Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

13-06-2019 | Original Paper | Issue 4/2020

Numerical Algorithms 4/2020

A coercive heterogeneous media Helmholtz model: formulation, wavenumber-explicit analysis, and preconditioned high-order FEM

Journal:
Numerical Algorithms > Issue 4/2020
Authors:
M. Ganesh, C. Morgenstern
Important notes

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

We consider a frequency-domain heterogeneous wave propagation model governed by the Helmholtz partial differential equation (PDE) and an impedance boundary condition. The celebrated standard (H1) variational formulation of the model is non-coercive. It is an open problem to establish a coercive variational formulation of the heterogeneous model. The main focus of this article is on solving this continuous model formulation and analysis problem, and hence establishing an efficient preconditioned numerical algorithm for simulating our novel coercive variational formulation. We develop the variational formulation for the heterogeneous model (in a Hilbert space V equipped with a stronger norm than the H1-norm) and prove that the associated sesquilinear form is coercive, with a wavenumber-independent coercivity constant. We use this result to derive a wavenumber-independent bound for solutions of the heterogeneous media wave propagation model in the V -norm. Additionally, we prove continuity of the sesquilinear form, with a wavenumber-explicit continuity constant. Using our analysis-supported coercive formulation, we develop a high-order frequency robust-preconditioned finite element method (FEM)-based heterogeneous media discrete wave model. For demonstrating efficiency and convergence of the coercive high-order FEM model, we use non-convex media comprising curved and non-smooth boundaries and low- to high-frequency input incident waves. For the heterogeneous media, with size varying from tens to hundreds of wavelengths, we demonstrate that our new preconditioned-FEM model requires a very low number of GMRES iterations, and the number of iterations is independent of the wavenumber of the model. We also use a class of additive Schwarz domain decomposition (DD) algorithms to implement the preconditioned-FEM model. The DD-based high-order preconditioned-FEM results and comparisons further demonstrate efficiency of the coercive formulation to simulate wave propagation in heterogenous media.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 4/2020

Numerical Algorithms 4/2020 Go to the issue

Premium Partner

    Image Credits