Skip to main content
Top

2024 | OriginalPaper | Chapter

A Brief Survey of Recent Results on Pólya Groups

Authors : Jaitra Chattopadhyay, Anupam Saikia

Published in: Class Groups of Number Fields and Related Topics

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The Pólya group of a number field is a particular subgroup of the ideal class group of that number field. In this article, we discuss some recent results on Pólya groups of number fields, their connection with the ring of integer-valued polynomials, and touches upon some results on number fields having large Pólya groups. We include the proof of Zantema’s theorem which laid the foundation to determine the Pólya groups of many finite Galois extensions over \(\mathbb {Q}\). At the end, we provide an elementary proof of a weaker version of a recent result of Cherubini et al.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ankeny, N., Chowla, S.: On the divisibility of the class numbers of quadratic fields. Pacific J. Math. 5, 321–324 (1955)MathSciNetCrossRef Ankeny, N., Chowla, S.: On the divisibility of the class numbers of quadratic fields. Pacific J. Math. 5, 321–324 (1955)MathSciNetCrossRef
2.
3.
go back to reference Bhand, A., Murty, M.R.: Class numbers of quadratic fields. Hardy-Ramanujan J. 42, 17–25 (2019)MathSciNet Bhand, A., Murty, M.R.: Class numbers of quadratic fields. Hardy-Ramanujan J. 42, 17–25 (2019)MathSciNet
4.
go back to reference Byeon, D.: Class numbers of quadratic fields \(\mathbb{Q} (\sqrt{D})\) and \(\mathbb{Q} (\sqrt{tD})\). Proc. Am. Math. Soc. 132, 3137–3140 (2004)MathSciNetCrossRef Byeon, D.: Class numbers of quadratic fields \(\mathbb{Q} (\sqrt{D})\) and \(\mathbb{Q} (\sqrt{tD})\). Proc. Am. Math. Soc. 132, 3137–3140 (2004)MathSciNetCrossRef
5.
6.
7.
go back to reference Cahen, P.J., Chabert, J.-L.: Integer-valued polynomials. In: Mathematical Surveys and Monographs. American Mathematical Society, vol. 48 (1997) Cahen, P.J., Chabert, J.-L.: Integer-valued polynomials. In: Mathematical Surveys and Monographs. American Mathematical Society, vol. 48 (1997)
8.
go back to reference Cahen, P.J., Chabert, J.-L.: What you should know about integer-valued polynomials. Am. Math. Monthly 123, 311–337 (2016)MathSciNetCrossRef Cahen, P.J., Chabert, J.-L.: What you should know about integer-valued polynomials. Am. Math. Monthly 123, 311–337 (2016)MathSciNetCrossRef
9.
go back to reference Chabert, J.-L.: From Pólya fields to Pólya groups (I) Galois extensions. J. Number Theory 203, 360–375 (2019) Chabert, J.-L.: From Pólya fields to Pólya groups (I) Galois extensions. J. Number Theory 203, 360–375 (2019)
10.
go back to reference Chabert, J.-L., Halberstadt, E.: From Pólya fields to Pólya groups (II): Non-Galois number fields. J. Number Theory 220, 295–319 (2021)MathSciNetCrossRef Chabert, J.-L., Halberstadt, E.: From Pólya fields to Pólya groups (II): Non-Galois number fields. J. Number Theory 220, 295–319 (2021)MathSciNetCrossRef
11.
go back to reference Chakraborty, K., Ram Murty, M.: On the number of real quadratic fields with class number divisible by \(3\). Proc. Am. Math. Soc. 131, 41–44 (2002) Chakraborty, K., Ram Murty, M.: On the number of real quadratic fields with class number divisible by \(3\). Proc. Am. Math. Soc. 131, 41–44 (2002)
12.
go back to reference Chattopadhyay, J., Muthukrishnan, S.: Bi-quadratic fields having a non-principal Euclidean ideal class. J. Number Theory 204, 99–112 (2019)MathSciNetCrossRef Chattopadhyay, J., Muthukrishnan, S.: Bi-quadratic fields having a non-principal Euclidean ideal class. J. Number Theory 204, 99–112 (2019)MathSciNetCrossRef
13.
