Skip to main content
Top

2017 | OriginalPaper | Chapter

8. A Basic Overview of Fuel Cells: Thermodynamics and Cell Efficiency

Authors : Narcis Duteanu, Adriana Balasoiu, Pritha Chatterjee, Makarand M. Ghangrekar

Published in: Organic-Inorganic Composite Polymer Electrolyte Membranes

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the last century, there has been rapid urbanization leading to increased energy demand with an ever increasing load on nonrenewable resources and subsequent escalation of pollution. A viable solution to these two problems can be a power supply technology that is able to produce energy with minimum or zero pollutant emission into the environment. Fuel cells appear to be an eco-friendly power supply technology. Main advantage of fuel cell technology is represented by direct conversion of fuels into electrical energy, with zero emissions, when hydrogen is used as fuel. This article describes the basic overview of fuel cell technology in order to better understand the construction and also the working principle of this eco-friendly technology.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Barbir F (2005) PEM fuel cells: theory and practice. Elsevier Academic Press Barbir F (2005) PEM fuel cells: theory and practice. Elsevier Academic Press
2.
go back to reference Energy USDo (2013) Fuel cell technologies overview (cited 10 Mar 2016) Energy USDo (2013) Fuel cell technologies overview (cited 10 Mar 2016)
4.
5.
go back to reference Scott K et al (2012) Biological and microbial fuel cells. In: Sayigh A (ed) Comprehensive renewable energy. Elsevier, Amsterdam, pp 257–280 Scott K et al (2012) Biological and microbial fuel cells. In: Sayigh A (ed) Comprehensive renewable energy. Elsevier, Amsterdam, pp 257–280
6.
go back to reference EG&G Technical Services I (2004) Fuel cell handbook, 7th edn. U.S. Department of Energy, Morgantown, West Virginia 26507 - 0880 EG&G Technical Services I (2004) Fuel cell handbook, 7th edn. U.S. Department of Energy, Morgantown, West Virginia 26507 - 0880
7.
go back to reference Mekhilef S, Saidur R, Safari A (2012) Comparative study of different fuel cell technologies. Renew Sustain Energy Rev 16(1):981–989CrossRef Mekhilef S, Saidur R, Safari A (2012) Comparative study of different fuel cell technologies. Renew Sustain Energy Rev 16(1):981–989CrossRef
8.
go back to reference Kirubakaran A, Jain S, Nema RK (2009) A review on fuel cell technologies and power electronic interface. Renew Sustain Energy Rev 13(9):2430–2440CrossRef Kirubakaran A, Jain S, Nema RK (2009) A review on fuel cell technologies and power electronic interface. Renew Sustain Energy Rev 13(9):2430–2440CrossRef
9.
go back to reference Merle G, Wessling M, Nijmeijer K (2011) Anion exchange membranes for alkaline fuel cells: a review. J Membr Sci 377(1–2):1–35CrossRef Merle G, Wessling M, Nijmeijer K (2011) Anion exchange membranes for alkaline fuel cells: a review. J Membr Sci 377(1–2):1–35CrossRef
10.
go back to reference Liu Y et al (2016) A review of high-temperature polymer electrolyte membrane fuel-cell (HT-PEMFC)-based auxiliary power units for diesel-powered road vehicles. J Power Sources 311:91–102CrossRef Liu Y et al (2016) A review of high-temperature polymer electrolyte membrane fuel-cell (HT-PEMFC)-based auxiliary power units for diesel-powered road vehicles. J Power Sources 311:91–102CrossRef
12.
go back to reference Cao D, Sun Y, Wang G (2007) Direct carbon fuel cell: fundamentals and recent developments. J Power Sources 167(2):250–257CrossRef Cao D, Sun Y, Wang G (2007) Direct carbon fuel cell: fundamentals and recent developments. J Power Sources 167(2):250–257CrossRef
13.
go back to reference Duteanu N et al (2007) A parametric study of a platinum ruthenium anode in a direct borohydride fuel cell. J Appl Electrochem 37(9):1085–1091CrossRef Duteanu N et al (2007) A parametric study of a platinum ruthenium anode in a direct borohydride fuel cell. J Appl Electrochem 37(9):1085–1091CrossRef
14.
go back to reference Scott K et al (2008) Performance of a direct methanol alkaline membrane fuel cell. J Power Sources 175(1):452–457CrossRef Scott K et al (2008) Performance of a direct methanol alkaline membrane fuel cell. J Power Sources 175(1):452–457CrossRef
15.
go back to reference Sharaf OZ, Orhan MF (2014) An overview of fuel cell technology: Fundamentals and applications. Renew Sustain Energy Rev 32:810–853CrossRef Sharaf OZ, Orhan MF (2014) An overview of fuel cell technology: Fundamentals and applications. Renew Sustain Energy Rev 32:810–853CrossRef
16.
go back to reference Srinivasan S et al (1991) Proceedings of the third space electrochemical research and technology conference. High energy efficiency and high power density proton exchange membrane fuel cells–electrode kinetics and mass transport. J Power Sources 36(3):299–320CrossRef Srinivasan S et al (1991) Proceedings of the third space electrochemical research and technology conference. High energy efficiency and high power density proton exchange membrane fuel cells–electrode kinetics and mass transport. J Power Sources 36(3):299–320CrossRef
17.
go back to reference Straßer K (1990) PEM-fuel cells: state of the art and development possibilities. Ber Bunsenges Phys Chem 94(9):1000–1005CrossRef Straßer K (1990) PEM-fuel cells: state of the art and development possibilities. Ber Bunsenges Phys Chem 94(9):1000–1005CrossRef
18.
