Skip to main content
Top

2019 | OriginalPaper | Chapter

14. A Broad Family of Carbon Nanomaterials: Classification, Properties, Synthesis, and Emerging Applications

Authors : Ahmed Barhoum, Soliman I. El-Hout, Gomaa A. M. Ali, Esraa Samy Abu Serea, Ahmed H. Ibrahim, Kaushik Pal, Ahmed Esmail Shalan, Sabah M. Abdelbasir

Published in: Handbook of Nanofibers

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Advantages of carbon-based nanomaterials with different nanostructures as (Nanodiamonds, Carbon Quantum Dots, Fullerenes Nanostructures, graphene nanosheets, carbon nanofibers and carbon nanotubes), in the studies scheme of fabrication, functionalization, potential properties and applications including electronics, biological and energy applications are discussed in the current chapter. The reported classification, properties, synthesis, properties and emerging applications of these carbon nanomaterials have opened up new chances toward the future devices and materials. A better understanding of the key factors through the knowledge founded in this work can affect the future research directions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference El-Sheikh SM, El-Sherbiny S, Barhoum A, Deng Y (2013) Effects of cationic surfactant during the precipitation of calcium carbonate nano-particles on their size, morphology, and other characteristics. Colloids Surf A Physicochem Eng Asp 422:44–49CrossRef El-Sheikh SM, El-Sherbiny S, Barhoum A, Deng Y (2013) Effects of cationic surfactant during the precipitation of calcium carbonate nano-particles on their size, morphology, and other characteristics. Colloids Surf A Physicochem Eng Asp 422:44–49CrossRef
2.
go back to reference Barhoum A, Rahier H, Abou-Zaied RE, Rehan M, Dufour T, Hill G, Durfrense A (2014) Effect of cationic and anionic surfactants on the application of calcium carbonate nanoparticles in paper coating. ACS Appl Mater Interfaces 6(4):2734–2744CrossRef Barhoum A, Rahier H, Abou-Zaied RE, Rehan M, Dufour T, Hill G, Durfrense A (2014) Effect of cationic and anionic surfactants on the application of calcium carbonate nanoparticles in paper coating. ACS Appl Mater Interfaces 6(4):2734–2744CrossRef
3.
go back to reference El-Sherbiny S, El-Sheikh SM, Barhoum A (2015) Preparation and modification of nano calcium carbonate filler from waste marble dust and commercial limestone for papermaking wet end application. Powder Technol 279:290–300CrossRef El-Sherbiny S, El-Sheikh SM, Barhoum A (2015) Preparation and modification of nano calcium carbonate filler from waste marble dust and commercial limestone for papermaking wet end application. Powder Technol 279:290–300CrossRef
5.
go back to reference Samyn P, Barhoum A, Öhlund T, Dufresne A (2018) Nanoparticles and nanostructured materials in papermaking. J Mater Sci 53(1):146–184CrossRef Samyn P, Barhoum A, Öhlund T, Dufresne A (2018) Nanoparticles and nanostructured materials in papermaking. J Mater Sci 53(1):146–184CrossRef
6.
go back to reference Barhoum A, Samyn P, Öhlund T, Dufresne A (2017) Review of recent research on flexible multifunctional nanopapers. Nanoscale 9(40):15181–15205CrossRef Barhoum A, Samyn P, Öhlund T, Dufresne A (2017) Review of recent research on flexible multifunctional nanopapers. Nanoscale 9(40):15181–15205CrossRef
7.
go back to reference Samyn P, Barhoum A (2018) Engineered nanomaterials for papermaking industry. Fundam Nanopart 245–277 Samyn P, Barhoum A (2018) Engineered nanomaterials for papermaking industry. Fundam Nanopart 245–277
8.
go back to reference Barhoum A, Rehan M, Rahier H, Bechelany M, Van Assche G (2016) Seed-mediated hot-injection synthesis of tiny Ag nanocrystals on nanoscale solid supports and reaction mechanism. ACS Appl Mater Interfaces 8(16):10551–10561CrossRef Barhoum A, Rehan M, Rahier H, Bechelany M, Van Assche G (2016) Seed-mediated hot-injection synthesis of tiny Ag nanocrystals on nanoscale solid supports and reaction mechanism. ACS Appl Mater Interfaces 8(16):10551–10561CrossRef
9.
go back to reference Rehan M, Barhoum A, Assche GV, Dufresne A, Gätjen L, Wilken R (2017) Towards multifunctional cellulosic fabric: UV photo-reduction and in-situ synthesis of silver nanoparticles into cellulose fabrics. Int J Biol Macromol 98:877–886CrossRef Rehan M, Barhoum A, Assche GV, Dufresne A, Gätjen L, Wilken R (2017) Towards multifunctional cellulosic fabric: UV photo-reduction and in-situ synthesis of silver nanoparticles into cellulose fabrics. Int J Biol Macromol 98:877–886CrossRef
10.
go back to reference Rehan M, Khattab TA, Barohum A, Gätjen L, Wilken R (2018) Development of Ag/AgX (X= Cl, I) nanoparticles toward antimicrobial, UV-protected and self-cleanable viscose fibers. Carbohydr Polym 197:227–236CrossRef Rehan M, Khattab TA, Barohum A, Gätjen L, Wilken R (2018) Development of Ag/AgX (X= Cl, I) nanoparticles toward antimicrobial, UV-protected and self-cleanable viscose fibers. Carbohydr Polym 197:227–236CrossRef
11.
go back to reference Barhoum A, Van Lokeren L, Rahier H, Dufresne A, Van Assche G (2015) Roles of in situ surface modification in controlling the growth and crystallization of CaCO3 nanoparticles, and their dispersion in polymeric materials. J Mater Sci 50(24):7908–7918CrossRef Barhoum A, Van Lokeren L, Rahier H, Dufresne A, Van Assche G (2015) Roles of in situ surface modification in controlling the growth and crystallization of CaCO3 nanoparticles, and their dispersion in polymeric materials. J Mater Sci 50(24):7908–7918CrossRef
12.
go back to reference Hammani S, Barhoum A, Bechelany M (2018) Fabrication of PMMA/ZnO nanocomposite: effect of high nanoparticles loading on the optical and thermal properties. J Mater Sci 53(3):1911–1921CrossRef Hammani S, Barhoum A, Bechelany M (2018) Fabrication of PMMA/ZnO nanocomposite: effect of high nanoparticles loading on the optical and thermal properties. J Mater Sci 53(3):1911–1921CrossRef
13.
go back to reference Essawy HA, El-Sabbagh SH, Tawfik ME, Van Assche G, Barhoum A (2018) Assessment of provoked compatibility of NBR/SBR polymer blend with montmorillonite amphiphiles from the thermal degradation kinetics. Polym Bull 75(4):1417–1430CrossRef Essawy HA, El-Sabbagh SH, Tawfik ME, Van Assche G, Barhoum A (2018) Assessment of provoked compatibility of NBR/SBR polymer blend with montmorillonite amphiphiles from the thermal degradation kinetics. Polym Bull 75(4):1417–1430CrossRef
14.
go back to reference Youssef AM, Moustafa HA, Barhoum A, Hakim AEFAA, Dufresne A (2017) Evaluation of the morphological, electrical and antibacterial properties of polyaniline nanocomposite based on Zn/Al-layered double hydroxides. Chem Sel 2(27):8553–8566 Youssef AM, Moustafa HA, Barhoum A, Hakim AEFAA, Dufresne A (2017) Evaluation of the morphological, electrical and antibacterial properties of polyaniline nanocomposite based on Zn/Al-layered double hydroxides. Chem Sel 2(27):8553–8566
15.
go back to reference Esaifan M, Rahier H, Barhoum A, Khoury H, Hourani M, Wastiels J (2015) Development of inorganic polymer by alkali-activation of untreated kaolinitic clay: reaction stoichiometry, strength and dimensional stability. Constr Build Mater 91:251–259CrossRef Esaifan M, Rahier H, Barhoum A, Khoury H, Hourani M, Wastiels J (2015) Development of inorganic polymer by alkali-activation of untreated kaolinitic clay: reaction stoichiometry, strength and dimensional stability. Constr Build Mater 91:251–259CrossRef
16.
go back to reference Barhoum A, Li H, Chen M, Cheng L, Yang W, Dufresne A (2018) Emerging applications of cellulose nanofibers. Handb Nanofibers 1–26 Barhoum A, Li H, Chen M, Cheng L, Yang W, Dufresne A (2018) Emerging applications of cellulose nanofibers. Handb Nanofibers 1–26
17.
go back to reference Nnaji CO, Jeevanandam J, Chan YS, Danquah MK, Pan S, Barhoum A (2018) Engineered nanomaterials for wastewater treatment: current and future trends. Fundam Nanopart 129–168 Nnaji CO, Jeevanandam J, Chan YS, Danquah MK, Pan S, Barhoum A (2018) Engineered nanomaterials for wastewater treatment: current and future trends. Fundam Nanopart 129–168
18.
go back to reference El-Maghrabi HH, Barhoum A, Nada AA, Moustafa YM, Seliman SM (2018) Synthesis of mesoporous core-shell CdS@TiO2 (0D and 1D) photocatalysts for solar-driven hydrogen fuel production. J Photochem Photobiol A 351:261–270CrossRef El-Maghrabi HH, Barhoum A, Nada AA, Moustafa YM, Seliman SM (2018) Synthesis of mesoporous core-shell CdS@TiO2 (0D and 1D) photocatalysts for solar-driven hydrogen fuel production. J Photochem Photobiol A 351:261–270CrossRef
19.
go back to reference Gopalakrishnan R, Li Y, Smekens J, Barhoum A, Van Assche G, Omar N, Van Mierlo J (2018) Electrochemical impedance spectroscopy characterization and parameterization of lithium nickel manganese cobalt oxide pouch cells: dependency analysis of temperature and state of charge. Ionics 25:1–13CrossRef Gopalakrishnan R, Li Y, Smekens J, Barhoum A, Van Assche G, Omar N, Van Mierlo J (2018) Electrochemical impedance spectroscopy characterization and parameterization of lithium nickel manganese cobalt oxide pouch cells: dependency analysis of temperature and state of charge. Ionics 25:1–13CrossRef
20.
go back to reference Ali GAM, Divyashree A, Supriya S, Chong KF, Ethiraj AS, Reddy M, Algarni H, Hegde G (2017) Carbon nanospheres derived from Lablab purpureus for high performance supercapacitor electrodes: a green approach. Dalton Trans 46:14034–14044CrossRef Ali GAM, Divyashree A, Supriya S, Chong KF, Ethiraj AS, Reddy M, Algarni H, Hegde G (2017) Carbon nanospheres derived from Lablab purpureus for high performance supercapacitor electrodes: a green approach. Dalton Trans 46:14034–14044CrossRef
21.
go back to reference Barhoum A, Melcher J, Van Assche G, Rahier H, Bechelany M, Fleisch M, Bahnemann D (2017) Synthesis, growth mechanism, and photocatalytic activity of Zinc oxide nanostructures: porous microparticles versus nonporous nanoparticles. J Mater Sci 52(5):2746–2762CrossRef Barhoum A, Melcher J, Van Assche G, Rahier H, Bechelany M, Fleisch M, Bahnemann D (2017) Synthesis, growth mechanism, and photocatalytic activity of Zinc oxide nanostructures: porous microparticles versus nonporous nanoparticles. J Mater Sci 52(5):2746–2762CrossRef
22.
go back to reference Abdel-Haleem FM, Saad M, Barhoum A, Bechelany M, Rizk MS (2018) PVC membrane, coated-wire, and carbon-paste ion-selective electrodes for potentiometric determination of galantamine hydrobromide in physiological fluids. Mater Sci Eng C 89:140–148CrossRef Abdel-Haleem FM, Saad M, Barhoum A, Bechelany M, Rizk MS (2018) PVC membrane, coated-wire, and carbon-paste ion-selective electrodes for potentiometric determination of galantamine hydrobromide in physiological fluids. Mater Sci Eng C 89:140–148CrossRef
23.
go back to reference Nashar RME, Ghani NTA, Gohary NAE, Barhoum A, Madbouly A (2017) Molecularly imprinted polymers based biomimetic sensors for mosapride citrate detection in biological fluids. Mater Sci Eng C 76:123–129CrossRef Nashar RME, Ghani NTA, Gohary NAE, Barhoum A, Madbouly A (2017) Molecularly imprinted polymers based biomimetic sensors for mosapride citrate detection in biological fluids. Mater Sci Eng C 76:123–129CrossRef
24.
go back to reference Gugulothu D, Barhoum A, Afzal SM, Venkateshwarlu B, Uludag H (2018) Structural multifunctional nanofibers and their emerging applications. Handb Nanofibers 1–41 Gugulothu D, Barhoum A, Afzal SM, Venkateshwarlu B, Uludag H (2018) Structural multifunctional nanofibers and their emerging applications. Handb Nanofibers 1–41
25.
go back to reference Rasouli R, Barhoum A, Uludag H (2018) A review of nanostructured surfaces and materials for dental implants: surface coating, patterning and functionalization for improved performance. Biomater Sci 6(6):1312–1338CrossRef Rasouli R, Barhoum A, Uludag H (2018) A review of nanostructured surfaces and materials for dental implants: surface coating, patterning and functionalization for improved performance. Biomater Sci 6(6):1312–1338CrossRef
27.