go back to reference Chattopadhyay, J., Muthukrishnan, S.: On the simultaneous \(3\) -divisibility of class numbers of triples of imaginary quadratic fields. Acta Arith. 197, 105–110 (2021)MathSciNetCrossRef Chattopadhyay, J., Muthukrishnan, S.: On the simultaneous \(3\) -divisibility of class numbers of triples of imaginary quadratic fields. Acta Arith. 197, 105–110 (2021)MathSciNetCrossRef
14.
go back to reference Chattopadhyay, J., Saikia, A.: Totally real bi-quadratic fields with large Pólya groups. Res. Number Theory 8, Paper No. 30, 6 (2022) Chattopadhyay, J., Saikia, A.: Totally real bi-quadratic fields with large Pólya groups. Res. Number Theory 8, Paper No. 30, 6 (2022)
17.
go back to reference Golod, E.S., Shafarevich, I.R.: On the class field tower. Izv. Akad. Nauk 28, 261–272 (1964)MathSciNet Golod, E.S., Shafarevich, I.R.: On the class field tower. Izv. Akad. Nauk 28, 261–272 (1964)MathSciNet
18.
go back to reference Heidaryan, B., Rajaei, A.: Biquadratic Pólya fields with only one quadratic Pólya subfield. J. Number Theory 143, 279–285 (2014)MathSciNetCrossRef Heidaryan, B., Rajaei, A.: Biquadratic Pólya fields with only one quadratic Pólya subfield. J. Number Theory 143, 279–285 (2014)MathSciNetCrossRef
19.
go back to reference Heidaryan, B., Rajaei, A.: Some non-Pólya biquadratic fields with low ramification. Rev. Mat. Iberoam. 33, 1037–1044 (2017)MathSciNetCrossRef Heidaryan, B., Rajaei, A.: Some non-Pólya biquadratic fields with low ramification. Rev. Mat. Iberoam. 33, 1037–1044 (2017)MathSciNetCrossRef
20.
go back to reference Hilbert, D.: The Theory of Algebraic Number Fields (English summary) Translated from the German and with a preface by Iain T. Adamson. With an introduction by Franz Lemmermeyer and Norbert Schappacher. Springer, Berlin (1998) Hilbert, D.: The Theory of Algebraic Number Fields (English summary) Translated from the German and with a preface by Iain T. Adamson. With an introduction by Franz Lemmermeyer and Norbert Schappacher. Springer, Berlin (1998)
22.
go back to reference Iizuka, Y.: On the class number divisibility of pairs of imaginary quadratic fields. J. Number Theory 184, 122–127 (2018)MathSciNetCrossRef Iizuka, Y.: On the class number divisibility of pairs of imaginary quadratic fields. J. Number Theory 184, 122–127 (2018)MathSciNetCrossRef
23.
go back to reference Ito, A.: Existence of an infinite family of pairs of quadratic fields \(\mathbb{Q} (\sqrt{m_{1}D})\) and \(\mathbb{Q} (\sqrt{m_{2}D})\) whose class numbers are both divisible by \(3\) or both indivisible by \(3\). Funct. Approx. Comment. Math. 49, 111–135 (2013)MathSciNetCrossRef Ito, A.: Existence of an infinite family of pairs of quadratic fields \(\mathbb{Q} (\sqrt{m_{1}D})\) and \(\mathbb{Q} (\sqrt{m_{2}D})\) whose class numbers are both divisible by \(3\) or both indivisible by \(3\). Funct. Approx. Comment. Math. 49, 111–135 (2013)MathSciNetCrossRef
24.
go back to reference Kishi, Y., Miyake, K.: Parametrization of the quadratic fields whose class numbers are divisible by three. J. Number Theory 80, 209–217 (2000)MathSciNetCrossRef Kishi, Y., Miyake, K.: Parametrization of the quadratic fields whose class numbers are divisible by three. J. Number Theory 80, 209–217 (2000)MathSciNetCrossRef
25.
