Skip to main content
Top
Published in:

22-04-2023

A Bayes Analysis of Random Walk Model Under Different Error Assumptions

Authors: Praveen Kumar Tripathi, Manika Agarwal

Published in: Annals of Data Science | Issue 5/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, the Bayesian analyses for the random walk models have been performed under the assumptions of normal distribution, log-normal distribution and the stochastic volatility model, for the error component, one by one. For the various parameters, in each model, some suitable choices of informative and non-informative priors have been made and the posterior distributions are calculated. For the first two choices of error distribution, the posterior samples are easily obtained by using the gamma generating routine in R software. For a random walk model, having stochastic volatility error, the Gibbs sampling with intermediate independent Metropolis–Hastings steps is employed to obtain the desired posterior samples. The whole procedure is numerically illustrated through a real data set of crude oil prices from April 2014 to March 2022. The models are, then, compared on the basis of their accuracies in forecasting the true values. Among the other choices, the random walk model with stochastic volatile errors outperformed for the data in hand.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Shi Y (2022) Advances in big data analytics: theory, algorithm and practice. Springer, SingaporeCrossRef Shi Y (2022) Advances in big data analytics: theory, algorithm and practice. Springer, SingaporeCrossRef
2.
go back to reference Shi Y, Olson DL (2007) Introduction to business data mining. McGraw-Hill/Irwin, New York Shi Y, Olson DL (2007) Introduction to business data mining. McGraw-Hill/Irwin, New York
3.
go back to reference Shi Y, Tian YJ, Kou G, Peng Y, Li JP (2011) Optimization based data mining: theory and applications. Springer, BerlinCrossRef Shi Y, Tian YJ, Kou G, Peng Y, Li JP (2011) Optimization based data mining: theory and applications. Springer, BerlinCrossRef
4.
go back to reference Leuthold RM (1972) Random walk and price trends: the live cattle futures market. J Financ 27(4):879–889CrossRef Leuthold RM (1972) Random walk and price trends: the live cattle futures market. J Financ 27(4):879–889CrossRef
5.
go back to reference Cooper JCB (1982) World stock markets: some random walk tests. Appl Econ 14(5):515–531CrossRef Cooper JCB (1982) World stock markets: some random walk tests. Appl Econ 14(5):515–531CrossRef
6.
go back to reference Sims CA (1988) Bayesian skepticism on unit root econometrics. J Econ Dyn Control 12(2–3):463–474CrossRef Sims CA (1988) Bayesian skepticism on unit root econometrics. J Econ Dyn Control 12(2–3):463–474CrossRef
7.
go back to reference Tyree EW, Long JA (1995) Forecasting currency exchange rates: neural networks and the random walk model. In: City university working paper, proceedings of the third international conference on artificial intelligence applications. Citeseer Tyree EW, Long JA (1995) Forecasting currency exchange rates: neural networks and the random walk model. In: City university working paper, proceedings of the third international conference on artificial intelligence applications. Citeseer
8.
go back to reference Busetti F, Harvey AC (2001) Testing for the presence of a random walk in series with structural breaks-(now published in ’journal of time series analysis’) vol 22 , pp 127 Busetti F, Harvey AC (2001) Testing for the presence of a random walk in series with structural breaks-(now published in ’journal of time series analysis’) vol 22 , pp 127
9.
go back to reference Aggarwal D (2019) Do bitcoins follow a random walk model? Res Econ 73(1):15–22CrossRef Aggarwal D (2019) Do bitcoins follow a random walk model? Res Econ 73(1):15–22CrossRef
10.
go back to reference Dias R, Santos H (2020) Stock market efficiency in Africa: evidence from random walk hypothesis. LIMEN 2020, pp 25 Dias R, Santos H (2020) Stock market efficiency in Africa: evidence from random walk hypothesis. LIMEN 2020, pp 25
11.
go back to reference Palamalai S, Kumar KK, Maity B (2021) Testing the random walk hypothesis for leading cryptocurrencies. Borsa Istanbul Rev 21(3):256–268CrossRef Palamalai S, Kumar KK, Maity B (2021) Testing the random walk hypothesis for leading cryptocurrencies. Borsa Istanbul Rev 21(3):256–268CrossRef
12.