go back to reference Rasouli R, Barhoum A (2018) Advances in nanofibers for antimicrobial drug delivery. Handb Nanofibers 1–42 Rasouli R, Barhoum A (2018) Advances in nanofibers for antimicrobial drug delivery. Handb Nanofibers 1–42
28.
go back to reference Rastogi A, Singh P Haraz FA, Barhoum A (2018) Biological synthesis of nanoparticles: an environmentally benign approach. Fundam Nanopart 571–604 Rastogi A, Singh P Haraz FA, Barhoum A (2018) Biological synthesis of nanoparticles: an environmentally benign approach. Fundam Nanopart 571–604
29.
go back to reference Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9(1):1050–1074CrossRef Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9(1):1050–1074CrossRef
30.
go back to reference Weiss J, Takhistov P, McClements DJ (2006) Antimicrobial properties of a novel silver-silica nanocomposite material. J Food Sci 71(9):R107–R116CrossRef Weiss J, Takhistov P, McClements DJ (2006) Antimicrobial properties of a novel silver-silica nanocomposite material. J Food Sci 71(9):R107–R116CrossRef
31.
go back to reference Ariga K, Li M, Richards GJ, Hill JP (2011) Nanoarchitectonics for mesoporous materials. J Nanosci Nanotechnol 11(1):1–13CrossRef Ariga K, Li M, Richards GJ, Hill JP (2011) Nanoarchitectonics for mesoporous materials. J Nanosci Nanotechnol 11(1):1–13CrossRef
32.
go back to reference Ali GAM, Yusoff MM, Ng YH, Lim NH, Chong KF (2015) Potentiostatic and galvanostatic electrodeposition of MnO2 for supercapacitors application: a comparison study. Curr Appl Phys 15(10):1143–1147CrossRef Ali GAM, Yusoff MM, Ng YH, Lim NH, Chong KF (2015) Potentiostatic and galvanostatic electrodeposition of MnO2 for supercapacitors application: a comparison study. Curr Appl Phys 15(10):1143–1147CrossRef
33.
go back to reference Kreibig U, Vollmer M (1995) Theoretical considerations, optical properties of metal clusters. Springer, BerlinCrossRef Kreibig U, Vollmer M (1995) Theoretical considerations, optical properties of metal clusters. Springer, BerlinCrossRef
34.
go back to reference Georgakilas V, Perman JA, Tucek J, Zboril R (2015) Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev 115:4744–4822CrossRef Georgakilas V, Perman JA, Tucek J, Zboril R (2015) Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev 115:4744–4822CrossRef
35.
go back to reference Danilenko VV (2004) On the history of the discovery of nanodiamond synthesis. Phys Solid State 46:595–599CrossRef Danilenko VV (2004) On the history of the discovery of nanodiamond synthesis. Phys Solid State 46:595–599CrossRef
36.
go back to reference Schrand AM, Hens SAC, Shenderova OA (2009) Nanodiamond particles: properties and perspectives for bioapplications. Crit Rev Solid State Mater Sci 34:18–74CrossRef Schrand AM, Hens SAC, Shenderova OA (2009) Nanodiamond particles: properties and perspectives for bioapplications. Crit Rev Solid State Mater Sci 34:18–74CrossRef
37.
go back to reference Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, Schlager JJ (2007) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem 111:2–7 Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, Schlager JJ (2007) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem 111:2–7
38.
go back to reference Mochalin VN, Shenderova O, Ho D, Gogotsi Y (2011) The properties and applications of nanodiamonds. Nat Nanotechnol 7:11–23CrossRef Mochalin VN, Shenderova O, Ho D, Gogotsi Y (2011) The properties and applications of nanodiamonds. Nat Nanotechnol 7:11–23CrossRef
39.
go back to reference Wen B, Zhao J, Li T (2007) Relative stability of hydrogenated nanodiamond and nanographite from density function theory. Chem Phys Lett 441:318–321CrossRef Wen B, Zhao J, Li T (2007) Relative stability of hydrogenated nanodiamond and nanographite from density function theory. Chem Phys Lett 441:318–321CrossRef
40.
go back to reference Kroto H, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene. Nature 318:162–164CrossRef Kroto H, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene. Nature 318:162–164CrossRef
42.
go back to reference Ali GAM, Lih Teo EY, Aboelazm EAA, Sadegh H, Memar AOH, Shahryari-Ghoshekandi R, Chong KF (2017) Capacitive performance of cysteamine functionalized carbon nanotubes. Mater Chem Phys 197:100–104CrossRef Ali GAM, Lih Teo EY, Aboelazm EAA, Sadegh H, Memar AOH, Shahryari-Ghoshekandi R, Chong KF (2017) Capacitive performance of cysteamine functionalized carbon nanotubes. Mater Chem Phys 197:100–104CrossRef
43.
go back to reference Yin L, Wang Y, Pang G, Koltypin Y, Gedanken A (2002) Sonochemical synthesis of cerium oxide nanoparticles-effect of additives and quantum size effect. J Colloid Interface Sci 246(1):78–84CrossRef Yin L, Wang Y, Pang G, Koltypin Y, Gedanken A (2002) Sonochemical synthesis of cerium oxide nanoparticles-effect of additives and quantum size effect. J Colloid Interface Sci 246(1):78–84CrossRef
44.
go back to reference Liu Z, Ling XY, Su X, Lee JY (2004) Carbon-supported Pt and PtRu nanoparticles as catalysts for a direct methanol fuel cell. J Phys Chem B 108(24):8234–8240CrossRef Liu Z, Ling XY, Su X, Lee JY (2004) Carbon-supported Pt and PtRu nanoparticles as catalysts for a direct methanol fuel cell. J Phys Chem B 108(24):8234–8240CrossRef
45.
go back to reference Bekyarova E, Ni Y, Malarkey E (2005) Applications of carbon nanotubes in biotechnology and biomedicine. J Biomed Nanotechnol 1:3–17CrossRef Bekyarova E, Ni Y, Malarkey E (2005) Applications of carbon nanotubes in biotechnology and biomedicine. J Biomed Nanotechnol 1:3–17CrossRef
46.
go back to reference Hou J, Shao Y, Ellis MW, Moore RB, Yi B (2011) Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries. Phys Chem Chem Phys 13(34):15384CrossRef Hou J, Shao Y, Ellis MW, Moore RB, Yi B (2011) Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries. Phys Chem Chem Phys 13(34):15384CrossRef
47.
go back to reference Choi H-J, Jung S-M, Seo J-M, Chang DW, Dai L, Baek J-B (2012) Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano Energy 1(4):534–551CrossRef Choi H-J, Jung S-M, Seo J-M, Chang DW, Dai L, Baek J-B (2012) Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano Energy 1(4):534–551CrossRef
48.
go back to reference Qiu S, Zhou Z, Dong J, Chen G, Tribol J (1999) Preparation of Ni nanoparticles and evaluation of their tribological performance as potential additives in oils. J Tribol 123(3):441–443CrossRef Qiu S, Zhou Z, Dong J, Chen G, Tribol J (1999) Preparation of Ni nanoparticles and evaluation of their tribological performance as potential additives in oils. J Tribol 123(3):441–443CrossRef
49.
go back to reference Wang J, Musameh M (2004) Carbon nanotube screen-printed electrochemical sensors. Analyst 129(1):1CrossRef Wang J, Musameh M (2004) Carbon nanotube screen-printed electrochemical sensors. Analyst 129(1):1CrossRef
50.
go back to reference Jackson P, Jacobsen NR, Baun A, Birkedal R, Kühnel D, Jensen KA, Vogel U, Wallin H (2013) Bioaccumulation and ecotoxicity of carbon nanotubes. Chem Cent J 7:154CrossRef Jackson P, Jacobsen NR, Baun A, Birkedal R, Kühnel D, Jensen KA, Vogel U, Wallin H (2013) Bioaccumulation and ecotoxicity of carbon nanotubes. Chem Cent J 7:154CrossRef
51.
go back to reference Shaikjee A, Coville NJ (2012) The synthesis, properties and uses of carbon materials with helical morphology. J Adv Res 3(3):195–223CrossRef Shaikjee A, Coville NJ (2012) The synthesis, properties and uses of carbon materials with helical morphology. J Adv Res 3(3):195–223CrossRef
52.
go back to reference Robinson JT, Perkins FK, Snow ES, Wei Z, Sheehan PE (2008) Reduced graphene oxide molecular sensors. Nano Lett 8(10):3137–3140CrossRef Robinson JT, Perkins FK, Snow ES, Wei Z, Sheehan PE (2008) Reduced graphene oxide molecular sensors. Nano Lett 8(10):3137–3140CrossRef
53.
go back to reference Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1(3):203–212CrossRef Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1(3):203–212CrossRef
54.
go back to reference Liu Z, Tabakman S, Welsher K, Dai H (2010) Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res 2(2):85–120CrossRef Liu Z, Tabakman S, Welsher K, Dai H (2010) Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res 2(2):85–120CrossRef
55.
go back to reference Chen F, Wang Z-C, Lin C-J (2002) Preparation and characterization of nano-sized hydroxyapatite particles and hydroxyapatite/chitosan nano-composite for use in biomedical materials. Mater Lett 57(4):858–861CrossRef Chen F, Wang Z-C, Lin C-J (2002) Preparation and characterization of nano-sized hydroxyapatite particles and hydroxyapatite/chitosan nano-composite for use in biomedical materials. Mater Lett 57(4):858–861CrossRef
56.
go back to reference Gatenholm P, Klemm D (2010) Acterial nanocellulose as a renewable material for biomedical applications. MRS Bull 35(03):208–213CrossRef Gatenholm P, Klemm D (2010) Acterial nanocellulose as a renewable material for biomedical applications. MRS Bull 35(03):208–213CrossRef
57.
go back to reference Fecht HJ, Brühne K (2014) Carbon-based nanomaterials and hybrids: synthesis, properties, and commercial applications. CRC Press, Boca Raton Fecht HJ, Brühne K (2014) Carbon-based nanomaterials and hybrids: synthesis, properties, and commercial applications. CRC Press, Boca Raton
58.
go back to reference Beg S, Rizwan M, Sheikh AM, Hasnain MS, Anwer K, Kohli K (2011) Advancement in carbon nanotubes: basics, biomedical applications and toxicity. J Pharm Pharmacol 63(2):141–163CrossRef Beg S, Rizwan M, Sheikh AM, Hasnain MS, Anwer K, Kohli K (2011) Advancement in carbon nanotubes: basics, biomedical applications and toxicity. J Pharm Pharmacol 63(2):141–163CrossRef
59.
go back to reference Boehm HP, Setton R, Stumpp E (1994) Nomenclature and terminology of graphite intercalation compounds (IUPAC recommendations). Pure Appl Chem 66(9):1893–1901CrossRef Boehm HP, Setton R, Stumpp E (1994) Nomenclature and terminology of graphite intercalation compounds (IUPAC recommendations). Pure Appl Chem 66(9):1893–1901CrossRef
60.
go back to reference Boehm HP, Clauss A, Fischer GO, Hofmann U (1962) Das adsorptionsverhalten sehr dünner kohlenstoff-folien. Z Anorg Allg Chem 316(3–4):119–127CrossRef Boehm HP, Clauss A, Fischer GO, Hofmann U (1962) Das adsorptionsverhalten sehr dünner kohlenstoff-folien. Z Anorg Allg Chem 316(3–4):119–127CrossRef
61.
go back to reference Mouras S, Hamwi A, Djurado D, Cousseins JC (1987) Synthesis of first stage graphite intercalation compounds with fluorides. Rev Chim Mineral 24:572–582 Mouras S, Hamwi A, Djurado D, Cousseins JC (1987) Synthesis of first stage graphite intercalation compounds with fluorides. Rev Chim Mineral 24:572–582
62.
go back to reference Lee C, Wei XD, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRef Lee C, Wei XD, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRef
63.
go back to reference Bao W, Miao F, Chen Z, Zhang H, Jang W, Dames C, Lau CN (2009) Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. Nat Nanotechnol 4:562–566CrossRef Bao W, Miao F, Chen Z, Zhang H, Jang W, Dames C, Lau CN (2009) Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. Nat Nanotechnol 4:562–566CrossRef
64.
go back to reference Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Ultrahigh electron mobility in suspended grapheme. Solid State Commun 146:351CrossRef Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Ultrahigh electron mobility in suspended grapheme. Solid State Commun 146:351CrossRef
65.
go back to reference Dean CR, Young AF, Meric L, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard KL, Hone J (2010) Boron nitride substrates for high-quality graphene electronics. J Nat Nano 5(10):722–726CrossRef Dean CR, Young AF, Meric L, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard KL, Hone J (2010) Boron nitride substrates for high-quality graphene electronics. J Nat Nano 5(10):722–726CrossRef
66.
go back to reference Ferrer-Anglada N, Gomis V, El-Hachemi Z, Weglikovska UD, Kaempgen M, Roth S (2006) Carbon nanotube based composites for electronic applications: CNT–conducting polymers, CNT–Cu. Phys Status Solidi A 203(6):1082–1087CrossRef Ferrer-Anglada N, Gomis V, El-Hachemi Z, Weglikovska UD, Kaempgen M, Roth S (2006) Carbon nanotube based composites for electronic applications: CNT–conducting polymers, CNT–Cu. Phys Status Solidi A 203(6):1082–1087CrossRef
67.
