Skip to main content
Top
Published in: Numerical Algorithms 4/2020

13-06-2019 | Original Paper

A coercive heterogeneous media Helmholtz model: formulation, wavenumber-explicit analysis, and preconditioned high-order FEM

Authors: M. Ganesh, C. Morgenstern

Published in: Numerical Algorithms | Issue 4/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We consider a frequency-domain heterogeneous wave propagation model governed by the Helmholtz partial differential equation (PDE) and an impedance boundary condition. The celebrated standard (H1) variational formulation of the model is non-coercive. It is an open problem to establish a coercive variational formulation of the heterogeneous model. The main focus of this article is on solving this continuous model formulation and analysis problem, and hence establishing an efficient preconditioned numerical algorithm for simulating our novel coercive variational formulation. We develop the variational formulation for the heterogeneous model (in a Hilbert space V equipped with a stronger norm than the H1-norm) and prove that the associated sesquilinear form is coercive, with a wavenumber-independent coercivity constant. We use this result to derive a wavenumber-independent bound for solutions of the heterogeneous media wave propagation model in the V -norm. Additionally, we prove continuity of the sesquilinear form, with a wavenumber-explicit continuity constant. Using our analysis-supported coercive formulation, we develop a high-order frequency robust-preconditioned finite element method (FEM)-based heterogeneous media discrete wave model. For demonstrating efficiency and convergence of the coercive high-order FEM model, we use non-convex media comprising curved and non-smooth boundaries and low- to high-frequency input incident waves. For the heterogeneous media, with size varying from tens to hundreds of wavelengths, we demonstrate that our new preconditioned-FEM model requires a very low number of GMRES iterations, and the number of iterations is independent of the wavenumber of the model. We also use a class of additive Schwarz domain decomposition (DD) algorithms to implement the preconditioned-FEM model. The DD-based high-order preconditioned-FEM results and comparisons further demonstrate efficiency of the coercive formulation to simulate wave propagation in heterogenous media.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Babuska, I.M., Sauter, S.A.: Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers?. SIAM J. Numer. Anal. 34 (6), 2392–2423 (1997)MathSciNetCrossRef Babuska, I.M., Sauter, S.A.: Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers?. SIAM J. Numer. Anal. 34 (6), 2392–2423 (1997)MathSciNetCrossRef
2.
go back to reference Barucq, H., Chaumont-Frelet, T., Gout, C.: Stability analysis of heterogeneous Helmholtz problems and finite element solution based on propagation media approximation. Math. Comp. 86, 21292157 (2017)MathSciNetMATH Barucq, H., Chaumont-Frelet, T., Gout, C.: Stability analysis of heterogeneous Helmholtz problems and finite element solution based on propagation media approximation. Math. Comp. 86, 21292157 (2017)MathSciNetMATH
3.
go back to reference Baskin, D., Spence, E.A., Wunsch, J.: Sharp high-frequency estimates for the Helmholtz equation and applications to boundary integral equations. SIAM J. Math. Anal. 48, 229–267 (2016)MathSciNetCrossRef Baskin, D., Spence, E.A., Wunsch, J.: Sharp high-frequency estimates for the Helmholtz equation and applications to boundary integral equations. SIAM J. Math. Anal. 48, 229–267 (2016)MathSciNetCrossRef
4.
go back to reference Bonazzoli, M., Dolean, V., Graham, I., Spence, E., Tournier, P.: Two-level preconditioners for the Helmholtz equation. In: Bjorstad, P., Brenner, S., Halpern, L., Kornhuber, R., Kim, H., Rahman, T., Widlund, O. (eds.) ‘Domain decomposition methods in science and engineering XXIV’, vol. 125, Lecture notes in computational science and engineering, pp 139–147. Springer (2018) Bonazzoli, M., Dolean, V., Graham, I., Spence, E., Tournier, P.: Two-level preconditioners for the Helmholtz equation. In: Bjorstad, P., Brenner, S., Halpern, L., Kornhuber, R., Kim, H., Rahman, T., Widlund, O. (eds.) ‘Domain decomposition methods in science and engineering XXIV’, vol. 125, Lecture notes in computational science and engineering, pp 139–147. Springer (2018)
5.
go back to reference Brown, D.L., Gallistl, D., Peterseim D: Multiscale Petrov-Galerkin method for high-frequency heterogeneous Helmholtz equations. In: Meshfree methods for partial differential equations, vol. VIII, pp. 85–115 (2017) Brown, D.L., Gallistl, D., Peterseim D: Multiscale Petrov-Galerkin method for high-frequency heterogeneous Helmholtz equations. In: Meshfree methods for partial differential equations, vol. VIII, pp. 85–115 (2017)
6.
