Skip to main content
Top
Published in: Wireless Networks 2/2018

31-08-2016

A channel reservation based cooperative multi-channel MAC protocol for the next generation WLAN

Authors: Bo Yang, Bo Li, Zhongjiang Yan, Mao Yang

Published in: Wireless Networks | Issue 2/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Recently, explosive growth of bandwidth demands has motivated many technological revolutions in the Wireless Local Area Networks (WLANs) such as the IEEE 802.11ax task group, which is established to enhance the throughput performance for the Next Generation WLANs (NGW) under high dense deployment scenarios. However, on the one hand, it is known that the Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) has become a generally accepted access mechanism in the WLANs, which is shown to bring about serious collisions when the stations (STAs) are relatively crowded. In this case, the channel access efficiency is definitively decreased and thus some frequency channel resources are eventually wasted. On the other hand, due to the inherent fading effect of wireless channel, network throughput of the NGW (i.e., 802.11ax) is further degraded by the existence of Low-Rate-Links (LRLs), where the available data transmission rate is relatively low. To resolve the above two technical issues, a distributed multi-channel MAC protocol, called CRC-MMAC, is proposed for the NGW. In the proposed CRC-MMAC, the concept of reserved-cooperative-link (RCL) is proposed and initiated under multi-channel environment, to fully exploit the potential of both channel reservation and cooperative relay. Accordingly, collisions in the network are effectively decreased using channel reservation as well as the data transmission rate of LRLs is significantly improved with cooperative relay. Furthermore, an analysis of the upper bound of saturation throughput gain is derived, which is validated by extensive simulations. Compared with the ‘Baseline’ scheme, i.e., the existing Dynamic Channel Assignment (DCA) protocol [1] using TXOP (Transmission Opportunity), the experiments results show that the saturation throughput of CRC-MMAC exceeds about \(140\,\%\), and the average packet delay is decreased by nearly \(60\,\%\).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
A detailed analysis about dependence of channel reservation and cooperative relay is presented in Sect. 3.
 
2
In the dense Wi-Fi environment, the available frequency spectrum of each node varies frequently due to the interferences from OBSS.
 
3
In this paper, ‘Serial-Coop’/‘SC’ and ‘Parallel-Coop’/‘PC’ are used to denote the serial cooperation and parallel cooperation strategies respectively.
 
4
The common data channels denote the data channels that are available for S, D and \(r_i\).
 
5
In this paper, a numerical-backoff algorithm is performed by each relay candidate, where the backoff unit is not slot but numerical value.
 
6
When \(K\rightarrow \infty \), any contending successful nodes have an available data channels, such that the control channel can be saturated.
 
7
By using the Bianchi’s Model [9], the channel contention successful probability of each slot of all of the networks nodes can be got, when each node’s traffic rate is saturated. Such that, the time length of the consecutive successful contention may be exponentially distributed. Therefore, the total nodes’ contending successful rate, i.e., the network’s packet arrival rate, is Poisson distributed.
 
8
Note that the cooperative relay is not being used, then the process of choosing optimal relay is not required and the overhead introduced by channel reservation is relatively small, which approximately leads to \(t_s^{m} \approx {t_s}\).
 