go back to reference Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666CrossRef Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666CrossRef
68.
go back to reference Kim YA, Hayashi T, Endo M, Dresselhaus MS (2013) Carbon nanofbers. In: Vajtai R (ed) Springer handbook of nanomaterials. Springer, Berlin, p 1500 Kim YA, Hayashi T, Endo M, Dresselhaus MS (2013) Carbon nanofbers. In: Vajtai R (ed) Springer handbook of nanomaterials. Springer, Berlin, p 1500
69.
go back to reference Teo KBK, Singh C, Milne WI (2003) Catalytic synthesis of carbon nanotubes and nanofbers. In: Nalwa HS (ed) Encyclopedia of nanoscience and nanotechnology. American Scientifc Publishers, Stevenson Ranch, pp 665–686 Teo KBK, Singh C, Milne WI (2003) Catalytic synthesis of carbon nanotubes and nanofbers. In: Nalwa HS (ed) Encyclopedia of nanoscience and nanotechnology. American Scientifc Publishers, Stevenson Ranch, pp 665–686
70.
go back to reference Palmeri MJ, Putz KW, Ramanathan T, Brinson LC (2011) Multi-scale reinforcement of CFRPs using carbon nanofibers. Compos Sci Technol 71(2):79–86CrossRef Palmeri MJ, Putz KW, Ramanathan T, Brinson LC (2011) Multi-scale reinforcement of CFRPs using carbon nanofibers. Compos Sci Technol 71(2):79–86CrossRef
71.
go back to reference Small JP, Shi L, Kim P (2003) Mesoscopic thermal and thermoelectric measurements of individual carbon nanotubes. Solid State Commun 127:181–186CrossRef Small JP, Shi L, Kim P (2003) Mesoscopic thermal and thermoelectric measurements of individual carbon nanotubes. Solid State Commun 127:181–186CrossRef
72.
go back to reference de Heer WA, Chatelain A, Ugarte D (1995) A carbon nanotube field-emission electron source. Science 270:1179–1180CrossRef de Heer WA, Chatelain A, Ugarte D (1995) A carbon nanotube field-emission electron source. Science 270:1179–1180CrossRef
73.
go back to reference Treacy MM, Ebbesen TW, Gibson JM (1996) MWCNTs/AZ31 surface composites fabricated by friction stir processing. Nature 381:678–680CrossRef Treacy MM, Ebbesen TW, Gibson JM (1996) MWCNTs/AZ31 surface composites fabricated by friction stir processing. Nature 381:678–680CrossRef
74.
go back to reference Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277:1971–1975CrossRef Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277:1971–1975CrossRef
75.
go back to reference Journet C, Maser WK, Bernier P, Loiseau A, Chapelle ML, Lefrant S, Deniard P, Lee R, Fischer JE (1997) Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388:756–758CrossRef Journet C, Maser WK, Bernier P, Loiseau A, Chapelle ML, Lefrant S, Deniard P, Lee R, Fischer JE (1997) Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388:756–758CrossRef
76.
go back to reference Saito Y, Nakahira T, Uemura S (2002) Growth conditions of double-walled carbon nanotubes in arc discharge. J Phys Chem B 107:931–934CrossRef Saito Y, Nakahira T, Uemura S (2002) Growth conditions of double-walled carbon nanotubes in arc discharge. J Phys Chem B 107:931–934CrossRef
77.
go back to reference Puretzky A, Geohegan D, Schittenhelm H, Fan X, Guillorn M (2002) Time-resolved diagnostics of single wall carbon nanotube synthesis by laser vaporization. Appl Surf Sci 197:552–562CrossRef Puretzky A, Geohegan D, Schittenhelm H, Fan X, Guillorn M (2002) Time-resolved diagnostics of single wall carbon nanotube synthesis by laser vaporization. Appl Surf Sci 197:552–562CrossRef
78.
go back to reference Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tomanek D, Fischer J, Smalley RE (1996) Crystalline ropes of metallic carbon nanotubes. Science 273:483–487CrossRef Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tomanek D, Fischer J, Smalley RE (1996) Crystalline ropes of metallic carbon nanotubes. Science 273:483–487CrossRef
79.
go back to reference Hegde G, Abdul Manaf SA, Kumar A, Ali GAM, Chong KF, Ngaini Z, Sharma KV (2015) Biowaste sago bark based catalyst free carbon nanospheres: waste to wealth approach. ACS Sustain Chem Eng 3(9):2247–2253CrossRef Hegde G, Abdul Manaf SA, Kumar A, Ali GAM, Chong KF, Ngaini Z, Sharma KV (2015) Biowaste sago bark based catalyst free carbon nanospheres: waste to wealth approach. ACS Sustain Chem Eng 3(9):2247–2253CrossRef
80.
go back to reference Ali GAM, Abdul Manaf SA, Kumar A, Chong KF, Hegde G (2014) High performance supercapacitor using catalysis free porous carbon nanoparticles. J Phys D Appl Phys 47(49):495307–495313CrossRef Ali GAM, Abdul Manaf SA, Kumar A, Chong KF, Hegde G (2014) High performance supercapacitor using catalysis free porous carbon nanoparticles. J Phys D Appl Phys 47(49):495307–495313CrossRef
81.
go back to reference Lee CJ, Park JH, Park J (2000) Synthesis of bamboo-shaped multiwalled carbon nanotubes using thermal chemical vapor deposition. Chem Phys Lett 323:560–565CrossRef Lee CJ, Park JH, Park J (2000) Synthesis of bamboo-shaped multiwalled carbon nanotubes using thermal chemical vapor deposition. Chem Phys Lett 323:560–565CrossRef
82.
go back to reference Rohmund F, Falk L, Campbell E (2000) A simple method for the production of large arrays of aligned carbon nanotubes. Chem Phys Lett 328:369–373CrossRef Rohmund F, Falk L, Campbell E (2000) A simple method for the production of large arrays of aligned carbon nanotubes. Chem Phys Lett 328:369–373CrossRef
83.
go back to reference Zheng B, Lu C, Gu G, Markarovski A, Finkelstein G, Liu J (2002) Efficient CVD growth of single-walled carbon nanotubes on surfaces using carbon monoxide precursor. J Nano Lett 2:895–898CrossRef Zheng B, Lu C, Gu G, Markarovski A, Finkelstein G, Liu J (2002) Efficient CVD growth of single-walled carbon nanotubes on surfaces using carbon monoxide precursor. J Nano Lett 2:895–898CrossRef
84.
go back to reference Wei B, Vajtai R, Choi YY, Ajayan PM, Zhu H, Xu C, Wu D (2002) Structural characterizations of long single-walled carbon nanotube strands. Nano Lett 2:1105–1107CrossRef Wei B, Vajtai R, Choi YY, Ajayan PM, Zhu H, Xu C, Wu D (2002) Structural characterizations of long single-walled carbon nanotube strands. Nano Lett 2:1105–1107CrossRef
85.
go back to reference Zhu HW, Xu CL, Wu DH, Wei BQ, Vajtai R, Ajayan PM (2002) Direct synthesis of long single-walled carbon nanotube strands. Science 296:884–886CrossRef Zhu HW, Xu CL, Wu DH, Wei BQ, Vajtai R, Ajayan PM (2002) Direct synthesis of long single-walled carbon nanotube strands. Science 296:884–886CrossRef
86.
go back to reference Joselevich E, Lieber CM (2002) Vectorial growth of metallic and semiconducting single-wall carbon nanotubes. Nano Lett 2:1137–1141CrossRef Joselevich E, Lieber CM (2002) Vectorial growth of metallic and semiconducting single-wall carbon nanotubes. Nano Lett 2:1137–1141CrossRef
87.
go back to reference Dai H, Rinzler AG, Nikolaev P, Thess A, Colbert DT, Smalley RE (1996) Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem Phys Lett 260:471–475CrossRef Dai H, Rinzler AG, Nikolaev P, Thess A, Colbert DT, Smalley RE (1996) Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem Phys Lett 260:471–475CrossRef
88.
go back to reference Cassel AM, Raymakers JA, Kong J, Dai H (1999) Large scale CVD synthesis of single-walled carbon nanotubes. J Phys Chem B 103:6484–6492CrossRef Cassel AM, Raymakers JA, Kong J, Dai H (1999) Large scale CVD synthesis of single-walled carbon nanotubes. J Phys Chem B 103:6484–6492CrossRef
89.
go back to reference Huang S, Dai L, Mau AWH (1999) Patterned growth and contact transfer of well-aligned carbon nanotube films. J Phys Chem B 103:4223–4227CrossRef Huang S, Dai L, Mau AWH (1999) Patterned growth and contact transfer of well-aligned carbon nanotube films. J Phys Chem B 103:4223–4227CrossRef
90.
go back to reference Andrews R, Jacques D, Rao AM, Deryshire F, Qian D, Fan X, Dickey EC, Chen A (1999) One-step single source route to carbon nanotubes. J Chem Phys Lett 303:467–474CrossRef Andrews R, Jacques D, Rao AM, Deryshire F, Qian D, Fan X, Dickey EC, Chen A (1999) One-step single source route to carbon nanotubes. J Chem Phys Lett 303:467–474CrossRef
92.
go back to reference Ali GAM, Yusoff MM, Algarni H, Chong KF (2018) One-step electrosynthesis of MnO2/rGO nanocomposite and its enhanced electrochemical performance. Ceram Int 44(7):7799–7807CrossRef Ali GAM, Yusoff MM, Algarni H, Chong KF (2018) One-step electrosynthesis of MnO2/rGO nanocomposite and its enhanced electrochemical performance. Ceram Int 44(7):7799–7807CrossRef
93.
go back to reference Ali GAM, Makhlouf SA, Yusoff MM, Chong KF (2015) Structural and electrochemical characteristics of graphene nanosheets as supercapacitor electrodes. Rev Adv Mater Sci 40(1):35–41 Ali GAM, Makhlouf SA, Yusoff MM, Chong KF (2015) Structural and electrochemical characteristics of graphene nanosheets as supercapacitor electrodes. Rev Adv Mater Sci 40(1):35–41
94.
go back to reference Atchudan R, Perumal S, Jebakumar TN, Edison I, Pandurangan A, Lee YR (2015) Synthesis and characterization of graphenated carbon nanotubes on IONPs using acetylene by chemical vapor deposition method. Phys E 74:355–362CrossRef Atchudan R, Perumal S, Jebakumar TN, Edison I, Pandurangan A, Lee YR (2015) Synthesis and characterization of graphenated carbon nanotubes on IONPs using acetylene by chemical vapor deposition method. Phys E 74:355–362CrossRef
95.
go back to reference Morjan R-E, Nerushev OA, Ostrovskii DI, Sveningsson M, Jönsson M, Rohmund F, Campbell EEB (2002) Carbon nanotube synthesis for microsystems applications. Physica B 323:51–59CrossRef Morjan R-E, Nerushev OA, Ostrovskii DI, Sveningsson M, Jönsson M, Rohmund F, Campbell EEB (2002) Carbon nanotube synthesis for microsystems applications. Physica B 323:51–59CrossRef
96.
go back to reference Ago H, Nakamura K, Imamura S, Tsuji M (2004) Growth of double-wall carbon nanotubes with diameter-controlled iron oxide nanoparticles supported on MgO. Chem Phys Lett 391:308–313CrossRef Ago H, Nakamura K, Imamura S, Tsuji M (2004) Growth of double-wall carbon nanotubes with diameter-controlled iron oxide nanoparticles supported on MgO. Chem Phys Lett 391:308–313CrossRef
97.
go back to reference Hafner JH, Bronikowski MJ, Azamian BR, Nikolaev P, Rinzler AG, Colbert DT, Smith KA, Smalley RE (1998) Catalytic growth of single-wall carbon nanotubes from metal particles. Chem Phys Lett 296:195–202CrossRef Hafner JH, Bronikowski MJ, Azamian BR, Nikolaev P, Rinzler AG, Colbert DT, Smith KA, Smalley RE (1998) Catalytic growth of single-wall carbon nanotubes from metal particles. Chem Phys Lett 296:195–202CrossRef
98.
go back to reference Sato S, Kawabata A, Kondo D, Nihei M, Awano Y (2005) Carbon nanotube growth from titanium-cobalt bimetallic particles as a catalyst. Chem Phys Lett 402:149–154CrossRef Sato S, Kawabata A, Kondo D, Nihei M, Awano Y (2005) Carbon nanotube growth from titanium-cobalt bimetallic particles as a catalyst. Chem Phys Lett 402:149–154CrossRef
99.
go back to reference Zaretskiy SN, Hong Y-K, Ha DH, Yoon J-H, Cheon J, Koo J-Y (2003) Growth of carbon nanotubes from Co nanoparticles and C2H2 by thermal chemical vapor deposition. Chem Phys Lett 372:300–305CrossRef Zaretskiy SN, Hong Y-K, Ha DH, Yoon J-H, Cheon J, Koo J-Y (2003) Growth of carbon nanotubes from Co nanoparticles and C2H2 by thermal chemical vapor deposition. Chem Phys Lett 372:300–305CrossRef
100.