go back to reference Gurau V et al (2007) Characterization of transport properties in gas diffusion layers for proton exchange membrane fuel cells: 2. Absolute permeability. J Power Sources 165(2):793–802CrossRef Gurau V et al (2007) Characterization of transport properties in gas diffusion layers for proton exchange membrane fuel cells: 2. Absolute permeability. J Power Sources 165(2):793–802CrossRef
19.
go back to reference Prater KB (1992) Proceedings of the second Grove fuel cell symposium. Progress in fuel cell commercialisation. Solid polymer fuel cell developments at Ballard. J Power Sources 37(1):181–188 Prater KB (1992) Proceedings of the second Grove fuel cell symposium. Progress in fuel cell commercialisation. Solid polymer fuel cell developments at Ballard. J Power Sources 37(1):181–188
20.
go back to reference Wilson MS, Gottesfeld S (1992) Thin-film catalyst layers for polymer electrolyte fuel cell electrodes. J Appl Electrochem 22(1):1–7CrossRef Wilson MS, Gottesfeld S (1992) Thin-film catalyst layers for polymer electrolyte fuel cell electrodes. J Appl Electrochem 22(1):1–7CrossRef
21.
go back to reference Wasmus S, Küver A (1999) Methanol oxidation and direct methanol fuel cells: a selective review. J Electroanal Chem 461(1–2):14–31CrossRef Wasmus S, Küver A (1999) Methanol oxidation and direct methanol fuel cells: a selective review. J Electroanal Chem 461(1–2):14–31CrossRef
22.
go back to reference Biyikoglu A (2005) Review of proton exchange membrane fuel cell models. Int J Hydrogen Energy 30(11):1181–1212CrossRef Biyikoglu A (2005) Review of proton exchange membrane fuel cell models. Int J Hydrogen Energy 30(11):1181–1212CrossRef
23.
go back to reference Strasser K (1992) Proceedings of the second Grove fuel cell symposium. Progress in fuel cell commercialisation. Mobile fuel cell development at Siemens. J Power Sources 37(1):209–219 Strasser K (1992) Proceedings of the second Grove fuel cell symposium. Progress in fuel cell commercialisation. Mobile fuel cell development at Siemens. J Power Sources 37(1):209–219
24.
go back to reference Wang ZH, Wang CY, Chen KS (2001) Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells. J Power Sources 94(1):40–50CrossRef Wang ZH, Wang CY, Chen KS (2001) Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells. J Power Sources 94(1):40–50CrossRef
25.
go back to reference Gurau V et al (2006) Characterization of transport properties in gas diffusion layers for proton exchange membrane fuel cells: 1. Wettability (internal contact angle to water and surface energy of GDL fibers). J Power Sources 160(2):1156–1162CrossRef Gurau V et al (2006) Characterization of transport properties in gas diffusion layers for proton exchange membrane fuel cells: 1. Wettability (internal contact angle to water and surface energy of GDL fibers). J Power Sources 160(2):1156–1162CrossRef
26.
go back to reference Zhou W et al (2003) Pt based anode catalysts for direct ethanol fuel cells. Appl Catal B 46(2):273–285CrossRef Zhou W et al (2003) Pt based anode catalysts for direct ethanol fuel cells. Appl Catal B 46(2):273–285CrossRef
27.
go back to reference Shukla S et al (2015) Analysis of low platinum loading thin polymer electrolyte fuel cell electrodes prepared by inkjet printing. Electrochim Acta 156:289–300CrossRef Shukla S et al (2015) Analysis of low platinum loading thin polymer electrolyte fuel cell electrodes prepared by inkjet printing. Electrochim Acta 156:289–300CrossRef
28.
go back to reference Oh H-S et al (2009) Corrosion resistance and sintering effect of carbon supports in polymer electrolyte membrane fuel cells. Electrochim Acta 54(26):6515–6521CrossRef Oh H-S et al (2009) Corrosion resistance and sintering effect of carbon supports in polymer electrolyte membrane fuel cells. Electrochim Acta 54(26):6515–6521CrossRef
29.
go back to reference Alcaide F et al (2009) Pt supported on carbon nanofibers as electrocatalyst for low temperature polymer electrolyte membrane fuel cells. Electrochem Commun 11(5):1081–1084CrossRef Alcaide F et al (2009) Pt supported on carbon nanofibers as electrocatalyst for low temperature polymer electrolyte membrane fuel cells. Electrochem Commun 11(5):1081–1084CrossRef
30.
go back to reference Guha A et al (2007) Surface-modified carbons as platinum catalyst support for PEM fuel cells. Carbon 45(7):1506–1517CrossRef Guha A et al (2007) Surface-modified carbons as platinum catalyst support for PEM fuel cells. Carbon 45(7):1506–1517CrossRef
31.
go back to reference Subramanian NP et al (2009) Nitrogen-modified carbon-based catalysts for oxygen reduction reaction in polymer electrolyte membrane fuel cells. J Power Sources 188(1):38–44CrossRef Subramanian NP et al (2009) Nitrogen-modified carbon-based catalysts for oxygen reduction reaction in polymer electrolyte membrane fuel cells. J Power Sources 188(1):38–44CrossRef
32.
go back to reference Calvillo L et al (2009) Effect of the support properties on the preparation and performance of platinum catalysts supported on carbon nanofibers. J Power Sources 192(1):144–150CrossRef Calvillo L et al (2009) Effect of the support properties on the preparation and performance of platinum catalysts supported on carbon nanofibers. J Power Sources 192(1):144–150CrossRef
33.