Literature
1.
go back to reference Wu, S. L., Lin, C. Y., Tseng, Y. C., & Sheu, J. P. (2000). A new multi-channel MAC protocol with on-demand channel assignment for multi-hop mobile ad hoc networks (pp. 232–237). In Algorithms and Networks (I-SPAN): Proceedings of the International Symposium on Parallel Architectures. Wu, S. L., Lin, C. Y., Tseng, Y. C., & Sheu, J. P. (2000). A new multi-channel MAC protocol with on-demand channel assignment for multi-hop mobile ad hoc networks (pp. 232–237). In Algorithms and Networks (I-SPAN): Proceedings of the International Symposium on Parallel Architectures.
4.
go back to reference IEEE 802.11 Wireless LANs: Proposed TGax draft specification. IEEE 802.11-16/0024r1 (March, 2016). IEEE 802.11 Wireless LANs: Proposed TGax draft specification. IEEE 802.11-16/0024r1 (March, 2016).
5.
go back to reference Li, B., Qu, Q., Yan, Z., & Yang, M. (2015). Survey on OFDMA based MAC protocols for the next generation WLAN. Wireless Communications and Networking Conference Workshops (WCNCW), IEEE, pp. 131–135. Li, B., Qu, Q., Yan, Z., & Yang, M. (2015). Survey on OFDMA based MAC protocols for the next generation WLAN. Wireless Communications and Networking Conference Workshops (WCNCW), IEEE, pp. 131–135.
6.
go back to reference Deng D. J., Chen, K. C. & Cheng, R. S. (2014). IEEE 802.11 ax: Next generation wireless local area networks. In 10th International Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness (QShine), Aug 2014, pp. 77-82. Deng D. J., Chen, K. C. & Cheng, R. S. (2014). IEEE 802.11 ax: Next generation wireless local area networks. In 10th International Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness (QShine), Aug 2014, pp. 77-82.
8.
go back to reference Reigadas, J. S., Martinez-Fernandez, A. et al. (2010). Modeling and optimizing ieee 802.11 dcf for long-distance-links. In IEEE Transactions on, Mobile Computing, pp. 881–896 (2010). Reigadas, J. S., Martinez-Fernandez, A. et al. (2010). Modeling and optimizing ieee 802.11 dcf for long-distance-links. In IEEE Transactions on, Mobile Computing, pp. 881–896 (2010).
9.
go back to reference Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3), 535–547.MathSciNetCrossRef Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3), 535–547.MathSciNetCrossRef
10.
go back to reference Lin, C., & Gerla, M. (1997). Asynchronous multimedia multihop wireless networks. In INFOCOM’97, 16th Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings IEEE). Lin, C., & Gerla, M. (1997). Asynchronous multimedia multihop wireless networks. In INFOCOM’97, 16th Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings IEEE).
11.
go back to reference Li, B., Li, W., & Valois, F. (2010). Performance analysis of an efficient MAC protocol with multiple-step distributed in-band channel reservation. IEEE Transactions on Vehicular Technology, 59, 368–382.CrossRef Li, B., Li, W., & Valois, F. (2010). Performance analysis of an efficient MAC protocol with multiple-step distributed in-band channel reservation. IEEE Transactions on Vehicular Technology, 59, 368–382.CrossRef
12.
go back to reference IEEE 802.11, Proposed 802.11ax documents: 11-14-0980-12-00ax-simulation-scenarios (Nov. 2014). IEEE 802.11, Proposed 802.11ax documents: 11-14-0980-12-00ax-simulation-scenarios (Nov. 2014).
13.
go back to reference IEEE 802.11, Proposed 802.11ax documents: IEEE 802.11-15/0826r2 (Sep. 2015). IEEE 802.11, Proposed 802.11ax documents: IEEE 802.11-15/0826r2 (Sep. 2015).
14.
go back to reference Liu, P., Tao, Z., et al. (2007). CoopMAC: A cooperative MAC for wireless LANs. IEEE Journal on Selected Areas in Communications, 25, 340–354.CrossRef Liu, P., Tao, Z., et al. (2007). CoopMAC: A cooperative MAC for wireless LANs. IEEE Journal on Selected Areas in Communications, 25, 340–354.CrossRef
15.
go back to reference Liu, K. J. R., Sadek, A. K., Su, W., & Kwasinski, A. (2009). Cooperative Communications and Networking. Cambridge: Cambridge University Press.MATH Liu, K. J. R., Sadek, A. K., Su, W., & Kwasinski, A. (2009). Cooperative Communications and Networking. Cambridge: Cambridge University Press.MATH
16.
go back to reference Bellalta, B. (2016). IEEE 802.11ax: High-efficiency WLANs. IEEE Wireless Communications, 23(1), 38–46.CrossRef Bellalta, B. (2016). IEEE 802.11ax: High-efficiency WLANs. IEEE Wireless Communications, 23(1), 38–46.CrossRef
17.
