Skip to main content
Top

2024 | OriginalPaper | Chapter

A Certain Investigation on Undersea Water Image Object Detection and Classification Using Artificial Intelligence Algorithms

Authors : Kaipa Sandhya, Jayachandran Arumugam

Published in: Proceedings of Third International Conference on Computing and Communication Networks

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The increase in the usage of marine resources in recent years has drawn attention toward the underwater image processing research field; however, underwater images face some of the challenges like severe absorption and scattering of water, low contrast, monotonous color, etc., and make a complicated process. In this paper, we made a comprehensive study related to underwater image processing in recent years. The study includes both machine learning and deep learning approaches used for the detection of underwater objects. This study also presents the current scenarios along with future trends and provides better insights into the research direction in underwater image processing. Recently, artificial intelligence (AI) techniques are widely used for the detection and classification process of undersea water object detection and they demonstrated good outcomes. This study categorizes AI into machine learning and deep learning techniques. This study analyzed 31 papers related to underwater image object detection from various publishers like IEEE, Springer, Elsevier, Taylor and Francis, etc. More survey analysis is based on the study of the deep learning model. Hence, this study presents the advantages and the disadvantages of each model with open research challenges of undersea water object detection and classification.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Yang, M., Hu, J., Li, C., Rohde, G., Du, Y., Hu, K.: An in-depth survey of underwater image enhancement and restoration. IEEE Access 7, 123638–123657 (2019)CrossRef Yang, M., Hu, J., Li, C., Rohde, G., Du, Y., Hu, K.: An in-depth survey of underwater image enhancement and restoration. IEEE Access 7, 123638–123657 (2019)CrossRef
2.
go back to reference Hou, G., Pan, Z., Wang, G., Yang, H., Duan, J.: An efficient nonlocal variational method with application to underwater image restoration. Neurocomputing 369, 106–121 (2019)CrossRef Hou, G., Pan, Z., Wang, G., Yang, H., Duan, J.: An efficient nonlocal variational method with application to underwater image restoration. Neurocomputing 369, 106–121 (2019)CrossRef
3.
go back to reference Maniyath, S.R., Vijayakumar, K., Singh, L., Sharma, S.K., Olabiyisi, T.: Learning-based approach to underwater image dehazing using CycleGAN. Arab. J. Geosci. 14(18), 1908 (2021)CrossRef Maniyath, S.R., Vijayakumar, K., Singh, L., Sharma, S.K., Olabiyisi, T.: Learning-based approach to underwater image dehazing using CycleGAN. Arab. J. Geosci. 14(18), 1908 (2021)CrossRef
4.
go back to reference Ulutas, G., Ustubioglu, B.: Underwater image enhancement using contrast limited adaptive histogram equalization and layered difference representation. Multimedia Tools Appl. 80, 15067–15091 (2021)CrossRef Ulutas, G., Ustubioglu, B.: Underwater image enhancement using contrast limited adaptive histogram equalization and layered difference representation. Multimedia Tools Appl. 80, 15067–15091 (2021)CrossRef
5.
go back to reference Sánchez-Ferreira, C., Coelho, L.S., Ayala, H.V., Farias, M.C., Llanos, C.H.: Bio-inspired optimization algorithms for real underwater image restoration. Signal Process.: Image Commun. 77, 49–65 (2019) Sánchez-Ferreira, C., Coelho, L.S., Ayala, H.V., Farias, M.C., Llanos, C.H.: Bio-inspired optimization algorithms for real underwater image restoration. Signal Process.: Image Commun. 77, 49–65 (2019)
6.
go back to reference Krishnaraj, N., Elhoseny, M., Thenmozhi, M., Selim, M.M., Shankar, K.: Deep learning model for real-time image compression in Internet of Underwater Things (IoUT). J. Real-Time Image Proc. 17, 2097–2111 (2020)CrossRef Krishnaraj, N., Elhoseny, M., Thenmozhi, M., Selim, M.M., Shankar, K.: Deep learning model for real-time image compression in Internet of Underwater Things (IoUT). J. Real-Time Image Proc. 17, 2097–2111 (2020)CrossRef
7.