go back to reference Calvillo L et al (2007) Platinum supported on functionalized ordered mesoporous carbon as electrocatalyst for direct methanol fuel cells. J Power Sources 169(1):59–64CrossRef Calvillo L et al (2007) Platinum supported on functionalized ordered mesoporous carbon as electrocatalyst for direct methanol fuel cells. J Power Sources 169(1):59–64CrossRef
34.
go back to reference Sebastian D et al (2009) Carbon nanofibers as electrocatalyst support for fuel cells: effect of hydrogen on their properties in CH4 decomposition. J Power Sources 192(1):51–56CrossRef Sebastian D et al (2009) Carbon nanofibers as electrocatalyst support for fuel cells: effect of hydrogen on their properties in CH4 decomposition. J Power Sources 192(1):51–56CrossRef
35.
go back to reference Andersen SM et al (2013) Durability of carbon nanofiber (CNF) & carbon nanotube (CNT) as catalyst support for proton exchange membrane fuel cells, pp 94–101 Andersen SM et al (2013) Durability of carbon nanofiber (CNF) & carbon nanotube (CNT) as catalyst support for proton exchange membrane fuel cells, pp 94–101
36.
go back to reference Sebastian D et al (2010) Influence of carbon nanofiber properties as electrocatalyst support on the electrochemical performance for PEM fuel cells. Int J Hydrogen Energy 35(18):9934–9942CrossRef Sebastian D et al (2010) Influence of carbon nanofiber properties as electrocatalyst support on the electrochemical performance for PEM fuel cells. Int J Hydrogen Energy 35(18):9934–9942CrossRef
37.
go back to reference Li YH et al (2016) Preparation of platinum catalysts supported on functionalized graphene and the electrocatalytic properties for ethanol oxidation in direct ethanol fuel cell. J Mater Sci Mater Electron 27(6):6208–6215CrossRef Li YH et al (2016) Preparation of platinum catalysts supported on functionalized graphene and the electrocatalytic properties for ethanol oxidation in direct ethanol fuel cell. J Mater Sci Mater Electron 27(6):6208–6215CrossRef
38.
go back to reference Peighambardoust SJ, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell applications. Int J Hydrogen Energy 35(17):9349–9384CrossRef Peighambardoust SJ, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell applications. Int J Hydrogen Energy 35(17):9349–9384CrossRef
39.
go back to reference An L, Chen R (2016) Direct formate fuel cells: a review. J Power Sources 320:127–139CrossRef An L, Chen R (2016) Direct formate fuel cells: a review. J Power Sources 320:127–139CrossRef
40.
go back to reference Antolini E, Gonzalez ER (2010) Alkaline direct alcohol fuel cells. J Power Sources 195(11):3431–3450CrossRef Antolini E, Gonzalez ER (2010) Alkaline direct alcohol fuel cells. J Power Sources 195(11):3431–3450CrossRef
41.
go back to reference Rimbu GA, Jackson CL, Scott K (2006) Platinum/carbon/polyaniline based nanocomposites as catalysts for fuel cell technology. J Optoelectron Adv Mater 8(2):611–616 Rimbu GA, Jackson CL, Scott K (2006) Platinum/carbon/polyaniline based nanocomposites as catalysts for fuel cell technology. J Optoelectron Adv Mater 8(2):611–616
42.
go back to reference Zhao TS, Li YS, Shen SY (2010) Anion-exchange membrane direct ethanol fuel cells: Status and perspective. Front Energy Power Eng Chin 4(4):443–458CrossRef Zhao TS, Li YS, Shen SY (2010) Anion-exchange membrane direct ethanol fuel cells: Status and perspective. Front Energy Power Eng Chin 4(4):443–458CrossRef
43.
go back to reference Zheng Y et al (2016) Platinum nanoparticles on carbon-nanotube support prepared by room-temperature reduction with H2 in ethylene glycol/water mixed solvent as catalysts for polymer electrolyte membrane fuel cells, 448–453 Zheng Y et al (2016) Platinum nanoparticles on carbon-nanotube support prepared by room-temperature reduction with H2 in ethylene glycol/water mixed solvent as catalysts for polymer electrolyte membrane fuel cells, 448–453
44.
go back to reference Antolini E (2015) Composite materials for polymer electrolyte membrane microbial fuel cells. Biosens Bioelectron 69:54–70CrossRef Antolini E (2015) Composite materials for polymer electrolyte membrane microbial fuel cells. Biosens Bioelectron 69:54–70CrossRef
45.
go back to reference Bayatsarmadi B, Peters A, Talemi P (2016) Catalytic polymeric electrodes for direct borohydride fuel cells. J Power Sources 322:26–30CrossRef Bayatsarmadi B, Peters A, Talemi P (2016) Catalytic polymeric electrodes for direct borohydride fuel cells. J Power Sources 322:26–30CrossRef
46.
go back to reference Cheddie D, Munroe N (2005) Review and comparison of approaches to proton exchange membrane fuel cell modeling. J Power Sources 147(1–2):72–84 Cheddie D, Munroe N (2005) Review and comparison of approaches to proton exchange membrane fuel cell modeling. J Power Sources 147(1–2):72–84
47.
go back to reference Giddey S et al (2012) A comprehensive review of direct carbon fuel cell technology. Prog Energy Combust Sci 38(3):360–399CrossRef Giddey S et al (2012) A comprehensive review of direct carbon fuel cell technology. Prog Energy Combust Sci 38(3):360–399CrossRef
48.
