Skip to main content
Top

Hint

Swipe to navigate through the articles of this issue

14-08-2023

A CNN-LSTM-Based Hybrid Deep Learning Approach for Sentiment Analysis on Monkeypox Tweets

Authors: Krishna Kumar Mohbey, Gaurav Meena, Sunil Kumar, K. Lokesh

Published in: New Generation Computing

Log in

Abstract

The research on sentiment analysis has shown a great deal of utility in the field of public health, specifically in the investigation of infectious illnesses. As the world begins to recuperate from the devastating effects of the COVID-19 pandemic, there is a growing concern that a different pandemic, known as Monkeypox, may strike the world once more. The contagious illness known as Monkeypox has been documented in over 73 countries worldwide. This unexpected epidemic has become a significant cause of anxiety for many people and health authorities. Various social media platforms have presented various perspectives regarding the monkeypox epidemic. Our goal is to research how the public feels about the recent Monkeypox epidemic to assist policymakers in developing a deeper comprehension of how the public views the illness. This research uses a CNN-LSTM-based hybrid architecture to ascertain people's feelings regarding Monkeypox disease. A series of experiments were conducted on an open-access dataset of tweets related to the Monkeypox. The tweets undergo various pre-processing, global vectorization, and one-hot encoding techniques. According to the findings of our experiments, the hybrid model provided better accuracy, which was approximately 91%. In addition, the findings are validated by contrasting them with more conventional machine learning techniques. The outcomes of this investigation contribute to a general population that has a greater awareness of the Monkeypox infection.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Golbeck, J., Robles, C., Edmondson, M., Turner, K.: Predicting personality from twitter. In: 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third International Conference on Social Computing. IEEE; 2011, p. 149–156. Golbeck, J., Robles, C., Edmondson, M., Turner, K.: Predicting personality from twitter. In: 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third International Conference on Social Computing. IEEE; 2011, p. 149–156.
2.
go back to reference Quercia, D., Kosinski, M., Stillwell, D., Crowcroft, J.: Our twitter profiles, our selves: Predicting personality with twitter. In: 2011 IEEE third international conference on privacy, security, risk and trust and 2011 IEEE third international conference on social computing. IEEE; 2011, p. 180–185 Quercia, D., Kosinski, M., Stillwell, D., Crowcroft, J.: Our twitter profiles, our selves: Predicting personality with twitter. In: 2011 IEEE third international conference on privacy, security, risk and trust and 2011 IEEE third international conference on social computing. IEEE; 2011, p. 180–185
3.
go back to reference Lokesh, S., Kumar, P.M., Devi, M.R., Parthasarathy, P., Gokulnath, C.: An automatic tamilspeech recognition system by using bidirectional recurrent neural network with self-organizing map. Neural Comput. Appl. 31(5), 1521–1531 (2019) CrossRef Lokesh, S., Kumar, P.M., Devi, M.R., Parthasarathy, P., Gokulnath, C.: An automatic tamilspeech recognition system by using bidirectional recurrent neural network with self-organizing map. Neural Comput. Appl. 31(5), 1521–1531 (2019) CrossRef
5.
go back to reference Mondal, A., Mahata, S., Dey, M., Das, D.: Classification of COVID19 tweets using machine learning approaches. In: Proceedings of the Sixth SocialMediaMining for Health (# SMM4H) Workshop and Shared Task. Mexico City, 2021; p. 135–7. Mondal, A., Mahata, S., Dey, M., Das, D.: Classification of COVID19 tweets using machine learning approaches. In: Proceedings of the Sixth SocialMediaMining for Health (# SMM4H) Workshop and Shared Task. Mexico City, 2021; p. 135–7.
6.
go back to reference Ashok Kumar P., Shankar, G.S., Gautham, S., Reddy, M.P.K., Reddy, G.T.: A two-stage text feature selection algorithm for improving text classification. In: ACM Trans Asian Low-Resour Lang Inf Process. New York, NY: Association for Computing Machinery, 2021;. p. 19. https://​doi.​org/​10.​1145/​3425781. Ashok Kumar P., Shankar, G.S., Gautham, S., Reddy, M.P.K., Reddy, G.T.: A two-stage text feature selection algorithm for improving text classification. In: ACM Trans Asian Low-Resour Lang Inf Process. New York, NY: Association for Computing Machinery, 2021;. p. 19. https://​doi.​org/​10.​1145/​3425781.