go back to reference Zhuang, P., Li, C., Wu, J.: Bayesian retinex underwater image enhancement. Eng. Appl. Artif. Intell. 101, 104171 (2021)CrossRef Zhuang, P., Li, C., Wu, J.: Bayesian retinex underwater image enhancement. Eng. Appl. Artif. Intell. 101, 104171 (2021)CrossRef
8.
go back to reference Himri, K., Ridao, P., Gracias, N.: Underwater object recognition using point-features, bayesian estimation and semantic information. Sensors 21(5), 1807 (2021)CrossRef Himri, K., Ridao, P., Gracias, N.: Underwater object recognition using point-features, bayesian estimation and semantic information. Sensors 21(5), 1807 (2021)CrossRef
9.
go back to reference Abu, A., Diamant, R.: A statistically-based method for the detection of underwater objects in sonar imagery. IEEE Sens. J. 19(16), 6858–6871 (2019)CrossRef Abu, A., Diamant, R.: A statistically-based method for the detection of underwater objects in sonar imagery. IEEE Sens. J. 19(16), 6858–6871 (2019)CrossRef
10.
go back to reference Fatan, M., Daliri, M.R., Shahri, A.M.: Underwater cable detection in the images using edge classification based on texture information. Measurement 91, 309–317 (2016)CrossRef Fatan, M., Daliri, M.R., Shahri, A.M.: Underwater cable detection in the images using edge classification based on texture information. Measurement 91, 309–317 (2016)CrossRef
11.
go back to reference Hong, X., Huang, L., Gong, S., Xiao, G.: Shedding damage detection of metal underwater pipeline external anticorrosive coating by ultrasonic imaging based on HOG+ SVM. J. Marine Sci. Engin. 9(4), 364 (2021)CrossRef Hong, X., Huang, L., Gong, S., Xiao, G.: Shedding damage detection of metal underwater pipeline external anticorrosive coating by ultrasonic imaging based on HOG+ SVM. J. Marine Sci. Engin. 9(4), 364 (2021)CrossRef
12.
go back to reference Huang, Y., Wang, Q., Shi, L., Yang, Q.: Underwater gas pipeline leakage source localization by distributed fiber-optic sensing based on particle swarm optimization tuning of the support vector machine. Appl. Opt. 55(2), 242–247 (2016)CrossRef Huang, Y., Wang, Q., Shi, L., Yang, Q.: Underwater gas pipeline leakage source localization by distributed fiber-optic sensing based on particle swarm optimization tuning of the support vector machine. Appl. Opt. 55(2), 242–247 (2016)CrossRef
13.
go back to reference Yelameli, M., Thornton, B., Takahashi, T., Weerkoon, T., Takemura, Y., Ishii, K.: Support vector machine based classification of seafloor rock types measured underwater using Laser Induced Breakdown Spectroscopy. In: OCEANS 2016-Shanghai, pp. 1–4. IEEE (2016) Yelameli, M., Thornton, B., Takahashi, T., Weerkoon, T., Takemura, Y., Ishii, K.: Support vector machine based classification of seafloor rock types measured underwater using Laser Induced Breakdown Spectroscopy. In: OCEANS 2016-Shanghai, pp. 1–4. IEEE (2016)
14.
go back to reference Qiao, X., Bao, J., Zhang, H., Wan, F., Li, D.: FvUnderwater sea cucumber identification based on principal component analysis and support vector machine. Measurement 133, 444–455 (2019)CrossRef Qiao, X., Bao, J., Zhang, H., Wan, F., Li, D.: FvUnderwater sea cucumber identification based on principal component analysis and support vector machine. Measurement 133, 444–455 (2019)CrossRef
15.