go back to reference Indig ME, Snyder RN (1962) Sodium borohydride, an interesting anodic fuel (1). J Electrochem Soc 109(11):1104–1106CrossRef Indig ME, Snyder RN (1962) Sodium borohydride, an interesting anodic fuel (1). J Electrochem Soc 109(11):1104–1106CrossRef
49.
go back to reference Iwan A, Malinowski M, Pasciak G (2015) Polymer fuel cell components modified by graphene: Electrodes, electrolytes and bipolar plates. Renew Sustain Energy Rev 49:954–967CrossRef Iwan A, Malinowski M, Pasciak G (2015) Polymer fuel cell components modified by graphene: Electrodes, electrolytes and bipolar plates. Renew Sustain Energy Rev 49:954–967CrossRef
50.
go back to reference Carrette L, Friedrich KA, Stimming U (2001) Fuel cells—fundamentals and applications. Fuel Cells 1(1):5–39CrossRef Carrette L, Friedrich KA, Stimming U (2001) Fuel cells—fundamentals and applications. Fuel Cells 1(1):5–39CrossRef
51.
go back to reference Divisek J et al (1998) Components for PEM fuel cell systems using hydrogen and CO containing fuels. Electrochim Acta 43(24):3811–3815CrossRef Divisek J et al (1998) Components for PEM fuel cell systems using hydrogen and CO containing fuels. Electrochim Acta 43(24):3811–3815CrossRef
52.
go back to reference Litster S, McLean G (2004) PEM fuel cell electrodes. J Power Sources 130(1–2):61–76 Litster S, McLean G (2004) PEM fuel cell electrodes. J Power Sources 130(1–2):61–76
53.
go back to reference Cindrella L et al (2009) Gas diffusion layer for proton exchange membrane fuel cells—a review. J Power Sources 194(1):146–160CrossRef Cindrella L et al (2009) Gas diffusion layer for proton exchange membrane fuel cells—a review. J Power Sources 194(1):146–160CrossRef
54.
go back to reference Oedegaard A et al (2004) Influence of diffusion layer properties on low temperature DMFC. J Power Sources 127(1–2):187–196 Oedegaard A et al (2004) Influence of diffusion layer properties on low temperature DMFC. J Power Sources 127(1–2):187–196
55.
go back to reference Neergat M, Shukla AK (2002) Effect of diffusion-layer morphology on the performance of solid-polymer-electrolyte direct methanol fuel cells. J Power Sources 104(2):289–294CrossRef Neergat M, Shukla AK (2002) Effect of diffusion-layer morphology on the performance of solid-polymer-electrolyte direct methanol fuel cells. J Power Sources 104(2):289–294CrossRef
56.
go back to reference Feser JP, Prasad AK, Advani SG (2006) Experimental characterization of in-plane permeability of gas diffusion layers. J Power Sources 162(2):1226–1231CrossRef Feser JP, Prasad AK, Advani SG (2006) Experimental characterization of in-plane permeability of gas diffusion layers. J Power Sources 162(2):1226–1231CrossRef
57.
go back to reference Song M, Kim HY, Kim K (2014) Effects of hydrophilic/hydrophobic properties of gas flow channels on liquid water transport in a serpentine polymer electrolyte membrane fuel cell. 19714–19721 Song M, Kim HY, Kim K (2014) Effects of hydrophilic/hydrophobic properties of gas flow channels on liquid water transport in a serpentine polymer electrolyte membrane fuel cell. 19714–19721
58.
go back to reference Zhang J et al (2006) High temperature PEM fuel cells. J Power Sources 160(2):872–891CrossRef Zhang J et al (2006) High temperature PEM fuel cells. J Power Sources 160(2):872–891CrossRef
59.
go back to reference Pan YH (2006) Advanced air-breathing direct methanol fuel cells for portable applications. J Power Sources 161(1):282–289CrossRef Pan YH (2006) Advanced air-breathing direct methanol fuel cells for portable applications. J Power Sources 161(1):282–289CrossRef
60.
go back to reference Escribano S, Aldebert P (1995) Electrodes for hydrogen/oxygen polymer electrolyte membrane fuel cells. Solid State Ionics 77:318–323CrossRef Escribano S, Aldebert P (1995) Electrodes for hydrogen/oxygen polymer electrolyte membrane fuel cells. Solid State Ionics 77:318–323CrossRef
61.
go back to reference Fischer A, Jindra J, Wendt H (1998) Porosity and catalyst utilization of thin layer cathodes in air operated PEM-fuel cells. J Appl Electrochem 28(3):277–282CrossRef Fischer A, Jindra J, Wendt H (1998) Porosity and catalyst utilization of thin layer cathodes in air operated PEM-fuel cells. J Appl Electrochem 28(3):277–282CrossRef
62.
go back to reference Chandan A et al (2013) High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC)—a review. J Power Sources 231:264–278CrossRef Chandan A et al (2013) High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC)—a review. J Power Sources 231:264–278CrossRef
63.
go back to reference Escribano S, Aldebert P (1995) Solid state protonic conductors vii electrodes for hydrogen/oxygen polymer electrolyte membrane fuel cells. Solid State Ionics 77:318–323CrossRef Escribano S, Aldebert P (1995) Solid state protonic conductors vii electrodes for hydrogen/oxygen polymer electrolyte membrane fuel cells. Solid State Ionics 77:318–323CrossRef
64.
go back to reference Shao Y et al (2007) Proton exchange membrane fuel cell from low temperature to high temperature: material challenges. J Power Sources 167(2):235–242CrossRef Shao Y et al (2007) Proton exchange membrane fuel cell from low temperature to high temperature: material challenges. J Power Sources 167(2):235–242CrossRef
65.
