaevsky L Jr (2010) 3D multiscale micromechanical model of wood: From annual rings to microfibrils. Int J Solids Struct 47:1253–1267CrossRef
6.
go back to reference Barnett JR, Bonham VA (2004) Cellulose microfibril angle in the cell wall of wood fibres. Biol Rev 79:461–472CrossRef Barnett JR, Bonham VA (2004) Cellulose microfibril angle in the cell wall of wood fibres. Biol Rev 79:461–472CrossRef
7.
go back to reference Konnerth J, Buksnowitz C, Gindl W, Hofstetter K, Jäger A (2010) Full set of elastic constants of spruce wood cell walls determined by nanoindentation. In: Proceedings of the International Convention of Society of Wood Science and Technology and United Nations Economic Commission for Europe – Timber Committee October 11–14, 2010, Geneva, Switzerland Konnerth J, Buksnowitz C, Gindl W, Hofstetter K, Jäger A (2010) Full set of elastic constants of spruce wood cell walls determined by nanoindentation. In: Proceedings of the International Convention of Society of Wood Science and Technology and United Nations Economic Commission for Europe – Timber Committee October 11–14, 2010, Geneva, Switzerland
8.
go back to reference Dvinskikh SV, Henriksson M, Mendicino AL, Fortino S, Toratti T (2011) NMR imaging study and multi-Fickian numerical simulation of the moisture transfer in Norway spruce samples. Eng Struct 33:3079–3086CrossRef Dvinskikh SV, Henriksson M, Mendicino AL, Fortino S, Toratti T (2011) NMR imaging study and multi-Fickian numerical simulation of the moisture transfer in Norway spruce samples. Eng Struct 33:3079–3086CrossRef
9.
go back to reference Salmén L, Burgert I (2009) Cell wall features with regard to mechanical performance. A review COST Action E35 2004-2008: wood machining: micromechanics and fracture. Holzforschung 63(2):121–129CrossRef Salmén L, Burgert I (2009) Cell wall features with regard to mechanical performance. A review COST Action E35 2004-2008: wood machining: micromechanics and fracture. Holzforschung 63(2):121–129CrossRef
10.
go back to reference Hofstetter K, Gamstedt E (2009) Hierarchical modelling of microstructural effects on mechanical properties of wood: a review. Holzforschung 63:130–138CrossRef Hofstetter K, Gamstedt E (2009) Hierarchical modelling of microstructural effects on mechanical properties of wood: a review. Holzforschung 63:130–138CrossRef
11.
go back to reference Eitelberger J, Hofstetter K (2010) Multiscale homogenization of wood transport properties: diffusion coefficients for steady-state moisture transport. Wood Mat Sci Eng 5(2):97–103CrossRef Eitelberger J, Hofstetter K (2010) Multiscale homogenization of wood transport properties: diffusion coefficients for steady-state moisture transport. Wood Mat Sci Eng 5(2):97–103CrossRef
12.
go back to reference De Magistris F, Salmén L (2005) Deformation of wet wood under combined shear and compression. Wood Sci Technol 39:460–471CrossRef De Magistris F, Salmén L (2005) Deformation of wet wood under combined shear and compression. Wood Sci Technol 39:460–471CrossRef
13.
go back to reference De Magistris F, Salmén L (2006) Mechanical behaviour of wet wood in sequences of compression and combined compression and shear. Nord Pulp Pap Res J 21(2):231–236CrossRef De Magistris F, Salmén L (2006) Mechanical behaviour of wet wood in sequences of compression and combined compression and shear. Nord Pulp Pap Res J 21(2):231–236CrossRef
14.
go back to reference De Magistris F, Salmén L (2008) Finite element modelling of wood cell deformation transverse to the fibre axis. Nord Pulp Pap Res J 23(2):240–246CrossRef De Magistris F, Salmén L (2008) Finite element modelling of wood cell deformation transverse to the fibre axis. Nord Pulp Pap Res J 23(2):240–246CrossRef
15.
go back to reference Persson K (2000) Micromechanical modelling of wood and fibre properties, PhD Thesis, Lund University, Department of Mechanics and Materials, Lund, Sweden Persson K (2000) Micromechanical modelling of wood and fibre properties, PhD Thesis, Lund University, Department of Mechanics and Materials, Lund, Sweden
16.
go back to reference Tsai SW, Hahn HT (1980) Introduction to composite materials, In: Technomic pub. Lancaster Tsai SW, Hahn HT (1980) Introduction to composite materials, In: Technomic pub. Lancaster
17.
go back to reference Nairn JA (2006) Numerical simulations of transverse compression and densification in wood. Wood Fiber Sci 38(4):576–591 Nairn JA (2006) Numerical simulations of transverse compression and densification in wood. Wood Fiber Sci 38(4):576–591
18.