go back to reference Khotimah, W.N., Arifin, A.Z., Yuniarti, A., Wijaya, A.Y., Navastara, D.A., Kalbuadi, M.A.: Tuna fish classification using decision tree algorithm and image processing method. In: 2015 International Conference on Computer, Control, Informatics and its Applications (IC3INA), pp. 126–131. IEEE (2015) Khotimah, W.N., Arifin, A.Z., Yuniarti, A., Wijaya, A.Y., Navastara, D.A., Kalbuadi, M.A.: Tuna fish classification using decision tree algorithm and image processing method. In: 2015 International Conference on Computer, Control, Informatics and its Applications (IC3INA), pp. 126–131. IEEE (2015)
16.
go back to reference Shi, P., Fan, X., Ni, J., Wang, G.: A detection and classification approach for underwater dam cracks. Struct. Health Monit. 15(5), 541–554 (2016)CrossRef Shi, P., Fan, X., Ni, J., Wang, G.: A detection and classification approach for underwater dam cracks. Struct. Health Monit. 15(5), 541–554 (2016)CrossRef
17.
go back to reference Cui, S., Zhou, Y., Wang, Y., Zhai, L.: Fish detection using deep learning. Appl. Comput. Intell. Soft Comput. 2020, 1–13 (2020) Cui, S., Zhou, Y., Wang, Y., Zhai, L.: Fish detection using deep learning. Appl. Comput. Intell. Soft Comput. 2020, 1–13 (2020)
18.
go back to reference Yeh, C.H., Lin, C.H., Kang, L.W., Huang, C.H., Lin, M.H., Chang, C.Y., Wang, C.C.: Lightweight deep neural network for joint learning of underwater object detection and color conversion. IEEE Trans. Neural Netw. Learn. Syst. 33(11), 6129–6143 (2021)CrossRef Yeh, C.H., Lin, C.H., Kang, L.W., Huang, C.H., Lin, M.H., Chang, C.Y., Wang, C.C.: Lightweight deep neural network for joint learning of underwater object detection and color conversion. IEEE Trans. Neural Netw. Learn. Syst. 33(11), 6129–6143 (2021)CrossRef
19.
go back to reference Han, F., Yao, J., Zhu, H., Wang, C.: Underwater image processing and object detection based on deep CNN method. J. Sens. (2020) Han, F., Yao, J., Zhu, H., Wang, C.: Underwater image processing and object detection based on deep CNN method. J. Sens. (2020)
20.
go back to reference Kottursamy, K.: Multi-scale CNN approach for accurate detection of underwater static fish image. J. Artif. Intell. 3(03), 230–242 (2021) Kottursamy, K.: Multi-scale CNN approach for accurate detection of underwater static fish image. J. Artif. Intell. 3(03), 230–242 (2021)
21.
go back to reference Cao, S., Zhao, D., Liu, X., Sun, Y.: Real-time robust detector for underwater live crabs based on deep learning. Comput. Electron. Agric. 172, 105339 (2020)CrossRef Cao, S., Zhao, D., Liu, X., Sun, Y.: Real-time robust detector for underwater live crabs based on deep learning. Comput. Electron. Agric. 172, 105339 (2020)CrossRef
22.
go back to reference Moniruzzaman, M., Islam, S.M.S., Lavery, P., Bennamoun, M.: Faster R-CNN based deep learning for seagrass detection from underwater digital images. In: 2019 Digital Image Computing: Techniques and Applications (DICTA), pp. 1–7. IEEE (2019) Moniruzzaman, M., Islam, S.M.S., Lavery, P., Bennamoun, M.: Faster R-CNN based deep learning for seagrass detection from underwater digital images. In: 2019 Digital Image Computing: Techniques and Applications (DICTA), pp. 1–7. IEEE (2019)
23.
go back to reference Mana, S.C., Sasipraba, T.: An intelligent deep learning enabled marine fish species detection and classification model. Int. J. Artif. Intell. Tools 31(01), 2250017 (2022)CrossRef Mana, S.C., Sasipraba, T.: An intelligent deep learning enabled marine fish species detection and classification model. Int. J. Artif. Intell. Tools 31(01), 2250017 (2022)CrossRef
24.