8.
go back to reference Yang, L., Zhang, H., Li, D., Xiao, F., Yang, S.: Facial expression recognition based on transfer learning and SVM. J. Phys. Conf. Ser. 2025(1), 012015 (2021) CrossRef Yang, L., Zhang, H., Li, D., Xiao, F., Yang, S.: Facial expression recognition based on transfer learning and SVM. J. Phys. Conf. Ser. 2025(1), 012015 (2021) CrossRef
14.
go back to reference Kuvvetli, Y., Deveci, M., Paksoy, T., Garg, H.: A predictive analytics model for COVID-19 pandemic using artificial neural networks. Decis. Anal. J. 1, 100007 (2021) CrossRef Kuvvetli, Y., Deveci, M., Paksoy, T., Garg, H.: A predictive analytics model for COVID-19 pandemic using artificial neural networks. Decis. Anal. J. 1, 100007 (2021) CrossRef
15.
go back to reference Wang, J., Wang, M.: Review of the emotional feature extraction and classification using EEG signals. Cognit. Robot. 1, 29–40 (2021) CrossRef Wang, J., Wang, M.: Review of the emotional feature extraction and classification using EEG signals. Cognit. Robot. 1, 29–40 (2021) CrossRef
16.
go back to reference Cambria, E.: Affective computing and sentiment analysis. IEEE Intell. Syst. 31(2), 102–107 (2016) CrossRef Cambria, E.: Affective computing and sentiment analysis. IEEE Intell. Syst. 31(2), 102–107 (2016) CrossRef
17.
go back to reference Liu, X.-Q., Wu, Q.-L., Pan, W.-T.: Sentiment classification of micro-blog comments based on randomforest algorithm. Concurr. Comput. Pract. Exp. 31(10), e4746 (2019) CrossRef Liu, X.-Q., Wu, Q.-L., Pan, W.-T.: Sentiment classification of micro-blog comments based on randomforest algorithm. Concurr. Comput. Pract. Exp. 31(10), e4746 (2019) CrossRef
18.
go back to reference Hassan, A.; Mahmood, A.: Deep Learning approach for sentiment analysis of short texts. In: Proceedings of the 2017 3rd International Conference on Control, Automation and Robotics (ICCAR), Nagoya, Japan, 24–26 April 2017; pp. 705–710. Hassan, A.; Mahmood, A.: Deep Learning approach for sentiment analysis of short texts. In: Proceedings of the 2017 3rd International Conference on Control, Automation and Robotics (ICCAR), Nagoya, Japan, 24–26 April 2017; pp. 705–710.
19.
go back to reference Shen, Q.; Wang, Z.; Sun, Y. Sentiment Analysis of Movie Reviews Based on CNN-BLSTM. In: International Conference on Intelligence Science; Springer: Berlin/Heidelberg, Germany, 2017; pp. 164–171. Shen, Q.; Wang, Z.; Sun, Y. Sentiment Analysis of Movie Reviews Based on CNN-BLSTM. In: International Conference on Intelligence Science; Springer: Berlin/Heidelberg, Germany, 2017; pp. 164–171.
20.
go back to reference Meena, G., Mohbey, K.K., Indian, A.: Categorizing sentiment polarities in social networks data using convolutional neural network. SN Comput. Sci. 3(2), 116 (2022) CrossRef Meena, G., Mohbey, K.K., Indian, A.: Categorizing sentiment polarities in social networks data using convolutional neural network. SN Comput. Sci. 3(2), 116 (2022) CrossRef
21.
go back to reference Chhajer, P., Shah, M., Kshirsagar, A.: The applications of artificial neural networks, support vector machines, and long–short term memory for stock market prediction. Decis. Anal. J. 2, 100015 (2022) CrossRef Chhajer, P., Shah, M., Kshirsagar, A.: The applications of artificial neural networks, support vector machines, and long–short term memory for stock market prediction. Decis. Anal. J. 2, 100015 (2022) CrossRef
23.
24.
25.
go back to reference Thakur, N.: MonkeyPox2022Tweets: a large-scale Twitter dataset on the 2022 Monkeypox Outbreak, findings from analysis of tweets, and open research questions. Infect. Dis. Rep. 14(6), 855–883 (2022) CrossRef Thakur, N.: MonkeyPox2022Tweets: a large-scale Twitter dataset on the 2022 Monkeypox Outbreak, findings from analysis of tweets, and open research questions. Infect. Dis. Rep. 14(6), 855–883 (2022) CrossRef
26.
