Skip to main content
Top
Published in: Journal of Scientific Computing 2/2016

13-12-2015

A Cell-Centered Nonlinear Finite Volume Scheme Preserving Fully Positivity for Diffusion Equation

Authors: Zhiqiang Sheng, Guangwei Yuan

Published in: Journal of Scientific Computing | Issue 2/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the construction of existing nonlinear cell-centered finite volume schemes with monotonicity, it is required to assume that values of auxiliary unknowns are nonnegative. However, this assumption is not always satisfied, especially when accurate reconstruction of auxiliary unknowns is concerned on distorted meshes. In this paper we propose a new method to deal with this issue by introducing both edge unknowns and vertex unknowns as auxiliary unknowns. Edge unknowns are approximated by a convex combination of cell-centered unknowns and vertex unknowns by using the continuity of flux on cell edge. Vertex unknowns are approximated by a convex combination of cell-centered unknowns and edge unknowns. Our new method can assure that these weighted coefficients are nonnegative and the sum of these coefficients in each convex combination is one. The resulting scheme is a nonlinear monotone scheme with nonlinear coefficients depending on both edge unknowns and vertex unknowns, and a linear cell-centered finite volume scheme is formed at each nonlinear iteration by using the Picard linearized method. Numerical results show that our monotone scheme based on the new method of eliminating auxiliary unknowns is more accurate and robust than some existing monotone schemes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Friis, H.A., Edwards, M.G.: A family of MPFA finite-volume schemes with full pressure support for the general tensor pressure equation on cell-centered triangular grids. J. Comput. Phys. 230, 205–231 (2011)MathSciNetCrossRefMATH Friis, H.A., Edwards, M.G.: A family of MPFA finite-volume schemes with full pressure support for the general tensor pressure equation on cell-centered triangular grids. J. Comput. Phys. 230, 205–231 (2011)MathSciNetCrossRefMATH
2.
go back to reference Lipnikov, K., Manzini, G., Svyatskiy, D.: Analysis of the monotonicity conditions in the mimetic finite difference method for elliptic problems. J. Comput. Phys. 230, 2620–2642 (2011)MathSciNetCrossRefMATH Lipnikov, K., Manzini, G., Svyatskiy, D.: Analysis of the monotonicity conditions in the mimetic finite difference method for elliptic problems. J. Comput. Phys. 230, 2620–2642 (2011)MathSciNetCrossRefMATH
3.
go back to reference Lu, C., Huang, W., Qiu, J.: Maximum principle in linear finite element approximations of anisotropic diffusion–convection–reaction problems. Numer. Math. 127, 515–537 (2014)MathSciNetCrossRefMATH Lu, C., Huang, W., Qiu, J.: Maximum principle in linear finite element approximations of anisotropic diffusion–convection–reaction problems. Numer. Math. 127, 515–537 (2014)MathSciNetCrossRefMATH
4.
5.
go back to reference Angelini, O., Chavant, C., Chenier, E., Eymard, R.: A finite volume scheme for diffusion problems on general meshes applying monotony constraints. SIAM J. Numer. Anal. 47, 4193–4213 (2010)MathSciNetCrossRefMATH Angelini, O., Chavant, C., Chenier, E., Eymard, R.: A finite volume scheme for diffusion problems on general meshes applying monotony constraints. SIAM J. Numer. Anal. 47, 4193–4213 (2010)MathSciNetCrossRefMATH
6.
go back to reference Burdakov, O., Kapyrin, I., Vassilevski, Y.: Monotonicity recovering and accuracy preserving optimization methods for postprocessing finite element solutions. J. Comput. Phys. 231, 3126–3142 (2012)MathSciNetCrossRefMATH Burdakov, O., Kapyrin, I., Vassilevski, Y.: Monotonicity recovering and accuracy preserving optimization methods for postprocessing finite element solutions. J. Comput. Phys. 231, 3126–3142 (2012)MathSciNetCrossRefMATH