go back to reference Qu, Q., Li, B., Yang, M., & Yan, Z (2015). An OFDMA based concurrent multiuser MAC for upcoming IEEE 802.11ax. In: Wireless communications and networking conference workshops (WCNCW), IEEE, pp. 136–141. Qu, Q., Li, B., Yang, M., & Yan, Z (2015). An OFDMA based concurrent multiuser MAC for upcoming IEEE 802.11ax. In: Wireless communications and networking conference workshops (WCNCW), IEEE, pp. 136–141.
18.
go back to reference Zhou, H., Li, B., Yan, Z., & Yang, M. (2016). A channel bonding based QoS-aware OFDMA MAC protocol for the next generation WLAN. Mobile Networks and Applications, pp. 1–11. Zhou, H., Li, B., Yan, Z., & Yang, M. (2016). A channel bonding based QoS-aware OFDMA MAC protocol for the next generation WLAN. Mobile Networks and Applications, pp. 1–11.
19.
go back to reference Collotta, M., Tirrito, S., Ferrero, R., Rebaudengo, M. (2015). An innovative parallel fuzzy scheme for low-power consumption in IEEE 802.11 devices. In IEEE 13th International Conference on, Industrial Informatics (INDIN), pp. 908–913 (2015). Collotta, M., Tirrito, S., Ferrero, R., Rebaudengo, M. (2015). An innovative parallel fuzzy scheme for low-power consumption in IEEE 802.11 devices. In IEEE 13th International Conference on, Industrial Informatics (INDIN), pp. 908–913 (2015).
20.
go back to reference Pau, G. (2015). A solution for power consumption costs of WLANS in enterprises. The Journal of Internet Banking and Commerce. Pau, G. (2015). A solution for power consumption costs of WLANS in enterprises. The Journal of Internet Banking and Commerce.
21.
go back to reference Chen, Y. S., Deng, D. J., & Teng, C. C. (2016). Range-based localization algorithm for next generation wireless networks using radical centers. IEEE Access, 4, 2139–2153.CrossRef Chen, Y. S., Deng, D. J., & Teng, C. C. (2016). Range-based localization algorithm for next generation wireless networks using radical centers. IEEE Access, 4, 2139–2153.CrossRef
22.
go back to reference Dang, D. N. M., Hong, C. S., & Lee, S. (2015). A hybrid multi-channel MAC protocol for wireless ad hoc networks. Wireless Networks, 21(2), 387–404.CrossRef Dang, D. N. M., Hong, C. S., & Lee, S. (2015). A hybrid multi-channel MAC protocol for wireless ad hoc networks. Wireless Networks, 21(2), 387–404.CrossRef
23.
go back to reference Natkaniec, M., Kosek-Szott, K., Szott, S., et al. (2013). A survey of medium access mechanisms for providing QoS in ad-hoc networks. Communications Surveys and Tutorials, IEEE, 15(2), 592–620.CrossRef Natkaniec, M., Kosek-Szott, K., Szott, S., et al. (2013). A survey of medium access mechanisms for providing QoS in ad-hoc networks. Communications Surveys and Tutorials, IEEE, 15(2), 592–620.CrossRef
24.
go back to reference Choi, J., Yoo, J., Choi, S., et al. (2005). EBA: An enhancement of the IEEE 802.11 DCF via distributed reservation. IEEE Transactions on Mobile Computing, 4(4), 378–390.CrossRef Choi, J., Yoo, J., Choi, S., et al. (2005). EBA: An enhancement of the IEEE 802.11 DCF via distributed reservation. IEEE Transactions on Mobile Computing, 4(4), 378–390.CrossRef
25.
go back to reference Yang, B., Li, B., Qu, Q., & Yan, Z. (2014). A new multi-channel MAC protocol based on Multi-step Channel Reservation. In IEEE International Conference on,Signal Processing, Communications and Computing (ICSPCC), pp. 603–607 (2014). Yang, B., Li, B., Qu, Q., & Yan, Z. (2014). A new multi-channel MAC protocol based on Multi-step Channel Reservation. In IEEE International Conference on,Signal Processing, Communications and Computing (ICSPCC), pp. 603–607 (2014).
26.
go back to reference Guo, T., & Carrasco, R. (2009). CRBAR: Cooperative relay-based auto rate MAC for multirate wireless networks. IEEE Transactions on: Wireless Communications, pp. 5938–5947 Guo, T., & Carrasco, R. (2009). CRBAR: Cooperative relay-based auto rate MAC for multirate wireless networks. IEEE Transactions on: Wireless Communications, pp. 5938–5947
27.
go back to reference IEEE 802.11, Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. IEEE 802.11 Std. (Mar. 2012). IEEE 802.11, Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. IEEE 802.11 Std. (Mar. 2012).
28.
go back to reference Liu, Y., Wang, X., & Zhang, H. (2011). An asynchronous multi-channel mac protocol for cooperative networks. In 73rd IEEE, Vehicular Technology Conference (VTC Spring), pp. 1–5 . Liu, Y., Wang, X., & Zhang, H. (2011). An asynchronous multi-channel mac protocol for cooperative networks. In 73rd IEEE, Vehicular Technology Conference (VTC Spring), pp. 1–5 .
29.
