Skip to main content
Top

2018 | OriginalPaper | Chapter

A Case for IoT Security Assurance

Authors : Claudio A. Ardagna, Ernesto Damiani, Julian Schütte, Philipp Stephanow

Published in: Internet of Everything

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Today the proliferation of ubiquitous devices interacting with the external environment and connected by means of wired/wireless communication technologies points to the definition of a new vision of ICT called Internet of Things (IoT). In IoT, sensors and actuators, possibly embedded in more powerful devices, such as smartphones, interact with the surrounding environment. They collect information and supply it across networks to platforms where IoT applications are built. IoT services are then made available to final customers through these platforms. Needless to say, IoT scenario revolutionizes the concept of security, which becomes even more critical than before. Security protection must consider millions of devices that are under control of external entities, freshness and integrity of data that are produced by the latter devices, and heterogeneous environments and contexts that co-exist in the same IoT environment. These aspects make the need of a systematic way of assessing the quality and security of IoT systems evident, introducing the need of rethinking existing assurance methods to fit the IoT-based services. In this chapter, we discuss and analyze challenges in the design and development of assurance methods in IoT, focusing on traditional CIA properties, and provide a first process for the development of continuous assurance methods for IoT services. We also design a conceptual framework for IoT security assurance evaluation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference Sadeghi, Ahmad-Reza, Christian Wachsmann, and Michael Waidner. 2015. Security and privacy challenges in industrial internet of things. In Proceedings of the 52nd Annual Design Automation Conference (DAC), 54. ACM. Sadeghi, Ahmad-Reza, Christian Wachsmann, and Michael Waidner. 2015. Security and privacy challenges in industrial internet of things. In Proceedings of the 52nd Annual Design Automation Conference (DAC), 54. ACM.
4.
go back to reference Abomhara, Mohamed and Geir M Køien. 2014. Security and privacy in the Internet of Things: Current status and open issues. In International Conference on Privacy and Security in Mobile Systems (PRISMS), 1–8. IEEE. Abomhara, Mohamed and Geir M Køien. 2014. Security and privacy in the Internet of Things: Current status and open issues. In International Conference on Privacy and Security in Mobile Systems (PRISMS), 1–8. IEEE.
5.
go back to reference Zhang, Zhi-Kai, Michael Cheng Yi Cho, Chia-Wei Wang, Chia-Wei Hsu, Chong-Kuan Chen, and Shiuhpyng Shieh. 2014. IoT security: ongoing challenges and research opportunities. In 2014 IEEE 7th International Conference on Service-Oriented Computing and Applications, 230–234. IEEE. Zhang, Zhi-Kai, Michael Cheng Yi Cho, Chia-Wei Wang, Chia-Wei Hsu, Chong-Kuan Chen, and Shiuhpyng Shieh. 2014. IoT security: ongoing challenges and research opportunities. In 2014 IEEE 7th International Conference on Service-Oriented Computing and Applications, 230–234. IEEE.
6.
go back to reference Sato, Hiroyuki, Atsushi Kanai, Shigeaki Tanimoto, and Toru Kobayashi. 2016. Establishing trust in the emerging era of IoT. In 2016 IEEE Symposium on Service-Oriented System Engineering (SOSE), 398–406. IEEE. Sato, Hiroyuki, Atsushi Kanai, Shigeaki Tanimoto, and Toru Kobayashi. 2016. Establishing trust in the emerging era of IoT. In 2016 IEEE Symposium on Service-Oriented System Engineering (SOSE), 398–406. IEEE.
7.
go back to reference Zhao, Kai, and Lina Ge. 2013. A survey on the internet of things security. In Computational Intelligence and Security (CIS), 2013 9th International Conference on, 663–667. IEEE. Zhao, Kai, and Lina Ge. 2013. A survey on the internet of things security. In Computational Intelligence and Security (CIS), 2013 9th International Conference on, 663–667. IEEE.