7.
go back to reference Huang, W.: Discrete maximum principle and a Delaunay-type mesh condition for linear finite element approximations of two-dimensional anisotropic diffusion problems. Numer. Math. Theory Methods Appl. 4, 319–334 (2011)MathSciNetMATH Huang, W.: Discrete maximum principle and a Delaunay-type mesh condition for linear finite element approximations of two-dimensional anisotropic diffusion problems. Numer. Math. Theory Methods Appl. 4, 319–334 (2011)MathSciNetMATH
8.
go back to reference Liska, R., Shashkov, M.: Enforcing the discrete maximum principle for linear finite element solutions of second-order elliptic problems. Commun. Comput. Phys. 3, 852–877 (2008)MathSciNetMATH Liska, R., Shashkov, M.: Enforcing the discrete maximum principle for linear finite element solutions of second-order elliptic problems. Commun. Comput. Phys. 3, 852–877 (2008)MathSciNetMATH
9.
go back to reference Lu, C., Huang, W., Van Vleck, E.S.: The cutoff method for the numerical computation of nonnegative solutions of parabolic PDEs with application to anisotropic diffusion and lubrication-type equations. J. Comput. Phys. 242, 24–36 (2013)MathSciNetCrossRefMATH Lu, C., Huang, W., Van Vleck, E.S.: The cutoff method for the numerical computation of nonnegative solutions of parabolic PDEs with application to anisotropic diffusion and lubrication-type equations. J. Comput. Phys. 242, 24–36 (2013)MathSciNetCrossRefMATH
10.
go back to reference Wang, J., Zhang, R.: Maximum principles for P\(_1\)-conforming finite element approximations of quasi-linear second order elliptic equations. SIAM J. Numer. Anal. 50, 626–642 (2012)MathSciNetCrossRefMATH Wang, J., Zhang, R.: Maximum principles for P\(_1\)-conforming finite element approximations of quasi-linear second order elliptic equations. SIAM J. Numer. Anal. 50, 626–642 (2012)MathSciNetCrossRefMATH
11.
go back to reference Wang, S., Yuan, G., Li, Y., Sheng, Z.: Discrete maximum principle based on repair technique for diamond type scheme of diffusion problems. Int. J. Numer. Meth. Fluids 70, 1188–1205 (2012)MathSciNetCrossRef Wang, S., Yuan, G., Li, Y., Sheng, Z.: Discrete maximum principle based on repair technique for diamond type scheme of diffusion problems. Int. J. Numer. Meth. Fluids 70, 1188–1205 (2012)MathSciNetCrossRef
12.
go back to reference Burman, E., Ern, A.: Discrete maximum principle for Galerkin approximations of the Laplace operator on arbitrary meshes. C. R. Acad. Sci. Paris Ser. I 338, 641–646 (2004)MathSciNetCrossRefMATH Burman, E., Ern, A.: Discrete maximum principle for Galerkin approximations of the Laplace operator on arbitrary meshes. C. R. Acad. Sci. Paris Ser. I 338, 641–646 (2004)MathSciNetCrossRefMATH
13.
go back to reference Lipnikov, K., Shashkov, M., Svyatskiy, D., Vassilevski, Yu.: Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes. J. Comput. Phys. 227, 492–512 (2007)MathSciNetCrossRefMATH Lipnikov, K., Shashkov, M., Svyatskiy, D., Vassilevski, Yu.: Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes. J. Comput. Phys. 227, 492–512 (2007)MathSciNetCrossRefMATH
14.
go back to reference Le Potier, C.: Finite volume monotone scheme for highly anisotropic diffusion operators on unstructured triangular meshes. C. R. Acad. Sci. Paris Ser. I 341, 787–792 (2005)CrossRefMATH Le Potier, C.: Finite volume monotone scheme for highly anisotropic diffusion operators on unstructured triangular meshes. C. R. Acad. Sci. Paris Ser. I 341, 787–792 (2005)CrossRefMATH
15.