go back to reference Wong, D. T. C., Zheng, S. et al. (2011). A multi-channel cooperative MAC. In Vehicular Technology Conference (VTC Spring), 73rd. IEEE, pp. 1–5. Wong, D. T. C., Zheng, S. et al. (2011). A multi-channel cooperative MAC. In Vehicular Technology Conference (VTC Spring), 73rd. IEEE, pp. 1–5.
30.
go back to reference Shila, D. M., Anjali, T., & Cheng, Y. (2010). A cooperative multi-channel MAC protocol for wireless networks. In Global Telecommunications Conference (GLOBECOM), pp. 1–5. Shila, D. M., Anjali, T., & Cheng, Y. (2010). A cooperative multi-channel MAC protocol for wireless networks. In Global Telecommunications Conference (GLOBECOM), pp. 1–5.
31.
go back to reference So, J., Vaidya, N. (2004). Multi-channel MAC for ad hoc networks: handling multi-channel hidden terminals using a single transceiver. In Proceedings of MobiHoc, pp. 222–233. So, J., Vaidya, N. (2004). Multi-channel MAC for ad hoc networks: handling multi-channel hidden terminals using a single transceiver. In Proceedings of MobiHoc, pp. 222–233.
32.
go back to reference Goldsmith, Andrea. (2005). Wireless communications. Cambridge: Cambridge University Press.CrossRef Goldsmith, Andrea. (2005). Wireless communications. Cambridge: Cambridge University Press.CrossRef
33.
go back to reference Kim, T. S., Lim, H., & Hou, J. C. (2008). Understanding and improving the spatial reuse in multihop wireless networks. IEEE Transactions on Mobile Computing, 7(10), 1200–1212.CrossRef Kim, T. S., Lim, H., & Hou, J. C. (2008). Understanding and improving the spatial reuse in multihop wireless networks. IEEE Transactions on Mobile Computing, 7(10), 1200–1212.CrossRef
34.
go back to reference Branquinho, O. C., Reggiani, N., Corra, C. E., et al. (2005). WLAN 802.11 MAC anomaly mitigation using SNR to control backoff contention window. In International Conference on, Microwave and Optoelectronics, SBMO/IEEE MTT-S, pp. 590–593. Branquinho, O. C., Reggiani, N., Corra, C. E., et al. (2005). WLAN 802.11 MAC anomaly mitigation using SNR to control backoff contention window. In International Conference on, Microwave and Optoelectronics, SBMO/IEEE MTT-S, pp. 590–593.
35.
go back to reference Kwon, H., Kim, S., & Lee, B. G. (2010). Opportunistic multi-channel CSMA protocol for OFDMA systems. IEEE Transactions on Wireless Communications, 9, 1552–1557.CrossRef Kwon, H., Kim, S., & Lee, B. G. (2010). Opportunistic multi-channel CSMA protocol for OFDMA systems. IEEE Transactions on Wireless Communications, 9, 1552–1557.CrossRef
36.
go back to reference Kao, H. H., Wu, P. J., & Lee, C. N. (2011). Analysis and enhancement of multi-channel MAC protocol for ad hoc networks. International Journal of Communication Systems, 24, 310–324.CrossRef Kao, H. H., Wu, P. J., & Lee, C. N. (2011). Analysis and enhancement of multi-channel MAC protocol for ad hoc networks. International Journal of Communication Systems, 24, 310–324.CrossRef
37.
go back to reference Zheng, Yu., Kejie, Lu, & Fang, D. W. (2006). Performance analysis of IEEE 802.11 DCF in imperfect channels. IEEE Transactions on Vehicular Technology, 55(5), 1648–1656.CrossRef Zheng, Yu., Kejie, Lu, & Fang, D. W. (2006). Performance analysis of IEEE 802.11 DCF in imperfect channels. IEEE Transactions on Vehicular Technology, 55(5), 1648–1656.CrossRef
38.
go back to reference Ross, S. M. (2010). Introduction to Probability Models (10th ed.). New York: Academic Press.MATH Ross, S. M. (2010). Introduction to Probability Models (10th ed.). New York: Academic Press.MATH
39.
go back to reference Luo, Tie, & Motani, M. (2009). Cooperative asynchronous multichannel MAC: design, analysis, and implementation. IEEE Transaction of the Mobile Computing, 8, 338–352.CrossRef Luo, Tie, & Motani, M. (2009). Cooperative asynchronous multichannel MAC: design, analysis, and implementation. IEEE Transaction of the Mobile Computing, 8, 338–352.CrossRef
40.
go back to reference Florea, A., & Yanikomeroglu, H. (2005). On the optimal number of hops in infrastructure-based fixed relay networks. Global Telecommunications Conference (GLOBECOM), 6, 3247. Florea, A., & Yanikomeroglu, H. (2005). On the optimal number of hops in infrastructure-based fixed relay networks. Global Telecommunications Conference (GLOBECOM), 6, 3247.
Metadata
Title
A channel reservation based cooperative multi-channel MAC protocol for the next generation WLAN
Authors
Bo Yang
Bo Li
Zhongjiang Yan
Mao Yang
Publication date
31-08-2016
Publisher
Springer US
Published in
Wireless Networks / Issue 2/2018
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-016-1355-3

Other articles of this Issue 2/2018

Wireless Networks 2/2018 Go to the issue