Skip to main content
Top

2024 | OriginalPaper | Chapter

14. A Better Random Forest Classifier: Labels Guided Mondrian Forest

Authors : Ismaël Koné, Adama Samaké, Behou Gérard N’Guessan, Lahsen Boulmane

Published in: Mathematics of Computer Science, Cybersecurity and Artificial Intelligence

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A novel class of Random Forests (RFs), namely Mondrian Forests (MFs), which are an ensemble of Mondrian Trees, achieves competitive performance relatively to classical Breiman RFs. They have attractive properties like performing Bayesian inference at the tree level and being trainable online. However, they perform poorly in the presence of less or low predictive power features. Thus, we propose to extend MF by using label information during splits in order to make them more accurate and robust. We showed an increase in performance when using labels during splits on four datasets where we notice a big improvement on a dataset containing many non-predictive features which is very important as feature relevancy is unknown at first. Additionally, this extension yields equal or superior performance relatively to classical RFs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Lakshminarayanan B., Roy D. M., and Teh Y. W., Mondrian Forests: Efficient Online Random Forests, Advances in Neural Information Processing Systems, 27, 3140–3148 (2014) Lakshminarayanan B., Roy D. M., and Teh Y. W., Mondrian Forests: Efficient Online Random Forests, Advances in Neural Information Processing Systems, 27, 3140–3148 (2014)
3.
go back to reference Siddharth Misra, Yaokun Wu, Machine Learning for Subsurface Characterization, 289–314. Gulf Professional Publishing, United States (2020) Siddharth Misra, Yaokun Wu, Machine Learning for Subsurface Characterization, 289–314. Gulf Professional Publishing, United States (2020)
4.
go back to reference Niculescu-Mizil A. and Caruana R., Predicting Good Probabilities with Supervised Learning, Proceedings of the International Conference on Machine Learning - ICML, 22, (2005) Niculescu-Mizil A. and Caruana R., Predicting Good Probabilities with Supervised Learning, Proceedings of the International Conference on Machine Learning - ICML, 22, (2005)
5.
go back to reference Lakshminarayanan B., Thesis: Decision Trees and Forests: A Probabilistic Perspective, UCL, United Kingdom (2016) Lakshminarayanan B., Thesis: Decision Trees and Forests: A Probabilistic Perspective, UCL, United Kingdom (2016)
6.
7.
go back to reference Daniel M. Roy, Yee Teh, The Mondrian Process, Advances in Neural Information Processing Systems, 21, 1377–138 (2008) Daniel M. Roy, Yee Teh, The Mondrian Process, Advances in Neural Information Processing Systems, 21, 1377–138 (2008)
8.
go back to reference Hull J. J., A database for handwritten text recognition research, IEEE Transactions on Pattern Analysis and Machine Intelligence, 16, 550–554 (1994)CrossRef Hull J. J., A database for handwritten text recognition research, IEEE Transactions on Pattern Analysis and Machine Intelligence, 16, 550–554 (1994)CrossRef
9.
go back to reference Feng C., Sutherland A., King S., Muggleton S. & Henery R., Comparison of Machine Learning Classifiers to Statistics and Neural Networks, AI & Stats Conference, 93(1993). Feng C., Sutherland A., King S., Muggleton S. & Henery R., Comparison of Machine Learning Classifiers to Statistics and Neural Networks, AI & Stats Conference, 93(1993).
10.
go back to reference Srinivasan A., Statlog (Landsat Satellite). UCI Machine Learning Repository (1993) Srinivasan A., Statlog (Landsat Satellite). UCI Machine Learning Repository (1993)
11.
go back to reference Slate D., Letter Recognition. UCI Machine Learning Repository (1991). Slate D., Letter Recognition. UCI Machine Learning Repository (1991).
12.
go back to reference Michalski,R.S. and Chilausky,R.L.., Soybean (Large). UCI Machine Learning Repository (1988). Michalski,R.S. and Chilausky,R.L.., Soybean (Large). UCI Machine Learning Repository (1988).
13.
go back to reference Vanschoren J., Rijn J. N. V., Bischl B. and Torgo L., OpenML: networked science in machine learning. SIGKDD Explorations 15(2), pp 49–60, 2013CrossRef Vanschoren J., Rijn J. N. V., Bischl B. and Torgo L., OpenML: networked science in machine learning. SIGKDD Explorations 15(2), pp 49–60, 2013CrossRef