go back to reference Yuan, G., Sheng, Z.: Monotone finite volume schemes for diffusion equations on polygonal meshes. J. Comput. Phys. 227, 6288–6312 (2008)MathSciNetCrossRefMATH Yuan, G., Sheng, Z.: Monotone finite volume schemes for diffusion equations on polygonal meshes. J. Comput. Phys. 227, 6288–6312 (2008)MathSciNetCrossRefMATH
16.
go back to reference Sheng, Z., Yuan, G.: A nine point scheme for the approximation of diffusion operators on distorted quadrilateral meshes. SIAM J. Sci. Comput. 30, 1341–1361 (2008)MathSciNetCrossRefMATH Sheng, Z., Yuan, G.: A nine point scheme for the approximation of diffusion operators on distorted quadrilateral meshes. SIAM J. Sci. Comput. 30, 1341–1361 (2008)MathSciNetCrossRefMATH
17.
go back to reference Sheng, Z., Yuan, G.: An improved monotone finite volume scheme for diffusion equation on polygonal meshes. J. Comput. Phys. 231, 3739–3754 (2012)MathSciNetCrossRefMATH Sheng, Z., Yuan, G.: An improved monotone finite volume scheme for diffusion equation on polygonal meshes. J. Comput. Phys. 231, 3739–3754 (2012)MathSciNetCrossRefMATH
18.
go back to reference Queiroz, L.E.S., Souza, M.R.A., Contreras, F.R.L., Lyra, P.R.M., de Carvalho, D.K.E.: On the accuracy of a nonlinear finite volume method for the solution of diffusion problems using different interpolations strategies. Int. J. Numer. Meth. Fluids 74, 270–291 (2014)MathSciNetCrossRef Queiroz, L.E.S., Souza, M.R.A., Contreras, F.R.L., Lyra, P.R.M., de Carvalho, D.K.E.: On the accuracy of a nonlinear finite volume method for the solution of diffusion problems using different interpolations strategies. Int. J. Numer. Meth. Fluids 74, 270–291 (2014)MathSciNetCrossRef
19.
go back to reference Gao, Z., Wu, J.: A second-order positivity-preserving finite volume scheme for diffusion equaitons on general meshes. SIAM J. Sci. Comput. 37, A420–A438 (2015)MathSciNetCrossRefMATH Gao, Z., Wu, J.: A second-order positivity-preserving finite volume scheme for diffusion equaitons on general meshes. SIAM J. Sci. Comput. 37, A420–A438 (2015)MathSciNetCrossRefMATH
20.
go back to reference Lipnikov, K., Svyatskiy, D., Vassilevski, Y.: Interpolation-free monotone finite volume method for diffusion equations on polygonal meshes. J. Comput. Phys. 228, 703–716 (2009)MathSciNetCrossRefMATH Lipnikov, K., Svyatskiy, D., Vassilevski, Y.: Interpolation-free monotone finite volume method for diffusion equations on polygonal meshes. J. Comput. Phys. 228, 703–716 (2009)MathSciNetCrossRefMATH
21.
go back to reference Lipnikov, K., Svyatskiy, D., Vassilevski, Y.: A monotone finite volume method for advection-diffusion equations on unstructured polygonal meshes. J. Comput. Phys. 229, 4017–4032 (2010)MathSciNetCrossRefMATH Lipnikov, K., Svyatskiy, D., Vassilevski, Y.: A monotone finite volume method for advection-diffusion equations on unstructured polygonal meshes. J. Comput. Phys. 229, 4017–4032 (2010)MathSciNetCrossRefMATH
22.
go back to reference Sheng, Z., Yue, J., Yuan, G.: Monotone finite volume schemes of nonequilibrium radiation diffusion equations on distorted meshes. SIAM J. Sci. Comput. 31, 2915–2934 (2009)MathSciNetCrossRefMATH Sheng, Z., Yue, J., Yuan, G.: Monotone finite volume schemes of nonequilibrium radiation diffusion equations on distorted meshes. SIAM J. Sci. Comput. 31, 2915–2934 (2009)MathSciNetCrossRefMATH
23.
go back to reference Bertolazzi, E., Manzini, G.: A second-order maximum principle preserving volume method for steady convection–diffusion problems. SIAM J. Numer. Anal. 43, 2172–2199 (2005)MathSciNetCrossRefMATH Bertolazzi, E., Manzini, G.: A second-order maximum principle preserving volume method for steady convection–diffusion problems. SIAM J. Numer. Anal. 43, 2172–2199 (2005)MathSciNetCrossRefMATH