go back to reference Marcus MS, Simmons JM, Baker SE, Hamers RJ, Eriksson MA (2009) Predicting the results of chemical vapor deposition growth of suspended carbon nanotubes. Nano Lett 9(5):1806–1811CrossRef Marcus MS, Simmons JM, Baker SE, Hamers RJ, Eriksson MA (2009) Predicting the results of chemical vapor deposition growth of suspended carbon nanotubes. Nano Lett 9(5):1806–1811CrossRef
101.
go back to reference Wong EW, Bronikowski MJ, Hoenk ME, Kowalczyk RS, Hunt BD (2005) Submicron patterning of iron nanoparticle monolayers for carbon nanotube growth. Chem Mater 17:237–241CrossRef Wong EW, Bronikowski MJ, Hoenk ME, Kowalczyk RS, Hunt BD (2005) Submicron patterning of iron nanoparticle monolayers for carbon nanotube growth. Chem Mater 17:237–241CrossRef
102.
go back to reference Hughes M, Spinks GM (2005) Multiwalled carbon nanotube actuators. Adv Mater 17:443–446CrossRef Hughes M, Spinks GM (2005) Multiwalled carbon nanotube actuators. Adv Mater 17:443–446CrossRef
103.
go back to reference Fung CKM, Wong VTS, Chan RHM, Li WJ (2004) Dielectrophoretic batch fabrication of bundled carbon nanotube thermal sensors. IEEE Trans Nanotechnol 3:395–403CrossRef Fung CKM, Wong VTS, Chan RHM, Li WJ (2004) Dielectrophoretic batch fabrication of bundled carbon nanotube thermal sensors. IEEE Trans Nanotechnol 3:395–403CrossRef
106.
go back to reference Abel M (2005) Mechanical engineering, master of science. Georgia Institute of Technology, Atlanta Abel M (2005) Mechanical engineering, master of science. Georgia Institute of Technology, Atlanta
107.
go back to reference Khalil I, Julkapli NM, Yehye WA, OrcID, Basirun WJ Bhargava SK (2016) Graphene–Gold Nanoparticles Hybrid—Synthesis, Functionalization, and Application in a Electrochemical and Surface-Enhanced Raman Scattering Biosensor. Open Access Materials 9(6):406. https://doi.org/10.3390/ma9060406 CrossRef Khalil I, Julkapli NM, Yehye WA, OrcID, Basirun WJ Bhargava SK (2016) Graphene–Gold Nanoparticles Hybrid—Synthesis, Functionalization, and Application in a Electrochemical and Surface-Enhanced Raman Scattering Biosensor. Open Access Materials 9(6):406. https://​doi.​org/​10.​3390/​ma9060406 CrossRef
108.
go back to reference Li X, Wang X, Zhang L, Lee S, Dai H (2008) Chemically derived, ultra smooth graphene nanoribbon semiconductors. Science 319:1229–1232CrossRef Li X, Wang X, Zhang L, Lee S, Dai H (2008) Chemically derived, ultra smooth graphene nanoribbon semiconductors. Science 319:1229–1232CrossRef
109.
go back to reference Nakada K, Fujita M, Dresselhaus G, Dresselhaus MS (1996) Edge state in graphene ribbons: nano meter size effect and edge shaped dependence. Phys Rev B 54:17954–17961CrossRef Nakada K, Fujita M, Dresselhaus G, Dresselhaus MS (1996) Edge state in graphene ribbons: nano meter size effect and edge shaped dependence. Phys Rev B 54:17954–17961CrossRef
110.
go back to reference Jia X, Hofmann M, Meunier V, Sumpter BG, Campos-Delgado J, Romo-Herrera JM (2009) Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons. Science 323(5922):1701–1705CrossRef Jia X, Hofmann M, Meunier V, Sumpter BG, Campos-Delgado J, Romo-Herrera JM (2009) Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons. Science 323(5922):1701–1705CrossRef
111.
go back to reference Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin LC (2011) Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density. Chem Phys 13:17615–17624 Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin LC (2011) Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density. Chem Phys 13:17615–17624
112.
go back to reference Fan Z, Yan J, Zhi L, Zhang Q, Wei T, Feng J, Zhang M, Qian W, Wei F (2010) A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv Mater 22:3723–3728CrossRef Fan Z, Yan J, Zhi L, Zhang Q, Wei T, Feng J, Zhang M, Qian W, Wei F (2010) A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv Mater 22:3723–3728CrossRef
113.
go back to reference Haddon RC, Sippel J, Rinzler AG, Papadimitrakopoulos F (2004) Purification and separation of carbon nanotubes. MRS Bull 29:252CrossRef Haddon RC, Sippel J, Rinzler AG, Papadimitrakopoulos F (2004) Purification and separation of carbon nanotubes. MRS Bull 29:252CrossRef
114.
go back to reference Zhang H, Wu B, Hu W, Liu Y (2011) Separation and/or selective enrichment of single-walled carbon nanotubes based on their electronic properties. Chem Soc Rev 40:1324CrossRef Zhang H, Wu B, Hu W, Liu Y (2011) Separation and/or selective enrichment of single-walled carbon nanotubes based on their electronic properties. Chem Soc Rev 40:1324CrossRef
115.
go back to reference Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin L-C (2011) Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density. Phys Chem Chem Phys 13:17615–17624CrossRef Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin L-C (2011) Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density. Phys Chem Chem Phys 13:17615–17624CrossRef
116.
go back to reference Li X, Wang X, Zhang L, Lee S, Dai H (2008) Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319(5867):1229–1232CrossRef Li X, Wang X, Zhang L, Lee S, Dai H (2008) Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319(5867):1229–1232CrossRef
117.
go back to reference Tanaka S, Morita K, Hibino H (2010) Anisotropic layer-by-layer growth of graphene on vicinal SiC (0001) surfaces. Phys Rev B 81:041406CrossRef Tanaka S, Morita K, Hibino H (2010) Anisotropic layer-by-layer growth of graphene on vicinal SiC (0001) surfaces. Phys Rev B 81:041406CrossRef
118.
go back to reference Ma L, Wang J, Ding F (2012) Recent progress and challenges in graphene nanoribbon synthesis. Chem Phys Chem 14:47CrossRef Ma L, Wang J, Ding F (2012) Recent progress and challenges in graphene nanoribbon synthesis. Chem Phys Chem 14:47CrossRef
119.
go back to reference Volder MFLD, Tawfick S, Park SJ, John Hart A (2011) Corrugated carbon nanotube microstructures with geometrically tunable compliance. ACS Nano 5(9):7310–7317CrossRef Volder MFLD, Tawfick S, Park SJ, John Hart A (2011) Corrugated carbon nanotube microstructures with geometrically tunable compliance. ACS Nano 5(9):7310–7317CrossRef
120.
go back to reference Khajavi R, Abbasipour M (2012) Electrospinning as a versatile method for fabricating coreshell, hollow and porous nanofibers. Sci Iran 19(6):2029–2034CrossRef Khajavi R, Abbasipour M (2012) Electrospinning as a versatile method for fabricating coreshell, hollow and porous nanofibers. Sci Iran 19(6):2029–2034CrossRef
121.
go back to reference Ramakrishna S, Fujihara K, Teo W-E, Lim T-C, Ma Z (2005) An introduction to electrospinning and nanofibers. World Scientific Publishing Co. Pte. Ltd, New JerseyCrossRef Ramakrishna S, Fujihara K, Teo W-E, Lim T-C, Ma Z (2005) An introduction to electrospinning and nanofibers. World Scientific Publishing Co. Pte. Ltd, New JerseyCrossRef
122.
go back to reference Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325–347CrossRef Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325–347CrossRef
123.
go back to reference Li W (2015) Hybrid gel polymer electrolyte fabricated by electrospinning technology for polymer lithium-ion battery. Eur Polym J 67:365–372CrossRef Li W (2015) Hybrid gel polymer electrolyte fabricated by electrospinning technology for polymer lithium-ion battery. Eur Polym J 67:365–372CrossRef
124.
go back to reference Guo J, Zhou H, Akram MY, Mu X, Nie J, Ma G (2016) Characterization and application of chondroitin sulfate/polyvinyl alcohol nanofibres prepared by electrospinning. Carbohydr Polym 143:239–245CrossRef Guo J, Zhou H, Akram MY, Mu X, Nie J, Ma G (2016) Characterization and application of chondroitin sulfate/polyvinyl alcohol nanofibres prepared by electrospinning. Carbohydr Polym 143:239–245CrossRef
125.
go back to reference Kim M, Kim Y, Lee KM, Jeong SY, Lee E, Baeck SH, Shim SE (2016) Electrochemical improvement due to alignment of carbon nanofibers fabricated by electrospinning as an electrode for supercapacitor. Carbon 99:607–618CrossRef Kim M, Kim Y, Lee KM, Jeong SY, Lee E, Baeck SH, Shim SE (2016) Electrochemical improvement due to alignment of carbon nanofibers fabricated by electrospinning as an electrode for supercapacitor. Carbon 99:607–618CrossRef
126.
go back to reference Zhao J, Liu H, Xu L (2015) Effect of carbonization temperature on properties of aligned electrospun polyacrylonitrile carbon nanofibers. Mater Des 85:483–486CrossRef Zhao J, Liu H, Xu L (2015) Effect of carbonization temperature on properties of aligned electrospun polyacrylonitrile carbon nanofibers. Mater Des 85:483–486CrossRef
127.
go back to reference Low LW, Teng TT, Alkarkhi AFM, Morad N, Azahari B (2015) Carbonization of elaeis guineensis frond fiber: effect of heating rate and nitrogen gas flow rate for adsorbent properties enhancement. J Ind Eng Chem 28:37–44CrossRef Low LW, Teng TT, Alkarkhi AFM, Morad N, Azahari B (2015) Carbonization of elaeis guineensis frond fiber: effect of heating rate and nitrogen gas flow rate for adsorbent properties enhancement. J Ind Eng Chem 28:37–44CrossRef
128.
go back to reference Zhang L, Hsieh Y-L (2009) Carbon nanofibers with nanoporosity and hollow channels from binary polyacrylonitrile systems. Eur Polym J 45(1):47–56CrossRef Zhang L, Hsieh Y-L (2009) Carbon nanofibers with nanoporosity and hollow channels from binary polyacrylonitrile systems. Eur Polym J 45(1):47–56CrossRef
129.
go back to reference Jo E, Yeo J-G, Kim DK, Oh JS, Hong CK (2014) Preparation of well-controlled porous carbon nanofiber materials by varying the compatibility of polymer blends. Polym Int 63(8):1471–1477CrossRef Jo E, Yeo J-G, Kim DK, Oh JS, Hong CK (2014) Preparation of well-controlled porous carbon nanofiber materials by varying the compatibility of polymer blends. Polym Int 63(8):1471–1477CrossRef
130.
go back to reference Abeykoon NC, Bonso JS, Ferraris JP (2015) Supercapacitor performance of carbon nanofiber electrodes derived from immiscible PAN/PMMA polymer blends. RSC Adv 5(26):19865–19873CrossRef Abeykoon NC, Bonso JS, Ferraris JP (2015) Supercapacitor performance of carbon nanofiber electrodes derived from immiscible PAN/PMMA polymer blends. RSC Adv 5(26):19865–19873CrossRef
131.
go back to reference Hong CK, Yang KS, Oh SH, Ahn J-H, Cho B-H, Nah C (2008) Effect of blend composition on the morphology development of electrospun fibres based on PAN/PMMA blends. Polym Int 57(12):1357–1362CrossRef Hong CK, Yang KS, Oh SH, Ahn J-H, Cho B-H, Nah C (2008) Effect of blend composition on the morphology development of electrospun fibres based on PAN/PMMA blends. Polym Int 57(12):1357–1362CrossRef
132.
go back to reference Lai C-C, Lo C-T (2015) Preparation of nanostructural carbon nanofibers and their electrochemical performance for supercapacitors. Electrochim Acta 183:85–93CrossRef Lai C-C, Lo C-T (2015) Preparation of nanostructural carbon nanofibers and their electrochemical performance for supercapacitors. Electrochim Acta 183:85–93CrossRef
133.
go back to reference Khalf A, Madihally SV (2017) Recent advances in multiaxial electrospinning for drug delivery. Eur J Pharm Biopharm 112:1–17CrossRef Khalf A, Madihally SV (2017) Recent advances in multiaxial electrospinning for drug delivery. Eur J Pharm Biopharm 112:1–17CrossRef
135.
go back to reference Pal K, Majumder TP, Neogy C, Debnath SC (2012) Optical, dielectric and microscopic observation of different phases TiO2 metal host nanowires. J Mol Struct 1016:30–38CrossRef Pal K, Majumder TP, Neogy C, Debnath SC (2012) Optical, dielectric and microscopic observation of different phases TiO2 metal host nanowires. J Mol Struct 1016:30–38CrossRef
136.
go back to reference Sadegh H, Ali GAM, Makhlouf ASH, Chong KF, Alharbi NS, Agarwal S, Gupta VK (2018) MWCNTs-Fe3O4 nanocomposite for Hg(II) high adsorption efficiency. J Mol Liq 258:345–353CrossRef Sadegh H, Ali GAM, Makhlouf ASH, Chong KF, Alharbi NS, Agarwal S, Gupta VK (2018) MWCNTs-Fe3O4 nanocomposite for Hg(II) high adsorption efficiency. J Mol Liq 258:345–353CrossRef
137.