go back to reference Komatsu, T.: A family of infinite pairs of quadratic fields \(\mathbb{Q} (\sqrt{D})\) and \(\mathbb{Q} (\sqrt{-D})\) whose class numbers are both divisible by \(3\). Acta Arith 96, 213–221 (2001)MathSciNetCrossRef Komatsu, T.: A family of infinite pairs of quadratic fields \(\mathbb{Q} (\sqrt{D})\) and \(\mathbb{Q} (\sqrt{-D})\) whose class numbers are both divisible by \(3\). Acta Arith 96, 213–221 (2001)MathSciNetCrossRef
26.
go back to reference Komatsu, T.: An infinite family of pairs of quadratic fields \(\mathbb{Q} (\sqrt{D})\) and \(\mathbb{Q} (\sqrt{mD})\) whose class numbers are both divisible by \(3\). Acta Arith. 104, 129–136 (2002)MathSciNetCrossRef Komatsu, T.: An infinite family of pairs of quadratic fields \(\mathbb{Q} (\sqrt{D})\) and \(\mathbb{Q} (\sqrt{mD})\) whose class numbers are both divisible by \(3\). Acta Arith. 104, 129–136 (2002)MathSciNetCrossRef
27.
go back to reference Lemmermeyer, F.: The ambiguous class number formula revisited. J. Ramanujan Math. Soc. 28, 415–421 (2013)MathSciNet Lemmermeyer, F.: The ambiguous class number formula revisited. J. Ramanujan Math. Soc. 28, 415–421 (2013)MathSciNet
28.
29.
go back to reference Leriche, A.: Pólya fields, Pólya groups and Pólya extensions: A question of capitulation. J. Théor. Nombres Bordeaux 23, 235–349 (2011)MathSciNetCrossRef Leriche, A.: Pólya fields, Pólya groups and Pólya extensions: A question of capitulation. J. Théor. Nombres Bordeaux 23, 235–349 (2011)MathSciNetCrossRef
31.
33.
go back to reference Luca, F.: A note on the divisibility of class numbers of real quadratic fields. C. R. Math. Acad. Sci. Soc. R. Can. 25, 71–75 (2003) Luca, F.: A note on the divisibility of class numbers of real quadratic fields. C. R. Math. Acad. Sci. Soc. R. Can. 25, 71–75 (2003)
34.
go back to reference Maarefparvar, A.: Existence of relative integral basis over quadratic fields and Pólya property. Acta Math. Hungar. 1(64), 593–598 (2021)MathSciNetCrossRef Maarefparvar, A.: Existence of relative integral basis over quadratic fields and Pólya property. Acta Math. Hungar. 1(64), 593–598 (2021)MathSciNetCrossRef
36.
go back to reference Maarefparvar, A., Rajaei, A.: Pólya \(S_{3}\) -extensions of \(\mathbb{Q} \). Proc. Roy. Soc. Edinburgh Sect. A 149, 1421–1433 (2019)MathSciNetCrossRef Maarefparvar, A., Rajaei, A.: Pólya \(S_{3}\) -extensions of \(\mathbb{Q} \). Proc. Roy. Soc. Edinburgh Sect. A 149, 1421–1433 (2019)MathSciNetCrossRef
37.
go back to reference Ram Murty, M.: Exponents of class groups of quadratic fields, Topics in Number theory. University Park, PA, (1997). (Math. Appl., Kluwer Acad. Publ., Dordrecht, 467, 229–239 (1999)) Ram Murty, M.: Exponents of class groups of quadratic fields, Topics in Number theory. University Park, PA, (1997). (Math. Appl., Kluwer Acad. Publ., Dordrecht, 467, 229–239 (1999))
38.