go back to reference Liang Y et al (2006) Preparation and characterization of carbon-supported PtRuIr catalyst with excellent CO-tolerant performance for proton-exchange membrane fuel cells. J Catal 238(2):468–476CrossRef Liang Y et al (2006) Preparation and characterization of carbon-supported PtRuIr catalyst with excellent CO-tolerant performance for proton-exchange membrane fuel cells. J Catal 238(2):468–476CrossRef
66.
go back to reference George MG et al (2016) Composition analysis of a polymer electrolyte membrane fuel cell microporous layer using scanning transmission X-ray microscopy and near edge X-ray absorption fine structure analysis. J Power Sources 309:254–259CrossRef George MG et al (2016) Composition analysis of a polymer electrolyte membrane fuel cell microporous layer using scanning transmission X-ray microscopy and near edge X-ray absorption fine structure analysis. J Power Sources 309:254–259CrossRef
67.
go back to reference Lobato J et al (2008) Influence of the teflon loading in the gas diffusion layer of PBI-based PEM fuel cells. J Appl Electrochem 38(6):793–802CrossRef Lobato J et al (2008) Influence of the teflon loading in the gas diffusion layer of PBI-based PEM fuel cells. J Appl Electrochem 38(6):793–802CrossRef
68.
go back to reference Guo Z, Faghri A (2006) Development of planar air breathing direct methanol fuel cell stacks. J Power Sources 160(2):1183–1194CrossRef Guo Z, Faghri A (2006) Development of planar air breathing direct methanol fuel cell stacks. J Power Sources 160(2):1183–1194CrossRef
69.
go back to reference Bose S et al (2011) Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges. Prog Polym Sci 36(6):813–843CrossRef Bose S et al (2011) Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges. Prog Polym Sci 36(6):813–843CrossRef
70.
go back to reference Fathirad F, Afzali D, Mostafavi A (2016) Pd-Zn nanoalloys supported on Vulcan XC-72R carbon as anode catalysts for oxidation process in formic acid fuel cell Fathirad F, Afzali D, Mostafavi A (2016) Pd-Zn nanoalloys supported on Vulcan XC-72R carbon as anode catalysts for oxidation process in formic acid fuel cell
71.
go back to reference Chu YH, Shul YG (2010) Combinatorial investigation of Pt-Ru-Sn alloys as an anode electrocatalysts for direct alcohol fuel cells. Int J Hydrogen Energy 35(20):11261–11270CrossRef Chu YH, Shul YG (2010) Combinatorial investigation of Pt-Ru-Sn alloys as an anode electrocatalysts for direct alcohol fuel cells. Int J Hydrogen Energy 35(20):11261–11270CrossRef
72.
go back to reference Kim HS et al (2016) Platinum catalysts protected by N-doped carbon for highly efficient and durable polymer-electrolyte membrane fuel cells. Electrochim Acta (in press) Kim HS et al (2016) Platinum catalysts protected by N-doped carbon for highly efficient and durable polymer-electrolyte membrane fuel cells. Electrochim Acta (in press)
73.
go back to reference Jongsomjit S, Prapainainar P, Sombatmankhong K (2016) Synthesis and characterisation of Pd-Ni-Sn electrocatalyst for use in direct ethanol fuel cells. Solid State Ionics 288:147–153CrossRef Jongsomjit S, Prapainainar P, Sombatmankhong K (2016) Synthesis and characterisation of Pd-Ni-Sn electrocatalyst for use in direct ethanol fuel cells. Solid State Ionics 288:147–153CrossRef
74.
go back to reference Arashi T et al (2014) Nb-doped TiO2 cathode catalysts for oxygen reduction reaction of polymer electrolyte fuel cells. Catal Today Catal Mater Catal Low Carbon Technol 233:181–186 Arashi T et al (2014) Nb-doped TiO2 cathode catalysts for oxygen reduction reaction of polymer electrolyte fuel cells. Catal Today Catal Mater Catal Low Carbon Technol 233:181–186
75.
go back to reference Han S, Chae GS, Lee JS (2016) Enhanced activity of carbon-supported PdCo electrocatalysts toward electrooxidation of ethanol in alkaline electrolytes. Korean J Chem Eng 33(6):1799–1804CrossRef Han S, Chae GS, Lee JS (2016) Enhanced activity of carbon-supported PdCo electrocatalysts toward electrooxidation of ethanol in alkaline electrolytes. Korean J Chem Eng 33(6):1799–1804CrossRef
76.
go back to reference Kumar A, Ramani VK (2013) RuO2-SiO2 mixed oxides as corrosion-resistant catalyst supports for polymer electrolyte fuel cells. Appl Catal B 138–139:43–50CrossRef Kumar A, Ramani VK (2013) RuO2-SiO2 mixed oxides as corrosion-resistant catalyst supports for polymer electrolyte fuel cells. Appl Catal B 138–139:43–50CrossRef
77.
go back to reference Patru A et al (2016) Pt/IrO2–TiO2 cathode catalyst for low temperature polymer electrolyte fuel cell—application in MEAs, performance and stability issues. Catal Today 262:161–169CrossRef Patru A et al (2016) Pt/IrO2–TiO2 cathode catalyst for low temperature polymer electrolyte fuel cell—application in MEAs, performance and stability issues. Catal Today 262:161–169CrossRef
78.