go back to reference Zhang Y, Zhang P, Wang N, Fu Y, Liu J (2014) Proceedings of the 5th electronics system-integration technology conference, ESTC, Art. no 6962834, 2014 p Zhang Y, Zhang P, Wang N, Fu Y, Liu J (2014) Proceedings of the 5th electronics system-integration technology conference, ESTC, Art. no 6962834, 2014 p
138.
go back to reference Chen JB, Wang CW, Ma BH, Li Y, Wang J, Guo RS, Liu WM (2009) Field emission from the structure of well-aligned TiO2/Ti nanotube arrays. Thin Solid Films 517:4390CrossRef Chen JB, Wang CW, Ma BH, Li Y, Wang J, Guo RS, Liu WM (2009) Field emission from the structure of well-aligned TiO2/Ti nanotube arrays. Thin Solid Films 517:4390CrossRef
139.
go back to reference Cheng HKF, Basu T, Sahoo NG, Li L, Chan SH (2012) Current advances in the carbon nanotube/thermotropic main-chain liquid crystalline polymer nanocomposites and their blends. Polymers 4(2):889–912CrossRef Cheng HKF, Basu T, Sahoo NG, Li L, Chan SH (2012) Current advances in the carbon nanotube/thermotropic main-chain liquid crystalline polymer nanocomposites and their blends. Polymers 4(2):889–912CrossRef
140.
go back to reference Hola K, Zhang Y, Wang Y, Giannelis EP, Zboril R, Rogach AL (2014) Carbon dots-emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today 9:590–603CrossRef Hola K, Zhang Y, Wang Y, Giannelis EP, Zboril R, Rogach AL (2014) Carbon dots-emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today 9:590–603CrossRef
141.
go back to reference Sun YP, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang H, Luo PG, Yang H, Kose ME, Chen B, Veca LM, Xie S-Y (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128:7756–7757CrossRef Sun YP, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang H, Luo PG, Yang H, Kose ME, Chen B, Veca LM, Xie S-Y (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128:7756–7757CrossRef
142.
go back to reference Li X, Qin Y, Picraux ST, Guo ZX (2011) Noncovalent assembly of carbon nanotube-inorganic hybrids. J Mater Chem 21(21):7527–7547CrossRef Li X, Qin Y, Picraux ST, Guo ZX (2011) Noncovalent assembly of carbon nanotube-inorganic hybrids. J Mater Chem 21(21):7527–7547CrossRef
143.
go back to reference Sagadevan S, Pal K, Koteeswari P, Subashini A (2017) CBD progression of Ti-doped ZnO thin film spectroscopic characterizations. J Mater Sci Mater Electron 28:1–7 Sagadevan S, Pal K, Koteeswari P, Subashini A (2017) CBD progression of Ti-doped ZnO thin film spectroscopic characterizations. J Mater Sci Mater Electron 28:1–7
144.
go back to reference Patil GP, Bagal VS, Mahajan CR, Chaudhari VR, Suryawanshi SR, More MA, Chavan PG (2016) Observation of low turn-on field emission from nanocomposites of GO/TiO2 and RGO/TiO2. Vacuum 123:167–174CrossRef Patil GP, Bagal VS, Mahajan CR, Chaudhari VR, Suryawanshi SR, More MA, Chavan PG (2016) Observation of low turn-on field emission from nanocomposites of GO/TiO2 and RGO/TiO2. Vacuum 123:167–174CrossRef
145.
go back to reference Cheng H, Ma J, Zhao Z, Qi L (1995) Hydrothermal preparation of uniform nanosize rutile and anatase particles. Chem Mater 7:663–671CrossRef Cheng H, Ma J, Zhao Z, Qi L (1995) Hydrothermal preparation of uniform nanosize rutile and anatase particles. Chem Mater 7:663–671CrossRef
146.
go back to reference Ge S, Shi X, Sun K, Li C, Uher C, Baker JR, Holl JMMB, Orr BG (2009) Facile hydrothermal synthesis of iron oxide nanoparticles with tunable magnetic properties. J Phys Chem C 113:13593–13599CrossRef Ge S, Shi X, Sun K, Li C, Uher C, Baker JR, Holl JMMB, Orr BG (2009) Facile hydrothermal synthesis of iron oxide nanoparticles with tunable magnetic properties. J Phys Chem C 113:13593–13599CrossRef
147.
go back to reference Watson S, Beydoun D, Scott J, Amal R (2004) Preparation of nanosized crystalline TiO2 particles at low temperature for photocatalysis. J Nanopart Res 6:193–207CrossRef Watson S, Beydoun D, Scott J, Amal R (2004) Preparation of nanosized crystalline TiO2 particles at low temperature for photocatalysis. J Nanopart Res 6:193–207CrossRef
148.
go back to reference Zhang L, Hashimoto Y, Taishi T, Ni Q-Q (2011) Mild hydrothermal treatment to prepare highly dispersed multi-walled carbon nanotubes. Appl Surf Sci 257(6):1845–1849CrossRef Zhang L, Hashimoto Y, Taishi T, Ni Q-Q (2011) Mild hydrothermal treatment to prepare highly dispersed multi-walled carbon nanotubes. Appl Surf Sci 257(6):1845–1849CrossRef
149.
go back to reference Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959CrossRef Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959CrossRef
150.
go back to reference Yang J, Mei S, Ferreira JMF (2001) Hydrothermal synthesis of TiO2 nanopowders from tetraalkylammonium hydroxide peptized sols. Mater Sci Eng C 15:183–185CrossRef Yang J, Mei S, Ferreira JMF (2001) Hydrothermal synthesis of TiO2 nanopowders from tetraalkylammonium hydroxide peptized sols. Mater Sci Eng C 15:183–185CrossRef
151.
go back to reference Karatutlu A, Barhoum A, Sapelkin A (2018) Liquid-phase synthesis of nanoparticles and nanostructured materials. Emerg Appl Nanopart Archit Nanostruct 1–28 Karatutlu A, Barhoum A, Sapelkin A (2018) Liquid-phase synthesis of nanoparticles and nanostructured materials. Emerg Appl Nanopart Archit Nanostruct 1–28
152.
go back to reference Yamamoto T, Watanabe K, Hernandez ER (2008) Mechanical properties, thermal stability and heat transport in carbon nanotubes. In: Jorio A, Dresselhaus G, Dresselhaus MS (eds) Carbon nanotubes: advanced topics in the synthesis, structure, properties and applications. Springer, Berlin Yamamoto T, Watanabe K, Hernandez ER (2008) Mechanical properties, thermal stability and heat transport in carbon nanotubes. In: Jorio A, Dresselhaus G, Dresselhaus MS (eds) Carbon nanotubes: advanced topics in the synthesis, structure, properties and applications. Springer, Berlin
153.
go back to reference Choi WB, Bae E, Kang D, Chae S, Cheong B-H, Ko J-H, Lee E, Park W (2007) Aligned carbon nanotubes for nanoelectronics. Nanotechnology 15:S512–S516CrossRef Choi WB, Bae E, Kang D, Chae S, Cheong B-H, Ko J-H, Lee E, Park W (2007) Aligned carbon nanotubes for nanoelectronics. Nanotechnology 15:S512–S516CrossRef
154.
go back to reference Endo M, Strano MS (2008) Ajayan PM potential applications of carbon nanotubes. In: Jorio A, Dresselhaus G, Dresselhaus MS (eds) Carbon nanotubes: advanced topics in the synthesis, structure, properties and applications. Springer, Berlin, pp 13–61 Endo M, Strano MS (2008) Ajayan PM potential applications of carbon nanotubes. In: Jorio A, Dresselhaus G, Dresselhaus MS (eds) Carbon nanotubes: advanced topics in the synthesis, structure, properties and applications. Springer, Berlin, pp 13–61
155.
go back to reference Bonard JM, Salvetat JP, Stöckli T, Forró L, Chatelain A (1999) Field emission from carbon nanotubes: perspectives for applications and clues to the emission mechanism. Appl Phys A Mater Sci Process 69:245–254CrossRef Bonard JM, Salvetat JP, Stöckli T, Forró L, Chatelain A (1999) Field emission from carbon nanotubes: perspectives for applications and clues to the emission mechanism. Appl Phys A Mater Sci Process 69:245–254CrossRef
156.
go back to reference Ajayan PM, Zhou OZ (2001) Applications of carbon nanotubes. In: Structure P, Applications, Dresselhaus MS, Dresselhaus G, Avouris P (eds) Carbon nanotubes: synthesis. Springer, New York, pp 391–425CrossRef Ajayan PM, Zhou OZ (2001) Applications of carbon nanotubes. In: Structure P, Applications, Dresselhaus MS, Dresselhaus G, Avouris P (eds) Carbon nanotubes: synthesis. Springer, New York, pp 391–425CrossRef
157.
go back to reference Bianco A, Kostarelos K, Partidos CD, Prato M (2005) Biomedical applications of functionalised carbon nanotubes. Chem Commun 5:571–577 Bianco A, Kostarelos K, Partidos CD, Prato M (2005) Biomedical applications of functionalised carbon nanotubes. Chem Commun 5:571–577
158.
go back to reference Sahithi K, Swetha M, Ramasamy K, Srinivasan N, Selvamurugan N (2010) Polymeric composites containing carbon nanotubes for bone tissue engineering. Int J Biol Macromol 46:281–283CrossRef Sahithi K, Swetha M, Ramasamy K, Srinivasan N, Selvamurugan N (2010) Polymeric composites containing carbon nanotubes for bone tissue engineering. Int J Biol Macromol 46:281–283CrossRef
159.
go back to reference Richardson JJ, Björnmalm M, Caruso F (2015) Technology-driven layer-by-layer assembly of nanofilms. Science 348(6233):2491CrossRef Richardson JJ, Björnmalm M, Caruso F (2015) Technology-driven layer-by-layer assembly of nanofilms. Science 348(6233):2491CrossRef
160.
go back to reference Zhang J, Zhang R, Wang X, Feng W, Hu P, O’Neill W, Wang Z (2013) Fabrication of highly oriented reduced graphene oxide microbelts array for massive production of sensitive ammonia gas sensors. J Micromech Microeng 23:095031–095039CrossRef Zhang J, Zhang R, Wang X, Feng W, Hu P, O’Neill W, Wang Z (2013) Fabrication of highly oriented reduced graphene oxide microbelts array for massive production of sensitive ammonia gas sensors. J Micromech Microeng 23:095031–095039CrossRef
161.
go back to reference Nufer S, Fantanas D, Ogilvie SP, Large MJ, Winterauer DJ, Salvage JP, Meloni M, King AAK, Schellenberger P, Shmeliov A, Victor-Roman S, Pelaez-Fernandez M, Nicolosi V, Arenal R, Benito AM, Maser W, Brunton A, Dalton AB (2018) Percolating metallic structures templated on laser-deposited carbon nanofoams derived from graphene oxide: applications in humidity sensing. ACS Appl Nano Mater 1(4):1828–1835CrossRef Nufer S, Fantanas D, Ogilvie SP, Large MJ, Winterauer DJ, Salvage JP, Meloni M, King AAK, Schellenberger P, Shmeliov A, Victor-Roman S, Pelaez-Fernandez M, Nicolosi V, Arenal R, Benito AM, Maser W, Brunton A, Dalton AB (2018) Percolating metallic structures templated on laser-deposited carbon nanofoams derived from graphene oxide: applications in humidity sensing. ACS Appl Nano Mater 1(4):1828–1835CrossRef
162.
go back to reference Fu C, Li M, Li H, Li C, Qu C, Yang B (2017) Fabrication of graphene/titanium carbide nanorod arrays for chemical sensor application. Mater Sci Eng C 72:425–432CrossRef Fu C, Li M, Li H, Li C, Qu C, Yang B (2017) Fabrication of graphene/titanium carbide nanorod arrays for chemical sensor application. Mater Sci Eng C 72:425–432CrossRef
163.
go back to reference Venkatesan A, Rathi S, Lee I-Y, Park J, Lim D, Kim G-H, Kannan ES (2016) Low temperature hydrogen sensing using reduced graphene oxide and tin oxide nanoflowers based hybrid structure. Semicond Sci Technol 31:125014CrossRef Venkatesan A, Rathi S, Lee I-Y, Park J, Lim D, Kim G-H, Kannan ES (2016) Low temperature hydrogen sensing using reduced graphene oxide and tin oxide nanoflowers based hybrid structure. Semicond Sci Technol 31:125014CrossRef
164.
go back to reference Gan T, Hu S (2011) Electrochemical sensors based on graphene materials. Microchim Acta 175:1–19CrossRef Gan T, Hu S (2011) Electrochemical sensors based on graphene materials. Microchim Acta 175:1–19CrossRef
165.
go back to reference Liu J, Liu Z, Barrow CJ, Yang W (2014) Molecularly engineered graphene surfaces for sensing applications: a review. Anal Chim Acta 859:1–19CrossRef Liu J, Liu Z, Barrow CJ, Yang W (2014) Molecularly engineered graphene surfaces for sensing applications: a review. Anal Chim Acta 859:1–19CrossRef
166.
go back to reference Lawal AT (2014) Synthesis and utilisation of graphene for fabrication of electrochemical sensors. Talanta 131:424–443CrossRef Lawal AT (2014) Synthesis and utilisation of graphene for fabrication of electrochemical sensors. Talanta 131:424–443CrossRef
167.