go back to reference DeJong DN, Whiteman CH (1991) Reconsidering ‘trends and random walks in macroeconomic time series’. J Monet Econ 28(2):221–254CrossRef DeJong DN, Whiteman CH (1991) Reconsidering ‘trends and random walks in macroeconomic time series’. J Monet Econ 28(2):221–254CrossRef
13.
go back to reference Schotman P, Dijk HKV (1991) A Bayesian analysis of the unit root in real exchange rates. J Econ 49(1–2):195–238 Schotman P, Dijk HKV (1991) A Bayesian analysis of the unit root in real exchange rates. J Econ 49(1–2):195–238
14.
go back to reference Fung ES, Lam K, Siu T-K, Wong W-K (2011) A pseudo-Bayesian model for stock returns in financial crises. J Risk Financ Manage 4(1):43–73CrossRef Fung ES, Lam K, Siu T-K, Wong W-K (2011) A pseudo-Bayesian model for stock returns in financial crises. J Risk Financ Manage 4(1):43–73CrossRef
15.
go back to reference Karandikar J, Traverso M, Abbas A, Schmitz T (2014) Bayesian inference for milling stability using a random walk approach. J Manufac Sci Eng 136(3) Karandikar J, Traverso M, Abbas A, Schmitz T (2014) Bayesian inference for milling stability using a random walk approach. J Manufac Sci Eng 136(3)
16.
go back to reference Guo X, McAleer M, Wong W-K, Zhu L (2017) A Bayesian approach to excess volatility, short-term underreaction and long-term overreaction during financial crises. North Am J Econ Finance 42:346–358CrossRef Guo X, McAleer M, Wong W-K, Zhu L (2017) A Bayesian approach to excess volatility, short-term underreaction and long-term overreaction during financial crises. North Am J Econ Finance 42:346–358CrossRef
17.
go back to reference Rumyantseva O, Sarantsev A, Strigul N (2020) Time series analysis of forest dynamics at the ecoregion level. Forecasting 2(3):20CrossRef Rumyantseva O, Sarantsev A, Strigul N (2020) Time series analysis of forest dynamics at the ecoregion level. Forecasting 2(3):20CrossRef
18.
go back to reference Nelson CR, Plosser CR (1982) Trends and random walks in macroeconmic time series: some evidence and implications. J Monet Econ 10(2):139–162CrossRef Nelson CR, Plosser CR (1982) Trends and random walks in macroeconmic time series: some evidence and implications. J Monet Econ 10(2):139–162CrossRef
19.
go back to reference Chib S, Greenberg E (1994) Bayes inference in regression models with ARMA(p, q) errors. J Econ 64(1):183–206 Chib S, Greenberg E (1994) Bayes inference in regression models with ARMA(p, q) errors. J Econ 64(1):183–206
20.
go back to reference Chib S, Nardari F, Shephard N (2002) Markov chain Monte Carlo methods for stochastic volatility models. J Econ 108(2):281–316CrossRef Chib S, Nardari F, Shephard N (2002) Markov chain Monte Carlo methods for stochastic volatility models. J Econ 108(2):281–316CrossRef
21.
go back to reference Tripathi PK, Upadhyay SK (2019) Bayesian analysis of extended autoregressive model with stochastic volatility. Indian Soc Probab Stat 20(1):1–29CrossRef Tripathi PK, Upadhyay SK (2019) Bayesian analysis of extended autoregressive model with stochastic volatility. Indian Soc Probab Stat 20(1):1–29CrossRef
22.
go back to reference Weiss AA (1984) ARMA models with ARCH errors. J Time Ser Anal 5(2):129–143CrossRef Weiss AA (1984) ARMA models with ARCH errors. J Time Ser Anal 5(2):129–143CrossRef
23.
go back to reference Greenhouse JB, Kass RE, Tsay RS (1987) Fitting non-linear models with ARMA errors to biological rhythm data. Stat Med 6(2):167–183CrossRef Greenhouse JB, Kass RE, Tsay RS (1987) Fitting non-linear models with ARMA errors to biological rhythm data. Stat Med 6(2):167–183CrossRef
24.
