Skip to main content
Top
Published in:

24-03-2022 | Original Article

A boosted chimp optimizer for numerical and engineering design optimization challenges

Authors: Ch. Leela Kumari, Vikram Kumar Kamboj, S. K. Bath, Suman Lata Tripathi, Megha Khatri, Shivani Sehgal

Published in: Engineering with Computers | Issue 4/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Chimp optimization algorithm (ChoA) has a wholesome attitude roused by chimp’s amazing thinking and hunting ability with a sensual movement for finding the optimal solution in the global search space. Classical Chimps optimizer algorithm has poor convergence and has problem to stuck into local minima for high-dimensional problems. This research focuses on the improved variants of the chimp optimizer algorithm and named as Boosted chimp optimizer algorithms. In one of the proposed variants, the existing chimp optimizer algorithm has been combined with SHO algorithm to improve the exploration phase of the existing chimp optimizer and named as IChoA-SHO and other variant is proposed to improve the exploitation search capability of the existing ChoA. The testing and validation of the proposed optimizer has been done for various standard benchmarks and Non-convex, Non-linear, and typical engineering design problems. The proposed variants have been evaluated for seven standard uni-modal benchmark functions, six standard multi-modal benchmark functions, ten standard fixed-dimension benchmark functions, and 11 types of multidisciplinary engineering design problems. The outcomes of this method have been compared with other existing optimization methods considering convergence speed as well as for searching local and global optimal solutions. The testing results show the better performance of the proposed methods excel than the other existing optimization methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
13.
go back to reference Y. Xin-She (2012) Flower pollination algorithm for global optimization. In: Unconventional computation and natural computation, Springer, pp 240–49 Y. Xin-She (2012) Flower pollination algorithm for global optimization. In: Unconventional computation and natural computation, Springer, pp 240–49
19.
go back to reference Mirjalili S, Mirjalili SM, Lewis A (2014) Grey Wolf Optimizer, vol. 69. Elsevier Ltd. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey Wolf Optimizer, vol. 69. Elsevier Ltd.
34.
go back to reference Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster y 1 introduction. IEEE Trans Evol Comput 3(July):82–102 Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster y 1 introduction. IEEE Trans Evol Comput 3(July):82–102
36.
go back to reference Ghaemi M, Feizi-Derakhshi MR (2014) Forest optimization algorithm, vol. 41. Elsevier Ltd Ghaemi M, Feizi-Derakhshi MR (2014) Forest optimization algorithm, vol. 41. Elsevier Ltd
38.
go back to reference Salimi H (2015) Stochastic fractal search: a powerful metaheuristic algorithm, vol 75. Elsevier B.V. Salimi H (2015) Stochastic fractal search: a powerful metaheuristic algorithm, vol 75. Elsevier B.V.
49.
go back to reference Hongye L, Atashpaz-Gargari E, Lucas C (2007) Imperialistic competitive algorithm ICA IEEE CEC 2007 inspired by imperialistic competition Hongye L, Atashpaz-Gargari E, Lucas C (2007) Imperialistic competitive algorithm ICA IEEE CEC 2007 inspired by imperialistic competition
51.
go back to reference Ruiz-Vanoye JA, Díaz-Parra O, Cocón F, Soto A (2021) Meta-heuristics algorithms based on the grouping of animals by social behavior for the traveling salesman problem. Int J Comb Optim Prob Inform Ruiz-Vanoye JA, Díaz-Parra O, Cocón F, Soto A (2021) Meta-heuristics algorithms based on the grouping of animals by social behavior for the traveling salesman problem. Int J Comb Optim Prob Inform
59.
go back to reference Liu Y, Li R (2020) PSA: a photon search algorithm 16(2): 478–493 Liu Y, Li R (2020) PSA: a photon search algorithm 16(2): 478–493
74.
go back to reference Krishna AB, Saxena S, Kamboj VK (2021) A novel statistical approach to numerical and multidisciplinary design optimization problems using pattern search inspired Harris hawks optimizer. Springer, LondonCrossRef Krishna AB, Saxena S, Kamboj VK (2021) A novel statistical approach to numerical and multidisciplinary design optimization problems using pattern search inspired Harris hawks optimizer. Springer, LondonCrossRef
76.