go back to reference Paraschiv, M., Padrino, R., Casari, P., Bigal, E., Scheinin, A., Tchernov, D., Fernández Anta, A.: Classification of underwater fish images and videos via very small convolutional neural networks. J. Marine Sci. Engin. 10(6), 736 (2022)CrossRef Paraschiv, M., Padrino, R., Casari, P., Bigal, E., Scheinin, A., Tchernov, D., Fernández Anta, A.: Classification of underwater fish images and videos via very small convolutional neural networks. J. Marine Sci. Engin. 10(6), 736 (2022)CrossRef
25.
go back to reference Munteanu, D., Moina, D., Zamfir, C.G., Petrea, ȘM., Cristea, D.S., Munteanu, N.: Sea mine detection framework using YOLO, SSD and efficientdet deep learning models. Sensors 22(23), 9536 (2022)CrossRef Munteanu, D., Moina, D., Zamfir, C.G., Petrea, ȘM., Cristea, D.S., Munteanu, N.: Sea mine detection framework using YOLO, SSD and efficientdet deep learning models. Sensors 22(23), 9536 (2022)CrossRef
26.
go back to reference Zhang, S., Liu, W., Zhu, Y., Han, W., Huang, Y., Li, J.: Research on fish identification in tropical waters under unconstrained environment based on transfer learning. Earth Sci. Inf. 15(2), 1155–1166 (2022)CrossRef Zhang, S., Liu, W., Zhu, Y., Han, W., Huang, Y., Li, J.: Research on fish identification in tropical waters under unconstrained environment based on transfer learning. Earth Sci. Inf. 15(2), 1155–1166 (2022)CrossRef
27.
go back to reference Kuswantori, A., Suesut, T., Tangsrirat, W., Schleining, G., Nunak, N.: Fish detection and classification for automatic sorting system with an optimized YOLO algorithm. Appl. Sci. 13(6), 3812 (2023)CrossRef Kuswantori, A., Suesut, T., Tangsrirat, W., Schleining, G., Nunak, N.: Fish detection and classification for automatic sorting system with an optimized YOLO algorithm. Appl. Sci. 13(6), 3812 (2023)CrossRef
28.
go back to reference Wen, G., Li, S., Liu, F., Luo, X., Er, M.J., Mahmud, M., Wu, T.: YOLOv5s-CA: a modified YOLOv5s network with coordinate attention for underwater target detection. Sensors 23(7), 3367 (2023)CrossRef Wen, G., Li, S., Liu, F., Luo, X., Er, M.J., Mahmud, M., Wu, T.: YOLOv5s-CA: a modified YOLOv5s network with coordinate attention for underwater target detection. Sensors 23(7), 3367 (2023)CrossRef
29.
go back to reference Malathi, V., Manikandan, A., Krishnan, K.: Optimzied resnet model of convolutional neural network for under sea water object detection and classification. Multimedia Tools Appl. 1–21 (2023) Malathi, V., Manikandan, A., Krishnan, K.: Optimzied resnet model of convolutional neural network for under sea water object detection and classification. Multimedia Tools Appl. 1–21 (2023)
30.
go back to reference Dinakaran, R., Zhang, L., Li, C.T., Bouridane, A., Jiang, R.: Robust and fair undersea target detection with automated underwater vehicles for biodiversity data collection. Remote Sens. 14(15), 3680 (2022)CrossRef Dinakaran, R., Zhang, L., Li, C.T., Bouridane, A., Jiang, R.: Robust and fair undersea target detection with automated underwater vehicles for biodiversity data collection. Remote Sens. 14(15), 3680 (2022)CrossRef
31.
go back to reference Dakhil, R.A., Khayeat, A.R.H.: Review on deep learning technique for underwater object detection (2022). arXiv preprint arXiv:2209.10151. Dakhil, R.A., Khayeat, A.R.H.: Review on deep learning technique for underwater object detection (2022). arXiv preprint arXiv:​2209.​10151.
Metadata
Title
A Certain Investigation on Undersea Water Image Object Detection and Classification Using Artificial Intelligence Algorithms
Authors
Kaipa Sandhya
Jayachandran Arumugam
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-0892-5_40