go back to reference Muzamal M, Gamstedt EK, Rasmuson A (2014) Modeling wood fiber deformation caused by vapour expansion during steam explosion of wood. Wood Sci Technol 48:353–372CrossRef Muzamal M, Gamstedt EK, Rasmuson A (2014) Modeling wood fiber deformation caused by vapour expansion during steam explosion of wood. Wood Sci Technol 48:353–372CrossRef
19.
go back to reference Bergander A (2001) Local variability in the chemical and physical properties of spruce wood fibers, PhD Thesis, KTH, Department of Pulp and Paper Chemistry and Technology, Stockholm, Sweden Bergander A (2001) Local variability in the chemical and physical properties of spruce wood fibers, PhD Thesis, KTH, Department of Pulp and Paper Chemistry and Technology, Stockholm, Sweden
20.
go back to reference Thuvander F, Kifetew G, Berglund L (2002) Modelling of cell wall drying stresses in wood. Wood Sci Technol 36(3):241–254CrossRef Thuvander F, Kifetew G, Berglund L (2002) Modelling of cell wall drying stresses in wood. Wood Sci Technol 36(3):241–254CrossRef
21.
go back to reference Keunecke D, Sonderegger W, Pereteanu K, Luthi T, Niemz P (2007) Determination of Young’s and shear moduli of common yew and Norway spruce by means of ultrasonic waves. Wood Sci Technol 41:309–327CrossRef Keunecke D, Sonderegger W, Pereteanu K, Luthi T, Niemz P (2007) Determination of Young’s and shear moduli of common yew and Norway spruce by means of ultrasonic waves. Wood Sci Technol 41:309–327CrossRef
22.
go back to reference Salmén L, Fellers C (1982) The fundamentals of energy consumption during viscoelastic and plastic deformation of wood. Pulp Pap Can Trans Tech 4(9):93–99 Salmén L, Fellers C (1982) The fundamentals of energy consumption during viscoelastic and plastic deformation of wood. Pulp Pap Can Trans Tech 4(9):93–99
23.
go back to reference Abaqus User’s Manual (2013) Version 6.13-2, Dassault Systèmes Abaqus User’s Manual (2013) Version 6.13-2, Dassault Systèmes
24.
go back to reference Alart P, Barboteu M, Gril J (2004) A numerical modelling of non linear 2D-frictional multicontact problems: application to post-buckling in cellular media. Comput Mech 34:298–309CrossRef Alart P, Barboteu M, Gril J (2004) A numerical modelling of non linear 2D-frictional multicontact problems: application to post-buckling in cellular media. Comput Mech 34:298–309CrossRef
25.
go back to reference Masters IG, Evans KE (1997) Models for the elastic deformation of honeycombs. Compos Struct 35:403–422CrossRef Masters IG, Evans KE (1997) Models for the elastic deformation of honeycombs. Compos Struct 35:403–422CrossRef
26.
go back to reference Krauss A, Molinski W, Kúdela J, Cunderlík I (2011) Differences in the mechanical properties of early and late wood within individual annual rings in dominant pine tree (Pinus sylvestris L.). Wood Res 56(1):1–12 Krauss A, Molinski W, Kúdela J, Cunderlík I (2011) Differences in the mechanical properties of early and late wood within individual annual rings in dominant pine tree (Pinus sylvestris L.). Wood Res 56(1):1–12
27.
go back to reference Mackenzie-Helnwein P, Müllner H, Eberhardsteiner J, Mang H (2005) Analysis of layered wooden shells using an orthotropic elasto-plastic model for multi-axial loading of clear spruce wood. Comput Methods Appl Mech Eng 194:2661–2685CrossRef Mackenzie-Helnwein P, Müllner H, Eberhardsteiner J, Mang H (2005) Analysis of layered wooden shells using an orthotropic elasto-plastic model for multi-axial loading of clear spruce wood. Comput Methods Appl Mech Eng 194:2661–2685CrossRef
28.
go back to reference de Borst K, Jenkel C, Montero C, Colmars J, Gril J, Kaliske M, Eberhardsteiner J (2012) Mechanical characterization of wood: an integrative approach ranging from nanoscale to structure. Comput Struct 89:476–484 de Borst K, Jenkel C, Montero C, Colmars J, Gril J, Kaliske M, Eberhardsteiner J (2012) Mechanical characterization of wood: an integrative approach ranging from nanoscale to structure. Comput Struct 89:476–484
29.
go back to reference Oudjene M, Khelifa M (2009) Elasto-plastic constitutive law for wood behaviour under compressive loadings. Constr Build Mater 23:3359–3366CrossRef Oudjene M, Khelifa M (2009) Elasto-plastic constitutive law for wood behaviour under compressive loadings. Constr Build Mater 23:3359–3366CrossRef
Metadata
Title
A 3D micromechanical study of deformation curves and cell wall stresses in wood under transverse loading
Authors
Stefania Fortino
Petr Hradil
Lauri I. Salminen
Federica De Magistris
Publication date
01-01-2015
Publisher
Springer US
Published in
Journal of Materials Science / Issue 1/2015
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-014-8608-2

Other articles of this Issue 1/2015

Journal of Materials Science 1/2015 Go to the issue

Premium Partners