go back to reference Lei H, Xia Y, Qin X (2016) Estimation of semivarying coefficient time series models with ARMA errors. Ann Stat 44(4):1618–1660CrossRef Lei H, Xia Y, Qin X (2016) Estimation of semivarying coefficient time series models with ARMA errors. Ann Stat 44(4):1618–1660CrossRef
25.
go back to reference Huber F, Krisztin T, Piribauer P (2017) Forecasting global equity indices using large Bayesian VARs. Bull Econ Res Huber F, Krisztin T, Piribauer P (2017) Forecasting global equity indices using large Bayesian VARs. Bull Econ Res
26.
go back to reference Tripathi PK, Agarwal M (2021) Bayesian prediction of monthly gold prices using an EARSV model and its competitive component models. Int J Math Stat 22(3):1–17 Tripathi PK, Agarwal M (2021) Bayesian prediction of monthly gold prices using an EARSV model and its competitive component models. Int J Math Stat 22(3):1–17
27.
go back to reference Phillips PCB (1990) Time series regression with a unit root and infinite-variance errors. Economet Theor 6(1):44–62CrossRef Phillips PCB (1990) Time series regression with a unit root and infinite-variance errors. Economet Theor 6(1):44–62CrossRef
28.
go back to reference Dick EJ (2004) Beyond ‘log-normal versus gamma’: discrimination among error distributions for generalized linear models. Fish Res 70(2):351–366CrossRef Dick EJ (2004) Beyond ‘log-normal versus gamma’: discrimination among error distributions for generalized linear models. Fish Res 70(2):351–366CrossRef
29.
go back to reference Juárez MA, Steel MFJ (2010) Model-based clustering of non-Gaussian panel data based on skew-t distributions. J Bus Econ Stat 28(1):52–66CrossRef Juárez MA, Steel MFJ (2010) Model-based clustering of non-Gaussian panel data based on skew-t distributions. J Bus Econ Stat 28(1):52–66CrossRef
30.
go back to reference Petrella I, Monache DD (2016) Adaptive models and heavy tails Petrella I, Monache DD (2016) Adaptive models and heavy tails
31.
go back to reference Chiu C-WJ, Mumtaz H, Pinter G (2017) Forecasting with var models: Fat tails and stochastic volatility. Int J Forecast 33(4):1124–1143CrossRef Chiu C-WJ, Mumtaz H, Pinter G (2017) Forecasting with var models: Fat tails and stochastic volatility. Int J Forecast 33(4):1124–1143CrossRef
32.
go back to reference Monache DD, Polis AD, Petrella I (2021) Modeling and forecasting macroeconomic downside risk. Bank of Italy Temi di Discussione (Working Paper) No, 1324 Monache DD, Polis AD, Petrella I (2021) Modeling and forecasting macroeconomic downside risk. Bank of Italy Temi di Discussione (Working Paper) No, 1324
33.
go back to reference Tripathi PK, Ranjan R, Pant R, Upadhyay SK (2017) An approximate Bayes analysis of ARMA model for Indian GDP growth rate data. J Stat Manag Syst 20(3):399–419 Tripathi PK, Ranjan R, Pant R, Upadhyay SK (2017) An approximate Bayes analysis of ARMA model for Indian GDP growth rate data. J Stat Manag Syst 20(3):399–419
34.
go back to reference Tripathi PK, Sen R, Upadhyay SK (2021) A Bayes algorithm for model compatibility and comparison of ARMA(p, q) models. Stat Trans New Ser 22(2):95–123 Tripathi PK, Sen R, Upadhyay SK (2021) A Bayes algorithm for model compatibility and comparison of ARMA(p, q) models. Stat Trans New Ser 22(2):95–123
35.
go back to reference Marriott J, Ravishanker N, Gelfand AE, Pai J (1996) Bayesian analysis of ARMA processes: complete sampling-based inference under exact likelihoods. In Bayesian analysis in statistics and econometrics: essays in honor of Arnold Zellner, pp 243–256 Marriott J, Ravishanker N, Gelfand AE, Pai J (1996) Bayesian analysis of ARMA processes: complete sampling-based inference under exact likelihoods. In Bayesian analysis in statistics and econometrics: essays in honor of Arnold Zellner, pp 243–256
36.