go back to reference Mohbey, K. K., Sharma, S., Kumar, S., & Sharma, M.: COVID-19 identification and analysis using CT scan images: deep transfer learning-based approach. In: Sudeep Tanwar (ed.) Blockchain Applications for Healthcare Informatics, pp. 447–470. Academic Press (2022) Mohbey, K. K., Sharma, S., Kumar, S., & Sharma, M.: COVID-19 identification and analysis using CT scan images: deep transfer learning-based approach. In: Sudeep Tanwar (ed.) Blockchain Applications for Healthcare Informatics, pp. 447–470. Academic Press (2022)
27.
go back to reference Xie, Y., Xing, F., Kong, X., Su, H., & Yang, L.: Beyond classification: structured regression for robust cell detection using convolutional neural network. In International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 358–365. Springer, Cham (2015) Xie, Y., Xing, F., Kong, X., Su, H., & Yang, L.: Beyond classification: structured regression for robust cell detection using convolutional neural network. In International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 358–365. Springer, Cham (2015)
28.
go back to reference Powers, D. M. (2020). Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv preprint arXiv:​2010.​16061. Powers, D. M. (2020). Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv preprint arXiv:​2010.​16061.
29.
go back to reference Mohbey, K.K.: Multi-class approach for user behavior prediction using deep learning framework on twitter election dataset. J. Data Inform. Manag. 2(1), 1–14 (2020) CrossRef Mohbey, K.K.: Multi-class approach for user behavior prediction using deep learning framework on twitter election dataset. J. Data Inform. Manag. 2(1), 1–14 (2020) CrossRef
30.
go back to reference Li, M., Ch’ng, E., Chong, A.Y.L., See, S.: Multi-class Twitter sentiment classification with emojis. Ind. Manag. Data Syst. 118(9), 1804–1820 (2018) CrossRef Li, M., Ch’ng, E., Chong, A.Y.L., See, S.: Multi-class Twitter sentiment classification with emojis. Ind. Manag. Data Syst. 118(9), 1804–1820 (2018) CrossRef
31.
go back to reference Malik, S., Jain, S.: Knowledge-infused text classification for the biomedical domain. Int. J. Inform. Syst. Model. Des. (IJISMD) 13(10), 1–15 (2022) CrossRef Malik, S., Jain, S.: Knowledge-infused text classification for the biomedical domain. Int. J. Inform. Syst. Model. Des. (IJISMD) 13(10), 1–15 (2022) CrossRef
32.
go back to reference Meena, G., Mohbey, K.K., Kumar, S., Lokesh, K.: A hybrid deep learning approach for detecting sentiment polarities and knowledge graph representation on monkeypox tweets. Decis. Anal. J. 7, 100243 (2023) CrossRef Meena, G., Mohbey, K.K., Kumar, S., Lokesh, K.: A hybrid deep learning approach for detecting sentiment polarities and knowledge graph representation on monkeypox tweets. Decis. Anal. J. 7, 100243 (2023) CrossRef
33.
go back to reference Gruenwald, L., Jain, S., Groppe, S. (eds.): Leveraging Artificial Intelligence in Global Epidemics. Academic Press (2021) Gruenwald, L., Jain, S., Groppe, S. (eds.): Leveraging Artificial Intelligence in Global Epidemics. Academic Press (2021)
34.
go back to reference Dash, S., Chakravarty, S., Mohanty, S.N., Pattanaik, C.R., Jain, S.: A deep learning method to forecast COVID-19 outbreak. New Gener. Comput. 39(3–4), 515–539 (2021) CrossRef Dash, S., Chakravarty, S., Mohanty, S.N., Pattanaik, C.R., Jain, S.: A deep learning method to forecast COVID-19 outbreak. New Gener. Comput. 39(3–4), 515–539 (2021) CrossRef
35.
go back to reference Hura, G.S., Groppe, S., Jain, S., Gruenwald, L.: Artificial intelligence in global epidemics, part 2. New Gener. Comput. 40, 935–939 (2022) CrossRef Hura, G.S., Groppe, S., Jain, S., Gruenwald, L.: Artificial intelligence in global epidemics, part 2. New Gener. Comput. 40, 935–939 (2022) CrossRef
36.
go back to reference Jahanbin, K., Jokar, M., Rahmanian, V.: Using twitter and web news mining to predict the monkeypox outbreak. Asian Pac. J. Trop. Med. 15(5), 236 (2022) CrossRef Jahanbin, K., Jokar, M., Rahmanian, V.: Using twitter and web news mining to predict the monkeypox outbreak. Asian Pac. J. Trop. Med. 15(5), 236 (2022) CrossRef
Metadata
Title
A CNN-LSTM-Based Hybrid Deep Learning Approach for Sentiment Analysis on Monkeypox Tweets
Authors
Krishna Kumar Mohbey
Gaurav Meena
Sunil Kumar
K. Lokesh
Publication date
14-08-2023
Publisher
Springer Japan
Published in
New Generation Computing
Print ISSN: 0288-3635
Electronic ISSN: 1882-7055
DOI
https://doi.org/10.1007/s00354-023-00227-0

Premium Partner