24.
go back to reference Cances, C., Cathala, M., Le Potier, C.: Monotone corrections for generic cell-centered finite volume approximations of anisotropic diffusion equations. Numer. Math. 125, 387–417 (2013)MathSciNetCrossRefMATH Cances, C., Cathala, M., Le Potier, C.: Monotone corrections for generic cell-centered finite volume approximations of anisotropic diffusion equations. Numer. Math. 125, 387–417 (2013)MathSciNetCrossRefMATH
25.
go back to reference Droniou, J., Potier, C.L.: Construction and convergence study of schemes preserving the elliptic local maximum principle. SIAM J. Numer. Anal. 49, 459–490 (2011)MathSciNetCrossRefMATH Droniou, J., Potier, C.L.: Construction and convergence study of schemes preserving the elliptic local maximum principle. SIAM J. Numer. Anal. 49, 459–490 (2011)MathSciNetCrossRefMATH
26.
go back to reference Lipnikov, K., Svyatskiy, D., Vassilevski, Y.: Minimal stencil finite volume scheme with the discrete maximum principle. Russ. J. Numer. Anal. Math. Model. 27, 369–385 (2012)MathSciNetCrossRefMATH Lipnikov, K., Svyatskiy, D., Vassilevski, Y.: Minimal stencil finite volume scheme with the discrete maximum principle. Russ. J. Numer. Anal. Math. Model. 27, 369–385 (2012)MathSciNetCrossRefMATH
27.
go back to reference Le Potier, C.: A nonlinear finite volume scheme satisfying maximum and minimum principles for diffusion operators. Int. J. Finite Vol. 6, 1–20 (2009) Le Potier, C.: A nonlinear finite volume scheme satisfying maximum and minimum principles for diffusion operators. Int. J. Finite Vol. 6, 1–20 (2009)
28.
go back to reference Sheng, Z., Yuan, G.: The finite volume scheme preserving extremum principle for diffusion equations on polygonal meshes. J. Comput. Phys. 230, 2588–2604 (2011)MathSciNetCrossRefMATH Sheng, Z., Yuan, G.: The finite volume scheme preserving extremum principle for diffusion equations on polygonal meshes. J. Comput. Phys. 230, 2588–2604 (2011)MathSciNetCrossRefMATH
29.
go back to reference Droniou, J.: Finite volume schemes for diffusion equations: introduction to and review of modern methods. Math. Models Methods Appl. Sci. (M3AS) 24, 1575–1619 (2014)MathSciNetCrossRefMATH Droniou, J.: Finite volume schemes for diffusion equations: introduction to and review of modern methods. Math. Models Methods Appl. Sci. (M3AS) 24, 1575–1619 (2014)MathSciNetCrossRefMATH
30.
go back to reference Breil, J., Maire, P.-H.: A cell-centered diffusion scheme on two-dimensional unstructured meshes. J. Comput. Phys. 224, 785–823 (2007)MathSciNetCrossRefMATH Breil, J., Maire, P.-H.: A cell-centered diffusion scheme on two-dimensional unstructured meshes. J. Comput. Phys. 224, 785–823 (2007)MathSciNetCrossRefMATH
31.
go back to reference Herbin, R., Hubert, F.: Benchmark on discretization schemes for anisotropic diffusion problems on general grids. In: R. Eymard, J.-M. Herard (Eds.), Finite Volumes for Complex Applications V - Problems and Perspectives, pp. 659–692. Wiley Press, London (2008) Herbin, R., Hubert, F.: Benchmark on discretization schemes for anisotropic diffusion problems on general grids. In: R. Eymard, J.-M. Herard (Eds.), Finite Volumes for Complex Applications V - Problems and Perspectives, pp. 659–692. Wiley Press, London (2008)
Metadata
Title
A Cell-Centered Nonlinear Finite Volume Scheme Preserving Fully Positivity for Diffusion Equation
Authors
Zhiqiang Sheng
Guangwei Yuan
Publication date
13-12-2015
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 2/2016
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-015-0148-7

Other articles of this Issue 2/2016

Journal of Scientific Computing 2/2016 Go to the issue

Premium Partner