go back to reference Kleibergen FR, Hoek H (2000) Bayesian analysis of ARMA models. Tinbergen Institute Discussion Paper, (TI 2000-027/4), Amsterdam Kleibergen FR, Hoek H (2000) Bayesian analysis of ARMA models. Tinbergen Institute Discussion Paper, (TI 2000-027/4), Amsterdam
37.
go back to reference Agarwal M, Tripathi PK, Pareek S (2021) Forecasting infant mortality rate of India using ARIMA model: a comparison of Bayesian and classical approaches. Stat Appl 19(2):101–114 Agarwal M, Tripathi PK, Pareek S (2021) Forecasting infant mortality rate of India using ARIMA model: a comparison of Bayesian and classical approaches. Stat Appl 19(2):101–114
38.
go back to reference Devroye L (1986) Non-uniform random variate generations. Springer, New YorkCrossRef Devroye L (1986) Non-uniform random variate generations. Springer, New YorkCrossRef
39.
go back to reference Tripathi PK, Mishra RK, Upadhyay SK (2018) Bayes and classical prediction of total fertility rate of India using autoregressive integrated moving average model. J Stat Appl Proba 7(2):233–244CrossRef Tripathi PK, Mishra RK, Upadhyay SK (2018) Bayes and classical prediction of total fertility rate of India using autoregressive integrated moving average model. J Stat Appl Proba 7(2):233–244CrossRef
40.
go back to reference Jacquier E, Polson NG, Rossi PE (2004) Bayesian analysis of stochastic volatility models with fat-tails and correlated errors. J Econ 122(1):185–212CrossRef Jacquier E, Polson NG, Rossi PE (2004) Bayesian analysis of stochastic volatility models with fat-tails and correlated errors. J Econ 122(1):185–212CrossRef
42.
go back to reference Kim S, Shephard N, Chib S (1998) Stochastic volatility: likelihood inference and comparison with ARCH models. Rev Econ Stud 65(3):361–393CrossRef Kim S, Shephard N, Chib S (1998) Stochastic volatility: likelihood inference and comparison with ARCH models. Rev Econ Stud 65(3):361–393CrossRef
43.
go back to reference Smith AFM, Roberts GO (1993) Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods. J R Stat Soc Ser B (Methodological) 55(1):3–23CrossRef Smith AFM, Roberts GO (1993) Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods. J R Stat Soc Ser B (Methodological) 55(1):3–23CrossRef
44.
go back to reference Lo AW, MacKinlay AC (1988) Stock market prices do not follow random walks: evidence from a simple specification test. Rev Financ Stud 1(1):41–66CrossRef Lo AW, MacKinlay AC (1988) Stock market prices do not follow random walks: evidence from a simple specification test. Rev Financ Stud 1(1):41–66CrossRef
45.
go back to reference Ayadi OF, Pyun CS (1994) An application of variance ratio test to the Korean securities market. J Bank Finance 18(4):643–658CrossRef Ayadi OF, Pyun CS (1994) An application of variance ratio test to the Korean securities market. J Bank Finance 18(4):643–658CrossRef
46.
go back to reference Chen J-H (2008) Variance ratio tests of random walk hypothesis of the Euro exchange rate. Int Bus Econ Res J 7(12) Chen J-H (2008) Variance ratio tests of random walk hypothesis of the Euro exchange rate. Int Bus Econ Res J 7(12)
47.
go back to reference Saigal S, Mehrotra D (2012) Performance comparison of time series data using predictive data mining techniques. Adv Inf Min 4(1):57–66 Saigal S, Mehrotra D (2012) Performance comparison of time series data using predictive data mining techniques. Adv Inf Min 4(1):57–66
Metadata
Title
A Bayes Analysis of Random Walk Model Under Different Error Assumptions
Authors
Praveen Kumar Tripathi
Manika Agarwal
Publication date
22-04-2023
Publisher
Springer Berlin Heidelberg
Published in
Annals of Data Science / Issue 5/2024
Print ISSN: 2198-5804
Electronic ISSN: 2198-5812
DOI
https://doi.org/10.1007/s40745-023-00465-5

Premium Partner