go back to reference Zamani H, Nadimi-shahraki MH (2020) Enhancement of bernstain-search differential evolution algorithm to solve constrained engineering problems. Int J Comput Sci Eng 9(6):386–396 Zamani H, Nadimi-shahraki MH (2020) Enhancement of bernstain-search differential evolution algorithm to solve constrained engineering problems. Int J Comput Sci Eng 9(6):386–396
80.
go back to reference Bala Krishna A, Saxena S, Kamboj VK (2021) hSMA-PS: a novel memetic approach for numerical and engineering design challenges, no. 0123456789. Springer, London Bala Krishna A, Saxena S, Kamboj VK (2021) hSMA-PS: a novel memetic approach for numerical and engineering design challenges, no. 0123456789. Springer, London
83.
go back to reference Neshat M et al (2021) Wind turbine power output prediction using a new hybrid neuro-evolutionary method. Energy 229:120617CrossRef Neshat M et al (2021) Wind turbine power output prediction using a new hybrid neuro-evolutionary method. Energy 229:120617CrossRef
88.
go back to reference Barshandeh S, Piri F, Sangani SR (2020) HMPA: an innovative hybrid multi-population algorithm based on artificial ecosystem-based and Harris Hawks optimization algorithms for engineering problems. Springer, London Barshandeh S, Piri F, Sangani SR (2020) HMPA: an innovative hybrid multi-population algorithm based on artificial ecosystem-based and Harris Hawks optimization algorithms for engineering problems. Springer, London
98.
go back to reference Paul C, Roy PK, Mukherjee V (2020) Chaotic whale optimization algorithm for optimal solution of combined heat and power economic dispatch problem incorporating wind, vol 35. Elsevier Ltd Paul C, Roy PK, Mukherjee V (2020) Chaotic whale optimization algorithm for optimal solution of combined heat and power economic dispatch problem incorporating wind, vol 35. Elsevier Ltd
99.
go back to reference Dhiman G, Kaur A (2019) A hybrid algorithm based on particle swarm and spotted hyena optimizer for global optimization, vol 816. Springer, Singapore Dhiman G, Kaur A (2019) A hybrid algorithm based on particle swarm and spotted hyena optimizer for global optimization, vol 816. Springer, Singapore
103.
107.
go back to reference Simon D (2008) Biogeography-based optimization, Simon D (2008) Biogeography-based optimization,
120.
go back to reference Dhiman G, Kaur A (2019) A hybrid algorithm based on particle swarm and spotted hyena optimizer for global optimization, vol 816. Springer, Singapore Dhiman G, Kaur A (2019) A hybrid algorithm based on particle swarm and spotted hyena optimizer for global optimization, vol 816. Springer, Singapore
121.
go back to reference Kaur S, Awasthi LK, Sangal AL (2021) HMOSHSSA: a hybrid meta-heuristic approach for solving constrained optimization problems, vol 37. Springer, London Kaur S, Awasthi LK, Sangal AL (2021) HMOSHSSA: a hybrid meta-heuristic approach for solving constrained optimization problems, vol 37. Springer, London
132.
go back to reference Sherif BV (2021) Detection and isolation of sel sh nodes in MANET using collaborative contact-based watchdog with. Sherif BV (2021) Detection and isolation of sel sh nodes in MANET using collaborative contact-based watchdog with.
135.
go back to reference Bhullar AK, Kaur R, Sondhi S (2020) Enhanced crow search algorithm for AVR optimization, vol 24. Springer, Berlin, Heidelberg Bhullar AK, Kaur R, Sondhi S (2020) Enhanced crow search algorithm for AVR optimization, vol 24. Springer, Berlin, Heidelberg
137.
go back to reference Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2013) Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl Soft Comput 13(5):2592–2612CrossRef Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2013) Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl Soft Comput 13(5):2592–2612CrossRef
143.
