Skip to main content
Top
Published in:

01-08-2023 | Original Article

A CNN model for predicting soil properties using VIS–NIR spectral data

Authors: Mohammad Hosseinpour-Zarnaq, Mahmoud Omid, Fereydoon Sarmadian, Hassan Ghasemi-Mobtaker

Published in: Environmental Earth Sciences | Issue 16/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This research aims to develop a novel deep learning-based model for predicting soil properties based on visible and near-infrared (VIS–NIR) spectroscopic data. Soil samples were collected from the European topsoil dataset prepared by the LUCAS project provides various soil physicochemical properties analyzed within 28 EU countries (including sand, silt, clay, pH, organic carbon, calcium carbonates (CaCO3), and N). In this study, one-dimensional (1D) convolutional neural network (CNN) models were developed using absorbance spectral data. The performance of feature learning from discrete wavelet transforms as a powerful preprocessing method was tested. Moreover, the results of the proposed CNN model were compared with partial least squares regression (PLSR) with raw absorbance and optimum classical preprocessing (Savitzky–Golay smoothing with first-order derivative). The ratio of percent deviation (RPD) of CNN with absorbance data for prediction of soil OC, CaCO3, pH, N, sand, silt, and clay content were 4.02, 3.89, 2.82, 3.02, 1.63, 1.43, and 2.16, respectively. While the RPD of PLSR with optimal preprocessing of absorbance data for predicting the mentioned parameters were 2.89, 3.00, 2.79, 2.50, 1.37, 1.27, and 1.84, respectively. The study demonstrated the feasibility of using deep learning-based models and VIS–NIR spectral data as a rapid non-destructive tool for the assessment of important soil properties.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Maia AJ, da Silva YJ, do Nascimento CW, Veras G, Escobar ME, Cunha CS, da Silva YJ, Nascimento RC, de Souza Pereira LH (2020) Near-infrared spectroscopy for the prediction of rare earth elements in soils from the largest uranium-phosphate deposit in Brazil using PLS, iPLS, and iSPA-PLS models. Environ Monit Assess 192:1–14. https://doi.org/10.1007/s10661-020-08642-2CrossRef Maia AJ, da Silva YJ, do Nascimento CW, Veras G, Escobar ME, Cunha CS, da Silva YJ, Nascimento RC, de Souza Pereira LH (2020) Near-infrared spectroscopy for the prediction of rare earth elements in soils from the largest uranium-phosphate deposit in Brazil using PLS, iPLS, and iSPA-PLS models. Environ Monit Assess 192:1–14. https://​doi.​org/​10.​1007/​s10661-020-08642-2CrossRef
Metadata
Title
A CNN model for predicting soil properties using VIS–NIR spectral data
Authors
Mohammad Hosseinpour-Zarnaq
Mahmoud Omid
Fereydoon Sarmadian
Hassan Ghasemi-Mobtaker
Publication date
01-08-2023
Publisher
Springer Berlin Heidelberg
Published in
Environmental Earth Sciences / Issue 16/2023
Print ISSN: 1866-6280
Electronic ISSN: 1866-6299
DOI
https://doi.org/10.1007/s12665-023-11073-0