8.
go back to reference Bagci, Ibrahim Ethem, Mohammad Reza Pourmirza, Shahid Raza, Utz Roedig, and Thiemo Voigt. 2012. Codo: Confidential data storage for wireless sensor networks. In 9th International Conference on Mobile Ad-Hoc and Sensor Systems (MASS), 1–6. IEEE. Bagci, Ibrahim Ethem, Mohammad Reza Pourmirza, Shahid Raza, Utz Roedig, and Thiemo Voigt. 2012. Codo: Confidential data storage for wireless sensor networks. In 9th International Conference on Mobile Ad-Hoc and Sensor Systems (MASS), 1–6. IEEE.
9.
go back to reference Raza, Shahid, Hossein Shafagh, Kasun Hewage, René Hummen, and Thiemo Voigt. 2013. Lithe: Lightweight secure CoAP for the internet of things. IEEE Sensors Journal 13(10): 3711–3720. Raza, Shahid, Hossein Shafagh, Kasun Hewage, René Hummen, and Thiemo Voigt. 2013. Lithe: Lightweight secure CoAP for the internet of things. IEEE Sensors Journal 13(10): 3711–3720.
10.
go back to reference Dofe, Jaya, Jonathan Frey, and Qiaoyan Yu. 2016. Hardware security assurance in emerging IoT applications. In International Symposium on Circuits and Systems (ISCAS), 2050–2053. IEEE. Dofe, Jaya, Jonathan Frey, and Qiaoyan Yu. 2016. Hardware security assurance in emerging IoT applications. In International Symposium on Circuits and Systems (ISCAS), 2050–2053. IEEE.
11.
go back to reference Raza, Shahid, Linus Wallgren, and Thiemo Voigt. 2013. SVELTE: Real-time intrusion detection in the Internet of Things. Ad hoc networks 11(8): 2661–2674. Raza, Shahid, Linus Wallgren, and Thiemo Voigt. 2013. SVELTE: Real-time intrusion detection in the Internet of Things. Ad hoc networks 11(8): 2661–2674.
12.
go back to reference Raza, Shahid, Simon Duquennoy, Joel Höglund, Utz Roedig, and Thiemo Voigt. 2014. Secure communication for the Internet of Things—a comparison of link-layer security and IPsec for 6LoWPAN. Security and Communication Networks 7(12): 2654–2668. Raza, Shahid, Simon Duquennoy, Joel Höglund, Utz Roedig, and Thiemo Voigt. 2014. Secure communication for the Internet of Things—a comparison of link-layer security and IPsec for 6LoWPAN. Security and Communication Networks 7(12): 2654–2668.
13.
go back to reference Lee, Jun-Ya, Wei-Cheng Lin, and Yu-Hung Huang. 2014. A lightweight authentication protocol for internet of things. In 2014 International Symposium on Next-Generation Electronics (ISNE), 1–2. IEEE. Lee, Jun-Ya, Wei-Cheng Lin, and Yu-Hung Huang. 2014. A lightweight authentication protocol for internet of things. In 2014 International Symposium on Next-Generation Electronics (ISNE), 1–2. IEEE.
14.
go back to reference Park, Haemin, Dongwon Seo, Heejo Lee, and Adrian Perrig. 2012. SMATT: Smart meter attestation using multiple target selection and copy-proof memory. In Computer Science and its Applications, 875–887. Springer. Park, Haemin, Dongwon Seo, Heejo Lee, and Adrian Perrig. 2012. SMATT: Smart meter attestation using multiple target selection and copy-proof memory. In Computer Science and its Applications, 875–887. Springer.
15.
go back to reference Ardagna, Claudio Agostino, Rasool Asal, Ernesto Damiani, and Quang Hieu Vu. 2015. From security to assurance in the cloud: A survey. ACM Computing Surveys (CSUR), 48(1): 2:1–2:50. Ardagna, Claudio Agostino, Rasool Asal, Ernesto Damiani, and Quang Hieu Vu. 2015. From security to assurance in the cloud: A survey. ACM Computing Surveys (CSUR), 48(1): 2:1–2:50.