14.
go back to reference Pedregosa et al., Journal of Machine Learning Research, 12, 2825–2830 (2011) Pedregosa et al., Journal of Machine Learning Research, 12, 2825–2830 (2011)
15.
go back to reference Breiman L., “Bagging predictors”, Machine Learning, 24(2), 123–140, 1996.CrossRef Breiman L., “Bagging predictors”, Machine Learning, 24(2), 123–140, 1996.CrossRef
16.
go back to reference Dietterich T. G, Kong E. B., Machine Learning Bias, Statistical Bias, and Statistical Variance of Decision Tree Algorithms, 1–14. Technical Report. Department of Computer Science, Oregon State University (1995) Dietterich T. G, Kong E. B., Machine Learning Bias, Statistical Bias, and Statistical Variance of Decision Tree Algorithms, 1–14. Technical Report. Department of Computer Science, Oregon State University (1995)
17.
go back to reference Breiman L., Bias, variance, and arcing classifiers, Technical Report, 460, Statistics Department, University of California, Berkeley, CA, USA (1996) Breiman L., Bias, variance, and arcing classifiers, Technical Report, 460, Statistics Department, University of California, Berkeley, CA, USA (1996)
18.
go back to reference Criminisi A., Shotton J., Konukoglu E., Decision Forests: A Unified Framework for Classification, Regression, Density Estimation, Manifold Learning and Semi-Supervised Learning, Foundations and Trends Computer Graphics Vision, 7, 81–227 (2012)CrossRef Criminisi A., Shotton J., Konukoglu E., Decision Forests: A Unified Framework for Classification, Regression, Density Estimation, Manifold Learning and Semi-Supervised Learning, Foundations and Trends Computer Graphics Vision, 7, 81–227 (2012)CrossRef
19.
go back to reference Geurts P., Ernst. D., and Wehenkel L., Extremely randomized trees, Machine Learning, 63, 3–42 (2006)CrossRef Geurts P., Ernst. D., and Wehenkel L., Extremely randomized trees, Machine Learning, 63, 3–42 (2006)CrossRef
20.
go back to reference Chipman H. A., George E. I., and McCulloch R. E., Bayesian CART model search, 93, Journal of the American Statistical Association, 935–948 (1998) Chipman H. A., George E. I., and McCulloch R. E., Bayesian CART model search, 93, Journal of the American Statistical Association, 935–948 (1998)
21.
22.
go back to reference Chipman H. A., George E. I., and McCulloch R. E., BART: Bayesian Additive Regression Trees, The Annals of Applied Statistics, 4, 266–298 (2010)MathSciNetCrossRef Chipman H. A., George E. I., and McCulloch R. E., BART: Bayesian Additive Regression Trees, The Annals of Applied Statistics, 4, 266–298 (2010)MathSciNetCrossRef
23.
go back to reference Domingos P., Bayesian Averaging of Classifiers and the Overfitting Problem, International Conference of Machine Learning, 747, 223–230 (2000) Domingos P., Bayesian Averaging of Classifiers and the Overfitting Problem, International Conference of Machine Learning, 747, 223–230 (2000)
24.
go back to reference Saffari A., Leistner C., Santner J., Godec M., Bischof H., On-line random forests. Computer Vision Workshops - ICCV Workshops, 12, 1393–1400 (2009) Saffari A., Leistner C., Santner J., Godec M., Bischof H., On-line random forests. Computer Vision Workshops - ICCV Workshops, 12, 1393–1400 (2009)
25.
go back to reference Denil M., Matheson D., Freitas N., Consistency of online random forests, International Conference of Machine Learning, 28, 1256–1264 (2013) Denil M., Matheson D., Freitas N., Consistency of online random forests, International Conference of Machine Learning, 28, 1256–1264 (2013)
26.
go back to reference Lakshminarayanan B., Roy D. M., and Teh Y. W., Mondrian Forests for Large-Scale Regression when Uncertainty Matters, Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, JMLR: W&CP, 51, 1478–1487 (2016) Lakshminarayanan B., Roy D. M., and Teh Y. W., Mondrian Forests for Large-Scale Regression when Uncertainty Matters, Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, JMLR: W&CP, 51, 1478–1487 (2016)
Metadata
Title
A Better Random Forest Classifier: Labels Guided Mondrian Forest
Authors
Ismaël Koné
Adama Samaké
Behou Gérard N’Guessan
Lahsen Boulmane
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-66222-5_14

Premium Partner