Skip to main content
Top

2019 | OriginalPaper | Chapter

A Causality Driven Approach to Adverse Drug Reactions Detection in Tweets

Authors : Humayun Kayesh, Md. Saiful Islam, Junhu Wang

Published in: Advanced Data Mining and Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Social media sites such as Twitter is a platform where users usually express their feelings, opinions, and experiences, e.g., users often share their experiences about medications including adverse drug reactions in their tweets. Mining and detecting this information on adverse drug reactions could be immensely beneficial for pharmaceutical companies, drug-safety authorities and medical practitioners. However, the automatic extraction of adverse drug reactions from tweets is a nontrivial task due to the short and informal nature of tweets. In this paper, we aim to detect adverse drug reaction mentions in tweets where we assume that there exists a cause-effect relationship between drug names and adverse drug reactions. We propose a causality driven neural network-based approach to detect adverse drug reactions in tweets. Our approach applies a multi-head self attention mechanism to learn word-to-word interactions. We show that when the causal features are combined with the word-level semantic features, our approach can outperform several state-of-the-art adverse drug reaction detection approaches.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bollegala, D., Maskell, S., Sloane, R., Hajne, J., Pirmohamed, M.: Causality patterns for detecting adverse drug reactions from social media: text mining approach. JMIR Public Health Surveill. 4(2), e51 (2018)CrossRef Bollegala, D., Maskell, S., Sloane, R., Hajne, J., Pirmohamed, M.: Causality patterns for detecting adverse drug reactions from social media: text mining approach. JMIR Public Health Surveill. 4(2), e51 (2018)CrossRef
2.
go back to reference Chowdhury, S., Zhang, C., Yu, P.S.: Multi-task pharmacovigilance mining from social media posts. In: WWW (2018) Chowdhury, S., Zhang, C., Yu, P.S.: Multi-task pharmacovigilance mining from social media posts. In: WWW (2018)
3.
go back to reference Cocos, A., Fiks, A.G., Masino, A.J.: Deep learning for pharmacovigilance: recurrent neural network architectures for labeling adverse drug reactions in Twitter posts. JAMIA 24(4), 813–821 (2017) Cocos, A., Fiks, A.G., Masino, A.J.: Deep learning for pharmacovigilance: recurrent neural network architectures for labeling adverse drug reactions in Twitter posts. JAMIA 24(4), 813–821 (2017)
4.
go back to reference Evans, S., Waller, P.C., Davis, S.: Use of proportional reporting ratios (PRRS) for signal generation from spontaneous adverse drug reaction reports. Pharmacoepidemiol. Drug Saf. 10(6), 483–486 (2001)CrossRef Evans, S., Waller, P.C., Davis, S.: Use of proportional reporting ratios (PRRS) for signal generation from spontaneous adverse drug reaction reports. Pharmacoepidemiol. Drug Saf. 10(6), 483–486 (2001)CrossRef
5.
go back to reference Godin, F., Vandersmissen, B., De Neve, W., Van de Walle, R.: Multimedia lab \(@ \) acl wnut ner shared task: named entity recognition for Twitter microposts using distributed word representations. In: Proceedings of the Workshop on Noisy User-Generated Text, pp. 146–153 (2015) Godin, F., Vandersmissen, B., De Neve, W., Van de Walle, R.: Multimedia lab \(@ \) acl wnut ner shared task: named entity recognition for Twitter microposts using distributed word representations. In: Proceedings of the Workshop on Noisy User-Generated Text, pp. 146–153 (2015)
6.
go back to reference Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 18(5–6), 602–610 (2005)CrossRef Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 18(5–6), 602–610 (2005)CrossRef
7.
go back to reference Hinton, G., Srivastava, N., Swersky, K.: Neural networks for machine learning lecture 6a overview of mini-batch gradient descent. Neural networks for machine learning, Coursera lecture 6e (2012) Hinton, G., Srivastava, N., Swersky, K.: Neural networks for machine learning lecture 6a overview of mini-batch gradient descent. Neural networks for machine learning, Coursera lecture 6e (2012)
8.
go back to reference Huynh, T., He, Y., Willis, A., Rüger, S.: Adverse drug reaction classification with deep neural networks. In: COLING, pp. 877–887 (2016) Huynh, T., He, Y., Willis, A., Rüger, S.: Adverse drug reaction classification with deep neural networks. In: COLING, pp. 877–887 (2016)
9.
go back to reference Ji, Y., et al.: A potential causal association mining algorithm for screening adverse drug reactions in postmarketing surveillance. IEEE Trans. Inf Technol. Biomed. 15(3), 428–437 (2011)CrossRef Ji, Y., et al.: A potential causal association mining algorithm for screening adverse drug reactions in postmarketing surveillance. IEEE Trans. Inf Technol. Biomed. 15(3), 428–437 (2011)CrossRef
10.
go back to reference Lafferty, J., McCallum, A., Pereira, F.C.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: ICML, pp. 282–289 (2001) Lafferty, J., McCallum, A., Pereira, F.C.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: ICML, pp. 282–289 (2001)
11.
go back to reference LeCun, Y., et al.: Handwritten digit recognition with a back-propagation network. In: Advances in Neural Information Processing Systems, pp. 396–404 (1990) LeCun, Y., et al.: Handwritten digit recognition with a back-propagation network. In: Advances in Neural Information Processing Systems, pp. 396–404 (1990)
12.
go back to reference Nikfarjam, A., Sarker, A., O’Connor, K., Ginn, R., Gonzalez, G.: Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features. JAMIA 22(3), 671–681 (2015) Nikfarjam, A., Sarker, A., O’Connor, K., Ginn, R., Gonzalez, G.: Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features. JAMIA 22(3), 671–681 (2015)
13.
go back to reference Qin, X., Kakar, T., Wunnava, S., Rundensteiner, E.A., Cao, L.: Maras: signaling multi-drug adverse reactions. In: KDD, pp. 1615–1623 (2017) Qin, X., Kakar, T., Wunnava, S., Rundensteiner, E.A., Cao, L.: Maras: signaling multi-drug adverse reactions. In: KDD, pp. 1615–1623 (2017)
14.
go back to reference Song, Q., Li, B., Xu, Y.: Research on adverse drug reaction recognitions based on conditional random field. In: International Conference on Business and Information Management, pp. 97–101 (2017) Song, Q., Li, B., Xu, Y.: Research on adverse drug reaction recognitions based on conditional random field. In: International Conference on Business and Information Management, pp. 97–101 (2017)
15.
go back to reference Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017) Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)
16.
go back to reference Yang, C.C., Jiang, L., Yang, H., Tang, X.: Detecting signals of adverse drug reactions from health consumer contributed content in social media. In: Proceedings of ACM SIGKDD Workshop on Health Informatics. ACM (2012) Yang, C.C., Jiang, L., Yang, H., Tang, X.: Detecting signals of adverse drug reactions from health consumer contributed content in social media. In: Proceedings of ACM SIGKDD Workshop on Health Informatics. ACM (2012)
17.
go back to reference Yang, C.C., Yang, H., Jiang, L., Zhang, M.: Social media mining for drug safety signal detection. In: International Workshop on Smart Health and Wellbeing, pp. 33–40 (2012) Yang, C.C., Yang, H., Jiang, L., Zhang, M.: Social media mining for drug safety signal detection. In: International Workshop on Smart Health and Wellbeing, pp. 33–40 (2012)
Metadata
Title
A Causality Driven Approach to Adverse Drug Reactions Detection in Tweets
Authors
Humayun Kayesh
Md. Saiful Islam
Junhu Wang
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-35231-8_23

Premium Partner