16.
go back to reference ISO/IEC JTC 1. 2014. Information Technology. Internet of things (iot). preliminary report. ISO/IEC JTC 1. 2014. Information Technology. Internet of things (iot). preliminary report.
18.
go back to reference Minerva, Roberto, Abyi Biru, and Domenico Rotondi. 2015. Towards a Definition of the Internet of Things (IoT). Torino, Italy: IEEE Internet Initiative. Minerva, Roberto, Abyi Biru, and Domenico Rotondi. 2015. Towards a Definition of the Internet of Things (IoT). Torino, Italy: IEEE Internet Initiative.
19.
go back to reference Weiser, Mark. 1991. The computer for the twenty-first century. Scientific American, 6675. Weiser, Mark. 1991. The computer for the twenty-first century. Scientific American, 6675.
20.
go back to reference Ala Al Fuqaha, Mohsen Guizani, Mehdi Mohammadi, Mohammed Aledhari, and Moussa Ayyash. 2015. Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys and Tutorials 17(4): 2347–2376. Ala Al Fuqaha, Mohsen Guizani, Mehdi Mohammadi, Mohammed Aledhari, and Moussa Ayyash. 2015. Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys and Tutorials 17(4): 2347–2376.
22.
go back to reference Beznosov, Konstantin, and Philippe Kruchten. 2004. Towards agile security assurance. In Proceedings of the 2004 workshop on New security paradigms, 47–54, ACM. Beznosov, Konstantin, and Philippe Kruchten. 2004. Towards agile security assurance. In Proceedings of the 2004 workshop on New security paradigms, 47–54, ACM.
23.
go back to reference Misra, Sridipta, Muthucumaru Maheswaran, and Salman Hashmi. 2017. Security challenges and approaches in internet of things. Springer International Publishing. Misra, Sridipta, Muthucumaru Maheswaran, and Salman Hashmi. 2017. Security challenges and approaches in internet of things. Springer International Publishing.
24.
go back to reference Mahalle, Parikshit Narendra, and Poonam N. Railkar. 2015. Identity management for internet of things. River Publishers Series in Communications. Mahalle, Parikshit Narendra, and Poonam N. Railkar. 2015. Identity management for internet of things. River Publishers Series in Communications.
25.
go back to reference Shelby, Zach, Klaus Hartke, and Carsten Bormann. 2014. The constrained application protocol (CoAP). Technical report. Shelby, Zach, Klaus Hartke, and Carsten Bormann. 2014. The constrained application protocol (CoAP). Technical report.
26.
go back to reference Montenegro, Gabriel, Nandakishore Kushalnagar, Jonathan Hui, and David Culler. 2007. Transmission of IPv6 packets over IEEE 802.15. 4 networks. Technical report. Montenegro, Gabriel, Nandakishore Kushalnagar, Jonathan Hui, and David Culler. 2007. Transmission of IPv6 packets over IEEE 802.15. 4 networks. Technical report.
27.
go back to reference Stephen Kent and Seo, Karen. 2005. Security architecture for the internet protocol. Technical report. Stephen Kent and Seo, Karen. 2005. Security architecture for the internet protocol. Technical report.
28.
go back to reference Bhatnagar, Neerja, and Ethan L. Miller. 2007. Designing a secure reliable file system for sensor networks. In Proceedings of the 2007 ACM workshop on Storage security and survivability, 19–24. ACM. Bhatnagar, Neerja, and Ethan L. Miller. 2007. Designing a secure reliable file system for sensor networks. In Proceedings of the 2007 ACM workshop on Storage security and survivability, 19–24. ACM.
29.
go back to reference Wei Ren, Yi Ren, and Hui Zhang. 2008. Hybrids: A scheme for secure distributed data storage in wsns. In IEEE/IFIP International Conference on Embedded and Ubiquitous Computing, 2008. EUC’08, vol. 2, 318–323. IEEE. Wei Ren, Yi Ren, and Hui Zhang. 2008. Hybrids: A scheme for secure distributed data storage in wsns. In IEEE/IFIP International Conference on Embedded and Ubiquitous Computing, 2008. EUC’08, vol. 2, 318–323. IEEE.