go back to reference Zhan B, Li C, Yang J, Jenkins G, Huang W, Dong X (2014) Graphene field-effect transistor and its application for electronic sensing. Small 10:4042–4065CrossRef Zhan B, Li C, Yang J, Jenkins G, Huang W, Dong X (2014) Graphene field-effect transistor and its application for electronic sensing. Small 10:4042–4065CrossRef
168.
go back to reference Chen A, Chatterjee S (2013) Nanomaterials based electrochemical sensors for biomedical applications. Chem Soc Rev 42:5425–5438CrossRef Chen A, Chatterjee S (2013) Nanomaterials based electrochemical sensors for biomedical applications. Chem Soc Rev 42:5425–5438CrossRef
169.
go back to reference Zhang L, Wang J, Tian Y (2014) Electrochemical in-vivo sensors using nanomaterials made from carbon species, noble metals, or semiconductors. Microchim Acta 181:1471–1484CrossRef Zhang L, Wang J, Tian Y (2014) Electrochemical in-vivo sensors using nanomaterials made from carbon species, noble metals, or semiconductors. Microchim Acta 181:1471–1484CrossRef
170.
go back to reference Balasubramanian K, Kern K (2014) 25th anniversary article: label-free electrical biodetection using carbon nanostructures. Adv Mater 26:1154–1175CrossRef Balasubramanian K, Kern K (2014) 25th anniversary article: label-free electrical biodetection using carbon nanostructures. Adv Mater 26:1154–1175CrossRef
171.
go back to reference Gao C, Guo Z, Liu J-H, Huang X-J (2012) The new age of carbon nanotubes: an updated review of functionalized carbon nanotubes in electrochemical sensors. Nanoscale 4:1948CrossRef Gao C, Guo Z, Liu J-H, Huang X-J (2012) The new age of carbon nanotubes: an updated review of functionalized carbon nanotubes in electrochemical sensors. Nanoscale 4:1948CrossRef
172.
go back to reference Vera S (2014) Chemical sensors based on polymer composites with carbon nanotubes and graphene: the role of the polymer. J Mater Chem A 2:14289–14328 Vera S (2014) Chemical sensors based on polymer composites with carbon nanotubes and graphene: the role of the polymer. J Mater Chem A 2:14289–14328
173.
go back to reference Wang J, Liu G, Jan MR (2004) Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events. J Am Chem Soc 126:3010–3011CrossRef Wang J, Liu G, Jan MR (2004) Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events. J Am Chem Soc 126:3010–3011CrossRef
174.
go back to reference Zheng M, Jagota A, Semke ED, Diner BA, Mclean RS, Lustig SR, Richardson RE, Tassi NG (2003) DNA assisted dispersion and separation of carbon nanotubes. Nat Mater 2:338–342CrossRef Zheng M, Jagota A, Semke ED, Diner BA, Mclean RS, Lustig SR, Richardson RE, Tassi NG (2003) DNA assisted dispersion and separation of carbon nanotubes. Nat Mater 2:338–342CrossRef
175.
go back to reference Wang Y, Li Z, Wang J, Li J, Lin Y (2011) Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol 29:205–212CrossRef Wang Y, Li Z, Wang J, Li J, Lin Y (2011) Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol 29:205–212CrossRef
176.
go back to reference Zhang L, Wang Z, Xu C, Li Y, Gao J, Wang W, Liu Y (2011) High strength graphene oxide/polyvinyl alcohol composite hydrogels. J Mater Chem 21:10399–10406CrossRef Zhang L, Wang Z, Xu C, Li Y, Gao J, Wang W, Liu Y (2011) High strength graphene oxide/polyvinyl alcohol composite hydrogels. J Mater Chem 21:10399–10406CrossRef
177.
go back to reference Zhao F, Yao D, Guo R, Deng L, Dong A, Zhang J (2015) Composites of polymer hydrogels and nanoparticulate systems for biomedical and pharmaceutical applications. Nanomaterials (Basel) 5(4):2054–2130CrossRef Zhao F, Yao D, Guo R, Deng L, Dong A, Zhang J (2015) Composites of polymer hydrogels and nanoparticulate systems for biomedical and pharmaceutical applications. Nanomaterials (Basel) 5(4):2054–2130CrossRef
178.
go back to reference Chae SH, Lee YH (2014) Carbon nanotubes and graphene towards soft electronics. Nano Convergence 1:15–41CrossRef Chae SH, Lee YH (2014) Carbon nanotubes and graphene towards soft electronics. Nano Convergence 1:15–41CrossRef
179.
go back to reference Shah JM, Buechel A, Kroll U, Steinhauser J, Meillaud F, Schade H, Dominé D (2006) Towards very low-cost mass production of thin-film silicon photovoltaic (PV) solar modules on glass. Thin Solid Films 502:292–299CrossRef Shah JM, Buechel A, Kroll U, Steinhauser J, Meillaud F, Schade H, Dominé D (2006) Towards very low-cost mass production of thin-film silicon photovoltaic (PV) solar modules on glass. Thin Solid Films 502:292–299CrossRef
180.
go back to reference Jacunski D, Shur MS, Hack M (1996) Threshold voltage, field effect mobility, and gate-to channel capacitance in polysilicon TFT's. IEEE Trans Electron Devices 43:1433–1440CrossRef Jacunski D, Shur MS, Hack M (1996) Threshold voltage, field effect mobility, and gate-to channel capacitance in polysilicon TFT's. IEEE Trans Electron Devices 43:1433–1440CrossRef
181.
go back to reference Artukovic MK, Hecht DS, Roth S, GrUner G (2005) Transparent and flexible carbon nanotube transistors. Nano Lett 5:757–760CrossRef Artukovic MK, Hecht DS, Roth S, GrUner G (2005) Transparent and flexible carbon nanotube transistors. Nano Lett 5:757–760CrossRef
182.
go back to reference Hu L, Yuan W, Brochu P, Gruner G, Pei Q (2009) Highly stretchable, conductive, and transparent nanotube thin films. Appl Phys Lett 94:161108CrossRef Hu L, Yuan W, Brochu P, Gruner G, Pei Q (2009) Highly stretchable, conductive, and transparent nanotube thin films. Appl Phys Lett 94:161108CrossRef
183.
go back to reference Liu Q, Liu Z, Zhang X, Yang L, Zhang N, Pan G, Yin S, Chen Y, Wei J (2009) Polymer photovoltaic cells based on solution-processable graphene and P3HT. Adv Funct Mater 19:894–904CrossRef Liu Q, Liu Z, Zhang X, Yang L, Zhang N, Pan G, Yin S, Chen Y, Wei J (2009) Polymer photovoltaic cells based on solution-processable graphene and P3HT. Adv Funct Mater 19:894–904CrossRef
184.
go back to reference Cao Q, Rogers JA (2009) Ultrathin films of single-walled carbon nanotubes for electronics and sensors: a review of fundamental and applied aspects. Adv Mater 21:29–53CrossRef Cao Q, Rogers JA (2009) Ultrathin films of single-walled carbon nanotubes for electronics and sensors: a review of fundamental and applied aspects. Adv Mater 21:29–53CrossRef
185.
go back to reference Ionescu AM, Riel H (2011) Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479:329–337CrossRef Ionescu AM, Riel H (2011) Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479:329–337CrossRef
186.
go back to reference Franklin AD, Luisier M, Han S-J, Tulevski G, Breslin CM, Gignac L, Lundstrom MS, Haensch W (2012) Sub-10 nm carbon nanotube transistor. Nano Lett 12(2):758–762CrossRef Franklin AD, Luisier M, Han S-J, Tulevski G, Breslin CM, Gignac L, Lundstrom MS, Haensch W (2012) Sub-10 nm carbon nanotube transistor. Nano Lett 12(2):758–762CrossRef
187.
go back to reference Park H, Afzali A, Han S-J, Tulevski GS, Franklin AD, Tersoff J, Hannon JB, Haensch W (2012) High-density integration of carbon nanotubes via chemical self-assembly. Nat Nanotechnol 7:787–791CrossRef Park H, Afzali A, Han S-J, Tulevski GS, Franklin AD, Tersoff J, Hannon JB, Haensch W (2012) High-density integration of carbon nanotubes via chemical self-assembly. Nat Nanotechnol 7:787–791CrossRef
188.
go back to reference Sun D-M, Timmermans MY, Tian Y, Nasibulin AG, Kauppinen EI, Kishimoto S, Mizutani T, Ohno Y (2011) Flexible high-performance carbon nanotube integrated circuits. Nat Nanotechnol 6:156–161CrossRef Sun D-M, Timmermans MY, Tian Y, Nasibulin AG, Kauppinen EI, Kishimoto S, Mizutani T, Ohno Y (2011) Flexible high-performance carbon nanotube integrated circuits. Nat Nanotechnol 6:156–161CrossRef
189.
go back to reference Chen P, Fu Y, Aminirad R, Wang C, Zhang J, Wang K, Galatsis K, Zhou C (2011) Fully printed separated carbon nanotube thin film transistor circuits and its application in organic light emitting diode control. Nano Lett 11:5301–5308CrossRef Chen P, Fu Y, Aminirad R, Wang C, Zhang J, Wang K, Galatsis K, Zhou C (2011) Fully printed separated carbon nanotube thin film transistor circuits and its application in organic light emitting diode control. Nano Lett 11:5301–5308CrossRef
190.
go back to reference Jung M, Kim J, Noh J, Lim N, Lim C, Lee G, Kim J, Kang H, Jung K, Leonard AD, Tour JM, Cho G (2010) All-printed and roll-to-roll-printable 13.56-MHz-operated 1-bit RF tag on plastic foils. IEEE Trans Electron Devices 57:571–580CrossRef Jung M, Kim J, Noh J, Lim N, Lim C, Lee G, Kim J, Kang H, Jung K, Leonard AD, Tour JM, Cho G (2010) All-printed and roll-to-roll-printable 13.56-MHz-operated 1-bit RF tag on plastic foils. IEEE Trans Electron Devices 57:571–580CrossRef
191.
go back to reference van der Veen MH et al. Paper presented at the 2012, IEEE international interconnect technology conference, San Jose, 4 to 6 June 2012 van der Veen MH et al. Paper presented at the 2012, IEEE international interconnect technology conference, San Jose, 4 to 6 June 2012
192.
go back to reference Rueckes T, Kim K, Joselevich E, Tseng GY, Cheung C-L, Lieber CM (2000) Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289:94–97CrossRef Rueckes T, Kim K, Joselevich E, Tseng GY, Cheung C-L, Lieber CM (2000) Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289:94–97CrossRef
193.
go back to reference Volder MFLD, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339(6119):535–539CrossRef Volder MFLD, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339(6119):535–539CrossRef
194.
go back to reference Sadegh H, Ali GAM, Gupta VK, Makhlouf ASH, Shahryari-ghoshekandi R, Nadagouda MN, Sillanpää M, Megiel E (2017) The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. J Nanostruct Chem 7:1–14CrossRef Sadegh H, Ali GAM, Gupta VK, Makhlouf ASH, Shahryari-ghoshekandi R, Nadagouda MN, Sillanpää M, Megiel E (2017) The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. J Nanostruct Chem 7:1–14CrossRef
195.
go back to reference Arabi SMS, Lalehloo RS, Olyai MRTB, Ali GAM, Sadegh H (2019) Removal of congo red azo dye from aqueous solution by ZnO nanoparticles loaded on multiwall carbon nanotubes. Phys E 106:150–155CrossRef Arabi SMS, Lalehloo RS, Olyai MRTB, Ali GAM, Sadegh H (2019) Removal of congo red azo dye from aqueous solution by ZnO nanoparticles loaded on multiwall carbon nanotubes. Phys E 106:150–155CrossRef
196.
go back to reference Gupta VK, Agarwal S, Sadegh H, Ali GAM, Bharti AK, Makhlouf ASH (2017) Facile route synthesis of novel graphene oxide-β-cyclodextrin nanocomposite and its application as adsorbent for removal of toxic bisphenol A from the aqueous phase. J Mol Liq 237:466–472CrossRef Gupta VK, Agarwal S, Sadegh H, Ali GAM, Bharti AK, Makhlouf ASH (2017) Facile route synthesis of novel graphene oxide-β-cyclodextrin nanocomposite and its application as adsorbent for removal of toxic bisphenol A from the aqueous phase. J Mol Liq 237:466–472CrossRef
197.
go back to reference Kalra A, Garde S, Hummer G (2003) Osmotic water transport through carbon nanotube membranes. PNAS 100:10175–10180CrossRef Kalra A, Garde S, Hummer G (2003) Osmotic water transport through carbon nanotube membranes. PNAS 100:10175–10180CrossRef
198.
go back to reference Cohen-Tanugi D, Grossman JC (2012) Water desalination across nanoporous graphene. Nano Lett 12:3602–3608CrossRef Cohen-Tanugi D, Grossman JC (2012) Water desalination across nanoporous graphene. Nano Lett 12:3602–3608CrossRef
199.
go back to reference Khalid P, Hussain MA, Suman VB, Arun AB (2016) Toxicology of carbon nanotubes: a review. Int J Appl Eng Res 11(1):159–168 Khalid P, Hussain MA, Suman VB, Arun AB (2016) Toxicology of carbon nanotubes: a review. Int J Appl Eng Res 11(1):159–168
200.