go back to reference Uehara N et al (2015) Tantalum oxide-based electrocatalysts made from oxy-tantalum phthalocyanines as non-platinum cathodes for polymer electrolyte fuel cells. Ubiquitus Electrochem 146–153 Uehara N et al (2015) Tantalum oxide-based electrocatalysts made from oxy-tantalum phthalocyanines as non-platinum cathodes for polymer electrolyte fuel cells. Ubiquitus Electrochem 146–153
79.
go back to reference Yi L et al (2015) Enhanced activity of Au-Fe/C anodic electrocatalyst for direct borohydride-hydrogen peroxide fuel cell. J Power Sources 285:325–333CrossRef Yi L et al (2015) Enhanced activity of Au-Fe/C anodic electrocatalyst for direct borohydride-hydrogen peroxide fuel cell. J Power Sources 285:325–333CrossRef
80.
go back to reference Kil KC et al (2014) The use of MWCNT to enhance oxygen reduction reaction and adhesion strength between catalyst layer and gas diffusion layer in polymer electrolyte membrane fuel cell. Int J Hydrogen Energy 39:17481–17486CrossRef Kil KC et al (2014) The use of MWCNT to enhance oxygen reduction reaction and adhesion strength between catalyst layer and gas diffusion layer in polymer electrolyte membrane fuel cell. Int J Hydrogen Energy 39:17481–17486CrossRef
81.
go back to reference Chen Z et al (2011) A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ Sci 4(9):3167–3192CrossRef Chen Z et al (2011) A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ Sci 4(9):3167–3192CrossRef
82.
go back to reference Reshetenko TV, Kim H-T, Kweon H-J (2007) Cathode structure optimization for air-breathing DMFC by application of pore-forming agents. J Power Sources 171(2):433–440CrossRef Reshetenko TV, Kim H-T, Kweon H-J (2007) Cathode structure optimization for air-breathing DMFC by application of pore-forming agents. J Power Sources 171(2):433–440CrossRef
83.
go back to reference Wang B (2005) Recent development of non-platinum catalysts for oxygen reduction reaction. J Power Sources 152:1–15CrossRef Wang B (2005) Recent development of non-platinum catalysts for oxygen reduction reaction. J Power Sources 152:1–15CrossRef
84.
go back to reference Kinumoto T et al (2006) Durability of perfluorinated ionomer membrane against hydrogen peroxide. J Power Sources 158(2):1222–1228CrossRef Kinumoto T et al (2006) Durability of perfluorinated ionomer membrane against hydrogen peroxide. J Power Sources 158(2):1222–1228CrossRef
85.
go back to reference Smitha B, Sridhar S, Khan AA (2005) Solid polymer electrolyte membranes for fuel cell applications—a review. J Membr Sci 259(1–2):10–26 Smitha B, Sridhar S, Khan AA (2005) Solid polymer electrolyte membranes for fuel cell applications—a review. J Membr Sci 259(1–2):10–26
86.
go back to reference Prater KB (1994) Polymer electrolyte fuel cells: a review of recent developments. J Power Sources 51(1):129–144CrossRef Prater KB (1994) Polymer electrolyte fuel cells: a review of recent developments. J Power Sources 51(1):129–144CrossRef
87.
go back to reference Sousa R Jr, Gonzalez ER (2005) Mathematical modeling of polymer electrolyte fuel cells. J Power Sources 147(1–2):32–45 Sousa R Jr, Gonzalez ER (2005) Mathematical modeling of polymer electrolyte fuel cells. J Power Sources 147(1–2):32–45
88.
go back to reference Owejan JP et al (2007) Effects of flow field and diffusion layer properties on water accumulation in a PEM fuel cell. Int J Hydrogen Energy 32(17):4489–4502CrossRef Owejan JP et al (2007) Effects of flow field and diffusion layer properties on water accumulation in a PEM fuel cell. Int J Hydrogen Energy 32(17):4489–4502CrossRef
89.
go back to reference Neburchilov V et al (2007) A review of polymer electrolyte membranes for direct methanol fuel cells. J Power Sources 169(2):221–238CrossRef Neburchilov V et al (2007) A review of polymer electrolyte membranes for direct methanol fuel cells. J Power Sources 169(2):221–238CrossRef
91.
go back to reference Yu EH, Scott K (2004) Development of direct methanol alkaline fuel cells using anion exchange membranes. J Power Sources 137(2):248–256CrossRef Yu EH, Scott K (2004) Development of direct methanol alkaline fuel cells using anion exchange membranes. J Power Sources 137(2):248–256CrossRef
92.
go back to reference Yu EH, Scott K (2005) Direct methanol alkaline fuel cells with catalysed anion exchange membrane electrodes. J Appl Electrochem 35(1):91–96CrossRef Yu EH, Scott K (2005) Direct methanol alkaline fuel cells with catalysed anion exchange membrane electrodes. J Appl Electrochem 35(1):91–96CrossRef
93.
go back to reference Lim BH et al (2016) Effects of flow field design on water management and reactant distribution in PEMFC: a review. Ionics 22(3):301–316CrossRef Lim BH et al (2016) Effects of flow field design on water management and reactant distribution in PEMFC: a review. Ionics 22(3):301–316CrossRef
94.
go back to reference Nguyen TV (1996) A gas distributor design for proton—exchange—membrane fuel cells. J Electrochem Soc 143(5):L103–L105CrossRef Nguyen TV (1996) A gas distributor design for proton—exchange—membrane fuel cells. J Electrochem Soc 143(5):L103–L105CrossRef
95.