go back to reference Nagell, T.: Uber die Klassenzahl imaginar quadratischer Zahkorper. Abh. Math. Seminar Univ. Hamburg 1, 140–150 (1922)MathSciNetCrossRef Nagell, T.: Uber die Klassenzahl imaginar quadratischer Zahkorper. Abh. Math. Seminar Univ. Hamburg 1, 140–150 (1922)MathSciNetCrossRef
39.
go back to reference Ostrowski, A.: Über ganzwertige Polynome in algebraischen Zahlkörpern. J. Reine Angew. Math. 149, 117–124 (1919)MathSciNetCrossRef Ostrowski, A.: Über ganzwertige Polynome in algebraischen Zahlkörpern. J. Reine Angew. Math. 149, 117–124 (1919)MathSciNetCrossRef
40.
go back to reference Pasupulati, S.K., Krishnamoorthy, S.: On the class number divisibility of pairs of imaginary quadratic fields. J. Number Theory 184, 122–127 (2018)MathSciNetCrossRef Pasupulati, S.K., Krishnamoorthy, S.: On the class number divisibility of pairs of imaginary quadratic fields. J. Number Theory 184, 122–127 (2018)MathSciNetCrossRef
41.
42.
go back to reference Scholz, A.: Über die Beziehung der Klassenzahlen quadratischer Körper zueinander. J. Reine Angew. Math. 166, 201–203 (1932)MathSciNetCrossRef Scholz, A.: Über die Beziehung der Klassenzahlen quadratischer Körper zueinander. J. Reine Angew. Math. 166, 201–203 (1932)MathSciNetCrossRef
43.
go back to reference Soundararajan, K.: Divisibility of class numbers of imaginary quadratic fields. J. Lond. Math. Soc. 61, 681–690 (2000)MathSciNetCrossRef Soundararajan, K.: Divisibility of class numbers of imaginary quadratic fields. J. Lond. Math. Soc. 61, 681–690 (2000)MathSciNetCrossRef
44.
go back to reference Stark, H.M.: On complex quadratic fields with class-number equal to one. Trans. Am. Math. Soc. 122, 112–119 (1966)MathSciNetCrossRef Stark, H.M.: On complex quadratic fields with class-number equal to one. Trans. Am. Math. Soc. 122, 112–119 (1966)MathSciNetCrossRef
45.
go back to reference Taous, M., Zekhnini, A.: Pólya groups of the imaginary bicyclic biquadratic number fields. J. Number Theory 177, 307–327 (2017)MathSciNetCrossRef Taous, M., Zekhnini, A.: Pólya groups of the imaginary bicyclic biquadratic number fields. J. Number Theory 177, 307–327 (2017)MathSciNetCrossRef
47.
48.
go back to reference Xie, J., Chao, K.F.: On the divisibility of class numbers of imaginary quadratic fields \((\mathbb{Q} (\sqrt{D})\),\(\mathbb{Q} (\sqrt{D + m}))\). Ramanujan J. 53, 517–528 (2020)MathSciNetCrossRef Xie, J., Chao, K.F.: On the divisibility of class numbers of imaginary quadratic fields \((\mathbb{Q} (\sqrt{D})\),\(\mathbb{Q} (\sqrt{D + m}))\). Ramanujan J. 53, 517–528 (2020)MathSciNetCrossRef
49.
go back to reference Yamamoto, Y.: On unramified Galois extensions of quadratic number fields. Osaka J. Math. 7, 57–76 (1970)MathSciNet Yamamoto, Y.: On unramified Galois extensions of quadratic number fields. Osaka J. Math. 7, 57–76 (1970)MathSciNet
50.
go back to reference Yu, G.: Imaginary quadratic fields with class groups of \(3\) -rank at least \(2\). Manuscripta Math. 163, 569–574 (2020)MathSciNetCrossRef Yu, G.: Imaginary quadratic fields with class groups of \(3\) -rank at least \(2\). Manuscripta Math. 163, 569–574 (2020)MathSciNetCrossRef
Metadata
Title
A Brief Survey of Recent Results on Pólya Groups
Authors
Jaitra Chattopadhyay
Anupam Saikia
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-6911-7_12

Premium Partner