go back to reference Rahman GMA, Guldi DM, Zambon E, Pasquato L, Tagmatarchis N, Prato M (2005) Dispersable carbon nanotube/gold nanohybrids: evidence for strong electronic interactions. Small 1:527–530CrossRef Rahman GMA, Guldi DM, Zambon E, Pasquato L, Tagmatarchis N, Prato M (2005) Dispersable carbon nanotube/gold nanohybrids: evidence for strong electronic interactions. Small 1:527–530CrossRef
201.
go back to reference Liu S, Li J, Shen Q, Cao Y, Guo X, Zhang G, Feng C, Zhang J, Liu Z, Steigerwald ML, Xu D, Nuckolls C (2009) Mirror-image photoswitching of individual single-walled carbon nanotube transistors coated with titanium dioxide. Angew Chem Int Ed 48:4759–4762CrossRef Liu S, Li J, Shen Q, Cao Y, Guo X, Zhang G, Feng C, Zhang J, Liu Z, Steigerwald ML, Xu D, Nuckolls C (2009) Mirror-image photoswitching of individual single-walled carbon nanotube transistors coated with titanium dioxide. Angew Chem Int Ed 48:4759–4762CrossRef
202.
go back to reference Li X, Jia Y, Cao A (2010) Tailored single-walled carbon nanotube-CdS nanoparticle hybrids for tunable optoelectronic devices. ACS Nano 4:506–512CrossRef Li X, Jia Y, Cao A (2010) Tailored single-walled carbon nanotube-CdS nanoparticle hybrids for tunable optoelectronic devices. ACS Nano 4:506–512CrossRef
203.
go back to reference Lu J (2007) Effect of surface modifications on the decoration of multi-walled carbon nanotubes with ruthenium nanoparticles. Carbon 45:1599–1605CrossRef Lu J (2007) Effect of surface modifications on the decoration of multi-walled carbon nanotubes with ruthenium nanoparticles. Carbon 45:1599–1605CrossRef
204.
go back to reference Chun K-Y, Oh Y, Rho J, Ahn J-H, Kim Y-J, Choi HR, Baik S (2010) Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nat Nanotechnol 5:853–857CrossRef Chun K-Y, Oh Y, Rho J, Ahn J-H, Kim Y-J, Choi HR, Baik S (2010) Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nat Nanotechnol 5:853–857CrossRef
205.
go back to reference Georgakilas V, Tzitzios V, Gournis D, Petridis D (2005) Attachment of magnetic nanoparticles on carbon nanotubes and their soluble derivatives. Chem Mater 17:1613–1617CrossRef Georgakilas V, Tzitzios V, Gournis D, Petridis D (2005) Attachment of magnetic nanoparticles on carbon nanotubes and their soluble derivatives. Chem Mater 17:1613–1617CrossRef
206.
go back to reference Ou Y, Huang MH (2006) High-density assembly of gold nanoparticles on multiwalled carbon nanotubes using 1-pyrenemethylamine as interlinker. J Phys Chem B 110:2031–2036CrossRef Ou Y, Huang MH (2006) High-density assembly of gold nanoparticles on multiwalled carbon nanotubes using 1-pyrenemethylamine as interlinker. J Phys Chem B 110:2031–2036CrossRef
207.
go back to reference Eder D, Windle AH (2008) Carbon-inorganic hybrid materials: the carbon-nanotube/TiO2 interface. Adv Mater 20:1787–1793CrossRef Eder D, Windle AH (2008) Carbon-inorganic hybrid materials: the carbon-nanotube/TiO2 interface. Adv Mater 20:1787–1793CrossRef
208.
go back to reference Zhang H, Cui H (2009) Synthesis and characterization of functionalized ionic liquid-stabilized metal (gold and platinum) nanoparticles and metal nanoparticle/carbon nanotube hybrids. Langmuir 25:2604–2612CrossRef Zhang H, Cui H (2009) Synthesis and characterization of functionalized ionic liquid-stabilized metal (gold and platinum) nanoparticles and metal nanoparticle/carbon nanotube hybrids. Langmuir 25:2604–2612CrossRef
209.
go back to reference Correa-Duarte MA, Grzelczak M, Salgueirino-Maceira V, Giersig M, Liz-Marzan LM, Farle M, Sierazdki K, Diaz R (2005) Alignment of carbon nanotubes under low magnetic fields through attachment of magnetic nanoparticles. J Phys Chem B 109:19060–19063CrossRef Correa-Duarte MA, Grzelczak M, Salgueirino-Maceira V, Giersig M, Liz-Marzan LM, Farle M, Sierazdki K, Diaz R (2005) Alignment of carbon nanotubes under low magnetic fields through attachment of magnetic nanoparticles. J Phys Chem B 109:19060–19063CrossRef
210.
go back to reference Feng M, Sun R, Zhan H, Chen Y (2010) Decoration of carbon nanotubes with CdS nanoparticles by polythiophene interlinking for optical limiting enhancement. Carbon 48:1177–1185CrossRef Feng M, Sun R, Zhan H, Chen Y (2010) Decoration of carbon nanotubes with CdS nanoparticles by polythiophene interlinking for optical limiting enhancement. Carbon 48:1177–1185CrossRef
211.
go back to reference Wang D, Li Z, Chen L (2006) Templated synthesis of single-walled carbon nanotube and metal nanoparticle assemblies in solution. J Am Chem Soc 128:15078–15079CrossRef Wang D, Li Z, Chen L (2006) Templated synthesis of single-walled carbon nanotube and metal nanoparticle assemblies in solution. J Am Chem Soc 128:15078–15079CrossRef
212.
go back to reference Li B, Li L, Wang B, Li CY (2009) Alternating patterns on single-walled carbon nanotubes. Nat Nanotechnol 4:358–362CrossRef Li B, Li L, Wang B, Li CY (2009) Alternating patterns on single-walled carbon nanotubes. Nat Nanotechnol 4:358–362CrossRef
213.
go back to reference Han X, Li Y, Deng Z (2007) DNA-wrapped single-walled carbonnanotubes as rigid templates for assembling linear gold nanoparticle arrays. Adv Mater 19:1518–1522CrossRef Han X, Li Y, Deng Z (2007) DNA-wrapped single-walled carbonnanotubes as rigid templates for assembling linear gold nanoparticle arrays. Adv Mater 19:1518–1522CrossRef
214.
go back to reference Kim SN, Slocik JM, Naik RR (2010) Strategy for the assembly of carbon nanotube–metal nanoparticle hybrids using biointerfaces. Small 6:1992–1995CrossRef Kim SN, Slocik JM, Naik RR (2010) Strategy for the assembly of carbon nanotube–metal nanoparticle hybrids using biointerfaces. Small 6:1992–1995CrossRef
215.
go back to reference Sun C-L, Chen L-C, Su M-C, Hong L-S, Chyan O, Hsu C-Y, Chen K-H, Chang T-F, Chang L (2005) Ultrafine platinum nanoparticles uniformly dispersed on arrayed CNx nanotubes with high electrochemical activity. Chem Mater 17:3749–3753CrossRef Sun C-L, Chen L-C, Su M-C, Hong L-S, Chyan O, Hsu C-Y, Chen K-H, Chang T-F, Chang L (2005) Ultrafine platinum nanoparticles uniformly dispersed on arrayed CNx nanotubes with high electrochemical activity. Chem Mater 17:3749–3753CrossRef
216.
go back to reference Fang W-C, Chyan O, Sun C-L, Wu C-T, Chen C-P, Chen K-H, Chen L-C, Huang J-H (2007) Arrayed CNx NT-RuO2 nanocomposites directly grown on Ti-buffered Si substrate for supercapacitor applications. Electrochem Commun 9:239–244CrossRef Fang W-C, Chyan O, Sun C-L, Wu C-T, Chen C-P, Chen K-H, Chen L-C, Huang J-H (2007) Arrayed CNx NT-RuO2 nanocomposites directly grown on Ti-buffered Si substrate for supercapacitor applications. Electrochem Commun 9:239–244CrossRef
217.
go back to reference Zamudio A, Elias AL, Rodriguez-Manzo JA, Lopez-Urias F, Rodriguez-Gattorno G, Lupo F, Ruhle M, Smith DJ, Terrones H, Diaz D, Terrones M (2006) Efficient anchoring of silver nanoparticles on N-doped carbon nanotubes. Small 2:346–350CrossRef Zamudio A, Elias AL, Rodriguez-Manzo JA, Lopez-Urias F, Rodriguez-Gattorno G, Lupo F, Ruhle M, Smith DJ, Terrones H, Diaz D, Terrones M (2006) Efficient anchoring of silver nanoparticles on N-doped carbon nanotubes. Small 2:346–350CrossRef
218.
go back to reference Li X, Liu Y, Fu L, Cao L, Wei D, Yu G, Zhu D (2006) Direct route to high-density and uniform assembly of Au nanoparticles on carbon nanotubes. Carbon 44:3139–3142CrossRef Li X, Liu Y, Fu L, Cao L, Wei D, Yu G, Zhu D (2006) Direct route to high-density and uniform assembly of Au nanoparticles on carbon nanotubes. Carbon 44:3139–3142CrossRef
219.
go back to reference Sun Y, Liu K, Miao J, Wang Z, Tian B, Zhang L, Li Q, Fan S, Jiang K (2010) Highly sensitive surface-enhanced Raman scattering substrate made from superaligned carbon nanotubes. Nano Lett 10:1747–1753CrossRef Sun Y, Liu K, Miao J, Wang Z, Tian B, Zhang L, Li Q, Fan S, Jiang K (2010) Highly sensitive surface-enhanced Raman scattering substrate made from superaligned carbon nanotubes. Nano Lett 10:1747–1753CrossRef
220.
go back to reference Qu L, Dai L (2005) Substrate-enhanced electroless deposition of metal nanoparticles on carbon nanotubes. J Am Chem Soc 127:10806–10807CrossRef Qu L, Dai L (2005) Substrate-enhanced electroless deposition of metal nanoparticles on carbon nanotubes. J Am Chem Soc 127:10806–10807CrossRef
221.
go back to reference Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32:33–177CrossRef Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32:33–177CrossRef
222.
go back to reference Rao KJ, Vaidhyanathan B, Ganguli M, Ramakrishnan PA (1999) Synthesis of inorganic solids using microwaves. Chem Mater 11:882–895CrossRef Rao KJ, Vaidhyanathan B, Ganguli M, Ramakrishnan PA (1999) Synthesis of inorganic solids using microwaves. Chem Mater 11:882–895CrossRef
223.
go back to reference Bhat MH, Chakravarthy BP, Ramakrishnan PA, Levasseur A, Rao KJ (2000) Bull, Microwave synthesis of electrode materials for lithium batteries. Mater Sci 23:461 Bhat MH, Chakravarthy BP, Ramakrishnan PA, Levasseur A, Rao KJ (2000) Bull, Microwave synthesis of electrode materials for lithium batteries. Mater Sci 23:461
224.
go back to reference Subramanian V, Chen CL, Chou HS, Fey GTK (2001) Microwave-assisted solid-state synthesis of LiCoO2 and its electrochemical properties as a cathode material for lithium batteries. J Mater Chem 11:3348–3353CrossRef Subramanian V, Chen CL, Chou HS, Fey GTK (2001) Microwave-assisted solid-state synthesis of LiCoO2 and its electrochemical properties as a cathode material for lithium batteries. J Mater Chem 11:3348–3353CrossRef
225.
go back to reference Inagaki M, Yang Y, Kang F (2012) Carbon nanofibers prepared via electrospinning. Adv Mater 24(19):2547–2566CrossRef Inagaki M, Yang Y, Kang F (2012) Carbon nanofibers prepared via electrospinning. Adv Mater 24(19):2547–2566CrossRef
226.
go back to reference Arshad SN, Naraghi M, Chasiotis I (2011) Strong carbon nanofibers from electrospun polyacrylonitrile. Carbon 49(5):1710–1719CrossRef Arshad SN, Naraghi M, Chasiotis I (2011) Strong carbon nanofibers from electrospun polyacrylonitrile. Carbon 49(5):1710–1719CrossRef
227.
go back to reference Sutasinpromprae J, Jitjaicham S, Nithitanakul M, Meechaisue C, Supaphol P (2006) Preparation and characterization of ultrafine electrospun polyacrylonitrile fibers and their subsequent pyrolysis to carbon fibers. Polym Int 55(8):825–833CrossRef Sutasinpromprae J, Jitjaicham S, Nithitanakul M, Meechaisue C, Supaphol P (2006) Preparation and characterization of ultrafine electrospun polyacrylonitrile fibers and their subsequent pyrolysis to carbon fibers. Polym Int 55(8):825–833CrossRef
228.
go back to reference Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240CrossRef Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240CrossRef
229.
go back to reference Zeng X, McCarthy DT, Deletic A, Zhang X (2015) Silver/reduced graphene oxide hydrogel as novel bactericidal filter for point-of-use water disinfection. Adv Funct Mater 25:4344–4351CrossRef Zeng X, McCarthy DT, Deletic A, Zhang X (2015) Silver/reduced graphene oxide hydrogel as novel bactericidal filter for point-of-use water disinfection. Adv Funct Mater 25:4344–4351CrossRef
230.