go back to reference Rostami L, Mohamad Gholy Nejad P, Vatani A (2016) A numerical investigation of serpentine flow channel with different bend sizes in polymer electrolyte membrane fuel cells. Energy 97:400–410CrossRef Rostami L, Mohamad Gholy Nejad P, Vatani A (2016) A numerical investigation of serpentine flow channel with different bend sizes in polymer electrolyte membrane fuel cells. Energy 97:400–410CrossRef
96.
go back to reference Baek SM et al (2012) Pressure drop and flow distribution characteristics of single and parallel serpentine flow fields for polymer electrolyte membrane fuel cells. J Mech Sci Technol 26(9):2995–3006CrossRef Baek SM et al (2012) Pressure drop and flow distribution characteristics of single and parallel serpentine flow fields for polymer electrolyte membrane fuel cells. J Mech Sci Technol 26(9):2995–3006CrossRef
97.
go back to reference Hsieh S-S, Her B-S, Huang Y-J (2011) Effect of pressure drop in different flow fields on water accumulation and current distribution for a micro PEM fuel cell. Energy Convers Manag 52(2):975–982CrossRef Hsieh S-S, Her B-S, Huang Y-J (2011) Effect of pressure drop in different flow fields on water accumulation and current distribution for a micro PEM fuel cell. Energy Convers Manag 52(2):975–982CrossRef
98.
go back to reference Yang H, Zhao TS, Ye Q (2005) Pressure drop behavior in the anode flow field of liquid feed direct methanol fuel cells. J Power Sources 142(1–2):117–124CrossRef Yang H, Zhao TS, Ye Q (2005) Pressure drop behavior in the anode flow field of liquid feed direct methanol fuel cells. J Power Sources 142(1–2):117–124CrossRef
99.
go back to reference Cho K-S (2015) The flow-field pattern optimization of the bipolar plate for PEMFC considering the nonlinear material. Int J Electrochem Sci 10:2564–2579 Cho K-S (2015) The flow-field pattern optimization of the bipolar plate for PEMFC considering the nonlinear material. Int J Electrochem Sci 10:2564–2579
100.
go back to reference Beale SB (2015) Mass transfer formulation for polymer electrolyte membrane fuel cell cathode. Int J Hydrogen Energy 40:11641–11650CrossRef Beale SB (2015) Mass transfer formulation for polymer electrolyte membrane fuel cell cathode. Int J Hydrogen Energy 40:11641–11650CrossRef
101.
go back to reference Diedrichs A et al (2013) Effect of compression on the performance of a HT-PEM fuel cell. J Appl Electrochem 43(11):1079–1099CrossRef Diedrichs A et al (2013) Effect of compression on the performance of a HT-PEM fuel cell. J Appl Electrochem 43(11):1079–1099CrossRef
102.
go back to reference Choi K-S, Kim H-M, Moon S-M (2011) Numerical studies on the geometrical characterization of serpentine flow-field for efficient PEMFC. Int J Hydrogen Energy 36(2):1613–1627CrossRef Choi K-S, Kim H-M, Moon S-M (2011) Numerical studies on the geometrical characterization of serpentine flow-field for efficient PEMFC. Int J Hydrogen Energy 36(2):1613–1627CrossRef
103.
go back to reference Arvay A et al (2013) Nature inspired flow field designs for proton exchange membrane fuel cell. Int J Hydrogen Energy 38(9):3717–3726CrossRef Arvay A et al (2013) Nature inspired flow field designs for proton exchange membrane fuel cell. Int J Hydrogen Energy 38(9):3717–3726CrossRef
104.
go back to reference Li X, Sabir I (2005) Review of bipolar plates in PEM fuel cells: Flow-field designs. Int J Hydrogen Energy 30(4):359–371CrossRef Li X, Sabir I (2005) Review of bipolar plates in PEM fuel cells: Flow-field designs. Int J Hydrogen Energy 30(4):359–371CrossRef
105.
go back to reference Wang J, Wang H (2012) Flow-field designs of bipolar plates in pem fuel cells: theory and applications. Fuel Cells 12(6):989–1003CrossRef Wang J, Wang H (2012) Flow-field designs of bipolar plates in pem fuel cells: theory and applications. Fuel Cells 12(6):989–1003CrossRef
106.
go back to reference Aricò AS, Baglio V, Antonucci V (2009) Direct methanol fuel cells: history, status and perspectives. In: Electrocatalysis of direct methanol fuel cells. Wiley-VCH Verlag GmbH & Co. KGaA, pp 1–78 Aricò AS, Baglio V, Antonucci V (2009) Direct methanol fuel cells: history, status and perspectives. In: Electrocatalysis of direct methanol fuel cells. Wiley-VCH Verlag GmbH & Co. KGaA, pp 1–78
107.
go back to reference Aricò AS, Srinivasan S, Antonucci V (2001) DMFCs: from fundamental aspects to technology development. Fuel Cells 1(2):133–161CrossRef Aricò AS, Srinivasan S, Antonucci V (2001) DMFCs: from fundamental aspects to technology development. Fuel Cells 1(2):133–161CrossRef
108.
go back to reference Yu X, Pickup PG (2008) Recent advances in direct formic acid fuel cells (DFAFC). J Power Sources 182(1):124–132CrossRef Yu X, Pickup PG (2008) Recent advances in direct formic acid fuel cells (DFAFC). J Power Sources 182(1):124–132CrossRef
109.
go back to reference Demirci UB (2007) Direct liquid-feed fuel cells: thermodynamic and environmental concerns. J Power Sources 169(2):239–246CrossRef Demirci UB (2007) Direct liquid-feed fuel cells: thermodynamic and environmental concerns. J Power Sources 169(2):239–246CrossRef
110.