go back to reference Cagnina LC, Esquivel SC, Nacional U, Luis DS, Luis S, Coello CAC (2008) Solving engineering optimization problems with the simple constrained particle swarm optimizer 1 introduction 2 literature review 3 our proposed approach : SiC-PSO. Eng Optim 32:319–326 Cagnina LC, Esquivel SC, Nacional U, Luis DS, Luis S, Coello CAC (2008) Solving engineering optimization problems with the simple constrained particle swarm optimizer 1 introduction 2 literature review 3 our proposed approach : SiC-PSO. Eng Optim 32:319–326
147.
go back to reference Economics R (2010) Comprehensive learning particle swarm optimizer for constrained mixed-variable optimization problems 3(6): 832–842. Received : 07–05–2010 Accepted : 05–10–2010 Economics R (2010) Comprehensive learning particle swarm optimizer for constrained mixed-variable optimization problems 3(6): 832–842. Received : 07–05–2010 Accepted : 05–10–2010
148.
go back to reference Deb K, Goyal M (1996) A combined genetic adaptive search (GeneAS) for engineering design. Comput Sci Inform 26(1): 30–45 [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.27.767%5Cnhttp://repository.ias.ac.in/82723/. Deb K, Goyal M (1996) A combined genetic adaptive search (GeneAS) for engineering design. Comput Sci Inform 26(1): 30–45 [Online]. Available: http://​citeseerx.​ist.​psu.​edu/​viewdoc/​summary?​doi=​10.​1.​1.​27.​767%5Cnhttp://repository.ias.ac.in/82723/.
153.
go back to reference Zolghadr-Asli B, Bozorg-Haddad O, Chu X (2018) Crow search algorithm (CSA). In: Studies in Computational Intelligence Zolghadr-Asli B, Bozorg-Haddad O, Chu X (2018) Crow search algorithm (CSA). In: Studies in Computational Intelligence
162.
go back to reference Mirjalili S (2015) The ant lion optimizer, vol. 83. Elsevier Ltd. Mirjalili S (2015) The ant lion optimizer, vol. 83. Elsevier Ltd.
165.
go back to reference Kannan (1994) An augmented lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J Mech Design Mech Des 1(June 1994): 405–411 Kannan (1994) An augmented lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J Mech Design Mech Des 1(June 1994): 405–411
168.
go back to reference Cao YJ, Wu QH (1997) Mechanical design optimization by mixed-variable evolutionary programming. In: Proc. IEEE Conf. Evol. Comput. ICEC, pp. 443–446 Cao YJ, Wu QH (1997) Mechanical design optimization by mixed-variable evolutionary programming. In: Proc. IEEE Conf. Evol. Comput. ICEC, pp. 443–446
170.
go back to reference Yun Y (2005) Study on adaptive hybrid genetic algorithm and its applications to engineering design problems study on adaptive hybrid genetic algorithm and its applications to engineering design problems Yun Y (2005) Study on adaptive hybrid genetic algorithm and its applications to engineering design problems study on adaptive hybrid genetic algorithm and its applications to engineering design problems
174.
go back to reference Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water cycle algorithm—a novel metaheuristic optimization method for solving constrained engineering optimization problems, vol. 110–111. Elsevier Ltd Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water cycle algorithm—a novel metaheuristic optimization method for solving constrained engineering optimization problems, vol. 110–111. Elsevier Ltd
180.
go back to reference Wang Z, Luo Q, Zhou Y (2020) Hybrid metaheuristic algorithm using butterfly and flower pollination base on mutualism mechanism for global optimization problems, no. 0123456789. Springer, London Wang Z, Luo Q, Zhou Y (2020) Hybrid metaheuristic algorithm using butterfly and flower pollination base on mutualism mechanism for global optimization problems, no. 0123456789. Springer, London
Metadata
Title
A boosted chimp optimizer for numerical and engineering design optimization challenges
Authors
Ch. Leela Kumari
Vikram Kumar Kamboj
S. K. Bath
Suman Lata Tripathi
Megha Khatri
Shivani Sehgal
Publication date
24-03-2022
Publisher
Springer London
Published in
Engineering with Computers / Issue 4/2023
Print ISSN: 0177-0667
Electronic ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-021-01591-5