31.
go back to reference Doug, J. 2011. Tygar. Adversarial machine learning. IEEE Internet Computing 15(5): 4. Doug, J. 2011. Tygar. Adversarial machine learning. IEEE Internet Computing 15(5): 4.
32.
go back to reference Huang, Ling, Anthony D. Joseph, Blaine Nelson, Benjamin IP Rubinstein, and J.D. Tygar. 2011. Adversarial machine learning. In Proceedings of the 4th ACM workshop on security and artificial intelligence, 43–58. ACM. Huang, Ling, Anthony D. Joseph, Blaine Nelson, Benjamin IP Rubinstein, and J.D. Tygar. 2011. Adversarial machine learning. In Proceedings of the 4th ACM workshop on security and artificial intelligence, 43–58. ACM.
33.
go back to reference Liu, Chang, Chi Yang, Xuyun Zhang, and Jinjun Chen. 2015. External integrity verification for outsourced big data in cloud and iot. Future generation computer systems, 49(C): 58–67. Liu, Chang, Chi Yang, Xuyun Zhang, and Jinjun Chen. 2015. External integrity verification for outsourced big data in cloud and iot. Future generation computer systems, 49(C): 58–67.
34.
go back to reference Newe, Thomas, Muzaffar Rao, Daniel Toal, Gerard Dooly, Edin Omerdic, and Avijit Mathur. 2017. Efficient and high speed fpga bump in the wire implementation for data integrity and confidentiality services in the iot. In Postolache, Octavian Adrian, Subhas Chandra Mukhopadhyay, Krishanthi P. Jayasundera, and Akshya K. Swain (eds.). Sensors for everyday life: Healthcare settings, 259–285. Springer International Publishing. Newe, Thomas, Muzaffar Rao, Daniel Toal, Gerard Dooly, Edin Omerdic, and Avijit Mathur. 2017. Efficient and high speed fpga bump in the wire implementation for data integrity and confidentiality services in the iot. In Postolache, Octavian Adrian, Subhas Chandra Mukhopadhyay, Krishanthi P. Jayasundera, and Akshya K. Swain (eds.). Sensors for everyday life: Healthcare settings, 259–285. Springer International Publishing.
35.
go back to reference Gaurav, Kumar, Pravin Goyal, Vartika Agrawal, and Shwetha Lakshman Rao. 2015. Iot transaction security. In Proceedings of the 5th International Conference on the Internet of Things (IoT 2015). Gaurav, Kumar, Pravin Goyal, Vartika Agrawal, and Shwetha Lakshman Rao. 2015. Iot transaction security. In Proceedings of the 5th International Conference on the Internet of Things (IoT 2015).
36.
go back to reference Yick, Jennifer, Biswanath Mukherjee, and Dipak Ghosal. 2008. Wireless sensor network survey. Computer Networks 52(12): 2292–2330. Yick, Jennifer, Biswanath Mukherjee, and Dipak Ghosal. 2008. Wireless sensor network survey. Computer Networks 52(12): 2292–2330.
37.
go back to reference Tanenbaum, Andrew S., and Maarten Van Steen. 2007. Distributed systems. Prentice-Hall. Tanenbaum, Andrew S., and Maarten Van Steen. 2007. Distributed systems. Prentice-Hall.
38.
go back to reference National Institute of Standards and Technology (NIST). 2013. Security and privacy controls for federal information systems and organizations. Special Publication 800: 53. National Institute of Standards and Technology (NIST). 2013. Security and privacy controls for federal information systems and organizations. Special Publication 800: 53.
Metadata
Title
A Case for IoT Security Assurance
Authors
Claudio A. Ardagna
Ernesto Damiani
Julian Schütte
Philipp Stephanow
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-5861-5_8