go back to reference Kamarudin MZF et al (2013) Review: direct ethanol fuel cells. Int J Hydrogen Energy 38(22):9438–9453CrossRef Kamarudin MZF et al (2013) Review: direct ethanol fuel cells. Int J Hydrogen Energy 38(22):9438–9453CrossRef
111.
go back to reference Lamy C, Coutanceau C, Leger JM (2009) The direct ethanol fuel cell: a challenge to convert bioethanol cleanly into electric energy. In: Catalysis for sustainable energy production. Wiley-VCH Verlag GmbH & Co. KGaA, pp 1–46 Lamy C, Coutanceau C, Leger JM (2009) The direct ethanol fuel cell: a challenge to convert bioethanol cleanly into electric energy. In: Catalysis for sustainable energy production. Wiley-VCH Verlag GmbH & Co. KGaA, pp 1–46
112.
go back to reference An L et al (2010) Performance of a direct ethylene glycol fuel cell with an anion-exchange membrane. Int J Hydrogen Energy 35(9):4329–4335CrossRef An L et al (2010) Performance of a direct ethylene glycol fuel cell with an anion-exchange membrane. Int J Hydrogen Energy 35(9):4329–4335CrossRef
113.
go back to reference Modestov AD et al (2009) MEA for alkaline direct ethanol fuel cell with alkali doped PBI membrane and non-platinum electrodes. J Power Sources 188(2):502–506CrossRef Modestov AD et al (2009) MEA for alkaline direct ethanol fuel cell with alkali doped PBI membrane and non-platinum electrodes. J Power Sources 188(2):502–506CrossRef
114.
go back to reference Fujiwara N et al (2008) Direct ethanol fuel cells using an anion exchange membrane. J Power Sources 185(2):621–626CrossRef Fujiwara N et al (2008) Direct ethanol fuel cells using an anion exchange membrane. J Power Sources 185(2):621–626CrossRef
115.
go back to reference An L et al (2011) Alkaline direct oxidation fuel cell with non-platinum catalysts capable of converting glucose to electricity at high power output. J Power Sources 196(1):186–190CrossRef An L et al (2011) Alkaline direct oxidation fuel cell with non-platinum catalysts capable of converting glucose to electricity at high power output. J Power Sources 196(1):186–190CrossRef
116.
go back to reference An L, Zhao TS, Xu JB (2011) A bi-functional cathode structure for alkaline-acid direct ethanol fuel cells. Int J Hydrogen Energy 36(20):13089–13095CrossRef An L, Zhao TS, Xu JB (2011) A bi-functional cathode structure for alkaline-acid direct ethanol fuel cells. Int J Hydrogen Energy 36(20):13089–13095CrossRef
117.
go back to reference Ha S, Dunbar Z, Masel RI (2006) Characterization of a high performing passive direct formic acid fuel cell. J Power Sources 158(1):129–136CrossRef Ha S, Dunbar Z, Masel RI (2006) Characterization of a high performing passive direct formic acid fuel cell. J Power Sources 158(1):129–136CrossRef
118.
go back to reference Jeong K-J et al (2007) Fuel crossover in direct formic acid fuel cells. J Power Sources 168(1):119–125CrossRef Jeong K-J et al (2007) Fuel crossover in direct formic acid fuel cells. J Power Sources 168(1):119–125CrossRef
119.
go back to reference Miesse CM et al (2006) Direct formic acid fuel cell portable power system for the operation of a laptop computer. J Power Sources 162(1):532–540CrossRef Miesse CM et al (2006) Direct formic acid fuel cell portable power system for the operation of a laptop computer. J Power Sources 162(1):532–540CrossRef
120.
go back to reference Rice C et al (2002) Direct formic acid fuel cells. J Power Sources 111(1):83–89CrossRef Rice C et al (2002) Direct formic acid fuel cells. J Power Sources 111(1):83–89CrossRef
121.
go back to reference Boyaci San FG et al (2014) Evaluation of operating conditions on DBFC (direct borohydride fuel cell) performance with PtRu anode catalyst by response surface method. Energy 71:160–169 Boyaci San FG et al (2014) Evaluation of operating conditions on DBFC (direct borohydride fuel cell) performance with PtRu anode catalyst by response surface method. Energy 71:160–169
122.
go back to reference Lucia U (2014) Overview on fuel cells. Renew Sustain Energy Rev 30:164–169CrossRef Lucia U (2014) Overview on fuel cells. Renew Sustain Energy Rev 30:164–169CrossRef
123.
go back to reference Mahapatra MK, Singh P (2014) Fuel cells: energy conversion technology A2. In: Letcher TM (ed) Future energy, 2nd edn (Chap. 24). Elsevier, Boston, pp 511–547 Mahapatra MK, Singh P (2014) Fuel cells: energy conversion technology A2. In: Letcher TM (ed) Future energy, 2nd edn (Chap. 24). Elsevier, Boston, pp 511–547
124.
go back to reference Davidescu CM (2002) Introducere in termodinamica chimica. Editura Politehnica, Timisoara Davidescu CM (2002) Introducere in termodinamica chimica. Editura Politehnica, Timisoara
125.
go back to reference Atkins P, de Paula J (2005) Atkins’ physical chemistry. Oxford University Press Atkins P, de Paula J (2005) Atkins’ physical chemistry. Oxford University Press
Metadata
Title
A Basic Overview of Fuel Cells: Thermodynamics and Cell Efficiency
Authors
Narcis Duteanu
Adriana Balasoiu
Pritha Chatterjee
Makarand M. Ghangrekar
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-52739-0_8

Premium Partners