go back to reference Gao W, Majumder M, Alemany LB, Narayanan TN, Ibarra MA, Pradhan BK, Ajayan PM (2011) Engineered graphite oxide materials for application in water purification. ACS Appl Mater Interfaces 3:1821–1826CrossRef Gao W, Majumder M, Alemany LB, Narayanan TN, Ibarra MA, Pradhan BK, Ajayan PM (2011) Engineered graphite oxide materials for application in water purification. ACS Appl Mater Interfaces 3:1821–1826CrossRef
231.
go back to reference Hu M, Mi B (2013) Enabling graphene oxide nanosheets as water separation membranes. Environ Sci Technol 47:3715–3723CrossRef Hu M, Mi B (2013) Enabling graphene oxide nanosheets as water separation membranes. Environ Sci Technol 47:3715–3723CrossRef
232.
go back to reference Saththasivam J, Yiming W, Wang K, Jin J, Liu Z (2018) A novel architecture for carbon nanotube membranes towards fast and efficient oil/water separation. Sci Rep 8:1–6CrossRef Saththasivam J, Yiming W, Wang K, Jin J, Liu Z (2018) A novel architecture for carbon nanotube membranes towards fast and efficient oil/water separation. Sci Rep 8:1–6CrossRef
233.
go back to reference Yang HY, Han ZJ, Yu SF, Pey KL, Ostrikov K, Karnik R (2013) Carbon nanotube membranes with ultrahigh specific adsorption capacity for water desalination and purification. Nat Commun 4:2220CrossRef Yang HY, Han ZJ, Yu SF, Pey KL, Ostrikov K, Karnik R (2013) Carbon nanotube membranes with ultrahigh specific adsorption capacity for water desalination and purification. Nat Commun 4:2220CrossRef
234.
go back to reference Lota G, Fic K, Frackowiak E (2011) Carbon nanotubes and their composites in electrochemical applications. Energy Environ Sci 4:1592CrossRef Lota G, Fic K, Frackowiak E (2011) Carbon nanotubes and their composites in electrochemical applications. Energy Environ Sci 4:1592CrossRef
235.
go back to reference Wang Y, He Q, Qu H, Zhang X, Guo J, Zhu J, Zhao G, Colorado HA, Yu J, Sun L, Bhana S, Khan MA, Huang X, Young DP, Wang H, Wang X, Wei S, Guo Z (2014) Magnetic graphene oxide nanocomposites: nanoparticles growth mechanism and property analysis. J Mater Chem C 2:9478–9488CrossRef Wang Y, He Q, Qu H, Zhang X, Guo J, Zhu J, Zhao G, Colorado HA, Yu J, Sun L, Bhana S, Khan MA, Huang X, Young DP, Wang H, Wang X, Wei S, Guo Z (2014) Magnetic graphene oxide nanocomposites: nanoparticles growth mechanism and property analysis. J Mater Chem C 2:9478–9488CrossRef
236.
go back to reference Portet C, Yushin G, Gogotsi Y (2007) Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 45:2511–2518CrossRef Portet C, Yushin G, Gogotsi Y (2007) Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 45:2511–2518CrossRef
237.
go back to reference Piner R, Li H, Kong X, Tao L, Kholmanov IN, Ji H, Lee WH, Suk JW, Ye J, Hao Y, Chen S, Magnuson CW, Ismach AF, Akinwande D, Ruoff RS (2013) Graphene synthesis via magnetic inductive heating of copper substrates. ACS Nano 7:7495–7499CrossRef Piner R, Li H, Kong X, Tao L, Kholmanov IN, Ji H, Lee WH, Suk JW, Ye J, Hao Y, Chen S, Magnuson CW, Ismach AF, Akinwande D, Ruoff RS (2013) Graphene synthesis via magnetic inductive heating of copper substrates. ACS Nano 7:7495–7499CrossRef
238.
go back to reference Torres JA, Kaner RB (2014) Graphene synthesis: graphene closer to fruition. Nat Mater 13:328–329CrossRef Torres JA, Kaner RB (2014) Graphene synthesis: graphene closer to fruition. Nat Mater 13:328–329CrossRef
239.
go back to reference Kimura H, Goto J, Yasuda S, Sakurai S, Yumura M, Futaba DN, Hata K (2013) Unexpectedly high yield carbon nanotube synthesis from low-activity carbon feedstocks at high concentrations. ACS Nano 7:3150–3157CrossRef Kimura H, Goto J, Yasuda S, Sakurai S, Yumura M, Futaba DN, Hata K (2013) Unexpectedly high yield carbon nanotube synthesis from low-activity carbon feedstocks at high concentrations. ACS Nano 7:3150–3157CrossRef
240.
go back to reference Ali GAM, Megiel E, Romański J, Algarni H, Chong KF (2018) A wide potential window symmetric supercapacitor by TEMPO functionalized MWCNTs. J Mol Liq 271:31–39CrossRef Ali GAM, Megiel E, Romański J, Algarni H, Chong KF (2018) A wide potential window symmetric supercapacitor by TEMPO functionalized MWCNTs. J Mol Liq 271:31–39CrossRef
241.
go back to reference Song SH, Park KH, Kim BH, Choi YW, Jun GH, Lee DJ, Kong BS, Paik KW, Jeon S (2013) Enhanced Thermal conductivity of epoxy-graphene composites by using non-oxidized graphene flakes with non-covalent functionalization. Adv Mater 25:732–737CrossRef Song SH, Park KH, Kim BH, Choi YW, Jun GH, Lee DJ, Kong BS, Paik KW, Jeon S (2013) Enhanced Thermal conductivity of epoxy-graphene composites by using non-oxidized graphene flakes with non-covalent functionalization. Adv Mater 25:732–737CrossRef
242.
go back to reference Chen W, Li S, Chen C, Yan L (2011) Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel. Adv Mater 23:5679–5683CrossRef Chen W, Li S, Chen C, Yan L (2011) Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel. Adv Mater 23:5679–5683CrossRef
243.
go back to reference Palma M, Wang W, Penzo E, Brathwaite J, Zheng M, Hone J, Nuckolls C, Wind SJ (2013) Controlled formation of carbon nanotube junctions via linker-induced assembly in aqueous solution. J Am Chem Soc 135:8440–8443CrossRef Palma M, Wang W, Penzo E, Brathwaite J, Zheng M, Hone J, Nuckolls C, Wind SJ (2013) Controlled formation of carbon nanotube junctions via linker-induced assembly in aqueous solution. J Am Chem Soc 135:8440–8443CrossRef
244.
go back to reference Wang H, Xu Z, Yi H, Wei H, Guo Z, Wang X (2014) One-step preparation of single-crystalline Fe2O3 particles/graphene composite hydrogels as high performance anode materials for supercapacitors. Nano Energy 7:86–96CrossRef Wang H, Xu Z, Yi H, Wei H, Guo Z, Wang X (2014) One-step preparation of single-crystalline Fe2O3 particles/graphene composite hydrogels as high performance anode materials for supercapacitors. Nano Energy 7:86–96CrossRef
245.
go back to reference Yang X, Cheng C, Wang Y, Qiu L, Li D (2013) Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 341:534–537CrossRef Yang X, Cheng C, Wang Y, Qiu L, Li D (2013) Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 341:534–537CrossRef
246.
go back to reference Habisreutinger SN, Leijtens T, Eperon GE, Stranks SD, Nicholas RJ, Snaith HJ (2014) Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Lett 14:5561–5568CrossRef Habisreutinger SN, Leijtens T, Eperon GE, Stranks SD, Nicholas RJ, Snaith HJ (2014) Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Lett 14:5561–5568CrossRef
247.
go back to reference Evanoff K, Khan J, Balandin AA, Magasinski A, Ready WJ, Fuller TF, Yushin G (2012) Towards ultrathick battery electrodes: aligned carbon nanotube-enabled architecture. Adv Mater 24:533–537CrossRef Evanoff K, Khan J, Balandin AA, Magasinski A, Ready WJ, Fuller TF, Yushin G (2012) Towards ultrathick battery electrodes: aligned carbon nanotube-enabled architecture. Adv Mater 24:533–537CrossRef
248.
go back to reference Ali GAM, Habeeb OA, Algarni H, Chong KF (2019) CaO impregnated highly porous honeycomb activated carbon from agriculture waste: symmetrical supercapacitor study. J Mater Sci 54(1):683–692CrossRef Ali GAM, Habeeb OA, Algarni H, Chong KF (2019) CaO impregnated highly porous honeycomb activated carbon from agriculture waste: symmetrical supercapacitor study. J Mater Sci 54(1):683–692CrossRef
249.
go back to reference Liu C, Yu Z, Neff D, Zhamu A, Jang BZ (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10:4863–4868CrossRef Liu C, Yu Z, Neff D, Zhamu A, Jang BZ (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10:4863–4868CrossRef
250.
go back to reference Casas DC, Li W (2012) A review of application of carbon nanotubes for lithium ion battery anode material. J Power Sources 208:74–85CrossRef Casas DC, Li W (2012) A review of application of carbon nanotubes for lithium ion battery anode material. J Power Sources 208:74–85CrossRef
251.
go back to reference Cao H, Wang X, Gu H, Liu J, Luan L, Liu W, Wang Y, Guo Z (2015) Carbon coated manganese monoxide octahedron negative-electrode for lithium-ion batteries with enhanced performance. RSC Adv 5:34566–34571CrossRef Cao H, Wang X, Gu H, Liu J, Luan L, Liu W, Wang Y, Guo Z (2015) Carbon coated manganese monoxide octahedron negative-electrode for lithium-ion batteries with enhanced performance. RSC Adv 5:34566–34571CrossRef
252.
go back to reference Li X, Gu H, Liu J, Wei H, Qiu S, Fu Y, Lv H, Lu G, Wang Y, Guo Z (2014) Multi-walled carbon nanotubes composited with nanomagnetite for anodes in lithium ion batteries. RSC Adv 5:7237–7244CrossRef Li X, Gu H, Liu J, Wei H, Qiu S, Fu Y, Lv H, Lu G, Wang Y, Guo Z (2014) Multi-walled carbon nanotubes composited with nanomagnetite for anodes in lithium ion batteries. RSC Adv 5:7237–7244CrossRef
253.
go back to reference Hu C, Guo S, Lu G, Fu Y, Liu J, Wei H, Yan X, Wang Y, Guo Z (2014) Carbon coating and Zn2+ doping of magnetite nanorods for enhanced electrochemical energy storage. Electrochim Acta 148:118–126CrossRef Hu C, Guo S, Lu G, Fu Y, Liu J, Wei H, Yan X, Wang Y, Guo Z (2014) Carbon coating and Zn2+ doping of magnetite nanorods for enhanced electrochemical energy storage. Electrochim Acta 148:118–126CrossRef
254.
go back to reference Kumar GG, Reddy K, Nahm KS, Angulakshmi N, Stephan MA (2012) Synthesis and electrochemical properties of SnS as possible anode material for lithium batteries. J Phys Chem Solids 73:1187–1190CrossRef Kumar GG, Reddy K, Nahm KS, Angulakshmi N, Stephan MA (2012) Synthesis and electrochemical properties of SnS as possible anode material for lithium batteries. J Phys Chem Solids 73:1187–1190CrossRef
255.
go back to reference Ge M, Rong J, Fang X, Zhou C (2012) Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett 12:2318–2323CrossRef Ge M, Rong J, Fang X, Zhou C (2012) Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett 12:2318–2323CrossRef
256.
go back to reference Liu L, Wang J, Wei H, Guo Z, Ding K (2014) Using multi-walled carbon nanotubes as the reducing reagents to prepare ptxsny composite nanoparticles by a pyrolysis method for ethanol oxidation reaction. Int J Electrochem Sci 9:2221–2236 Liu L, Wang J, Wei H, Guo Z, Ding K (2014) Using multi-walled carbon nanotubes as the reducing reagents to prepare ptxsny composite nanoparticles by a pyrolysis method for ethanol oxidation reaction. Int J Electrochem Sci 9:2221–2236
257.
go back to reference Sheng ZH, Gao HL, Bao WJ, Wang FB, Xia XH (2012) Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells. J Mater Chem 22:390–395CrossRef Sheng ZH, Gao HL, Bao WJ, Wang FB, Xia XH (2012) Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells. J Mater Chem 22:390–395CrossRef
258.
go back to reference Yang Z, Yo Z, Li G, Fang G, Nie H, Liu Z, Zhou X, Chen X, Huang S (2012) Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 6:205–211CrossRef Yang Z, Yo Z, Li G, Fang G, Nie H, Liu Z, Zhou X, Chen X, Huang S (2012) Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 6:205–211CrossRef
259.
go back to reference Li Y, Zhou W, Wang H, Xie L, Liang Y, Wei F, Idrobo J-C, Pennycook SJ, Dai H (2012) An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes. Nat Nanotechnol 7:394–400CrossRef Li Y, Zhou W, Wang H, Xie L, Liang Y, Wei F, Idrobo J-C, Pennycook SJ, Dai H (2012) An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes. Nat Nanotechnol 7:394–400CrossRef
Metadata
Title
A Broad Family of Carbon Nanomaterials: Classification, Properties, Synthesis, and Emerging Applications
Authors
Ahmed Barhoum
Soliman I. El-Hout
Gomaa A. M. Ali
Esraa Samy Abu Serea
Ahmed H. Ibrahim
Kaushik Pal
Ahmed Esmail Shalan
Sabah M. Abdelbasir
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-53655-2_59

Premium Partners