go back to reference Chaumont-Frelet, T: On high order methods for the heterogeneous Helmholtz equation. Comput. Math. Appl. 72, 22032225 (2016)MathSciNetCrossRef Chaumont-Frelet, T: On high order methods for the heterogeneous Helmholtz equation. Comput. Math. Appl. 72, 22032225 (2016)MathSciNetCrossRef
7.
go back to reference Cocquet, P. -H., Gander, M.J.: On the minimal shift in the shifted Laplacian preconditioner for multigrid to work (2015) Cocquet, P. -H., Gander, M.J.: On the minimal shift in the shifted Laplacian preconditioner for multigrid to work (2015)
8.
go back to reference Cocquet, P. -H., Gander, M.J.: On the minimal shift in the shifted Laplacian preconditioner for multigrid to work. In: ‘Domain decomposition methods in science and engineering XXII’. Springer, pp. 137–145 (2016) Cocquet, P. -H., Gander, M.J.: On the minimal shift in the shifted Laplacian preconditioner for multigrid to work. In: ‘Domain decomposition methods in science and engineering XXII’. Springer, pp. 137–145 (2016)
9.
go back to reference Cocquet, P. -H., Gander, M.J.: How large a shift is needed in the shifted Helmholtz preconditioner for its effective inversion by multigrid?. SIAM J. Sci. Comput. 39, A438–A478 (2017)MathSciNetCrossRef Cocquet, P. -H., Gander, M.J.: How large a shift is needed in the shifted Helmholtz preconditioner for its effective inversion by multigrid?. SIAM J. Sci. Comput. 39, A438–A478 (2017)MathSciNetCrossRef
10.
go back to reference Colton, D., Kress, R.: Inverse acoustic and electromagnetic scattering theory. Springer, Berlin (1998)CrossRef Colton, D., Kress, R.: Inverse acoustic and electromagnetic scattering theory. Springer, Berlin (1998)CrossRef
11.
go back to reference Cools, S., Vanroose, W: Local Fourier analysis of the complex shifted Laplacian preconditioner for Helmholtz problems. Numerical Linear Algebra with Applications 20(4), 575–597 (2013)MathSciNetCrossRef Cools, S., Vanroose, W: Local Fourier analysis of the complex shifted Laplacian preconditioner for Helmholtz problems. Numerical Linear Algebra with Applications 20(4), 575–597 (2013)MathSciNetCrossRef
12.
go back to reference Cottrell, J.A., Hughes, T.R., Bazilevs, Y.: Isogeometric analysis: toward integration of CAD and FEA. Wiley, New York (2009)CrossRef Cottrell, J.A., Hughes, T.R., Bazilevs, Y.: Isogeometric analysis: toward integration of CAD and FEA. Wiley, New York (2009)CrossRef
13.
go back to reference Cummings, P., Feng, X.: Sharp regularity coefficient estimates for complex-valued acoustic and elastic Helmholtz equations. Math. Models Methods Appl. Sci. 16, 139160 (2006)MathSciNetCrossRef Cummings, P., Feng, X.: Sharp regularity coefficient estimates for complex-valued acoustic and elastic Helmholtz equations. Math. Models Methods Appl. Sci. 16, 139160 (2006)MathSciNetCrossRef
14.
go back to reference Diwan, G.C., Moiola, A., Spence, E.A.: Can coercive formulations lead to fast and accurate solution of the Helmholtz equation?. J. Comput. Appl. Math. 352, 110131 (2019)MathSciNetCrossRef Diwan, G.C., Moiola, A., Spence, E.A.: Can coercive formulations lead to fast and accurate solution of the Helmholtz equation?. J. Comput. Appl. Math. 352, 110131 (2019)MathSciNetCrossRef
15.
go back to reference Egorov, Y.V., Shubin, M.A.: Partial differential equations. Springer, Berlin (1993) Egorov, Y.V., Shubin, M.A.: Partial differential equations. Springer, Berlin (1993)
16.
go back to reference Erlangga, Y., Oosterlee, C., Vuik, C.: A novel multigrid based preconditioner for heterogeneous Helmholtz problems. SIAM J. Sci. Comput. 27, 1471–1492 (2006)MathSciNetCrossRef Erlangga, Y., Oosterlee, C., Vuik, C.: A novel multigrid based preconditioner for heterogeneous Helmholtz problems. SIAM J. Sci. Comput. 27, 1471–1492 (2006)MathSciNetCrossRef
17.
go back to reference Erlangga, Y., Vuik, C., Oosterlee, C.: A novel multigrid based preconditioner for heterogeneous Helmholtz problems. Appl. Numer. Math. 50, 409425 (2004)CrossRef Erlangga, Y., Vuik, C., Oosterlee, C.: A novel multigrid based preconditioner for heterogeneous Helmholtz problems. Appl. Numer. Math. 50, 409425 (2004)CrossRef
18.
go back to reference Esterhazy, S., Melenk, J.: On stability of discretizations of the Helmholtz equation. In: Graham, I., Hou, T., Lakkis, O., Scheichl, R. (eds.) ‘Numerical analysis of multiscale problems’, vol. 83, Lecture notes in computational science and engineering, pp 285–324. Springer (2012) Esterhazy, S., Melenk, J.: On stability of discretizations of the Helmholtz equation. In: Graham, I., Hou, T., Lakkis, O., Scheichl, R. (eds.) ‘Numerical analysis of multiscale problems’, vol. 83, Lecture notes in computational science and engineering, pp 285–324. Springer (2012)
19.
go back to reference Gander, M., Graham, I.G., Spence, E.: Applying GMRES to the Helmholtz equation with shifted Laplacian preconditioning: what is the largest shift for which wavenumber-independent convergence is guaranteed?. Numer. Math. 131, 567–614 (2015)MathSciNetCrossRef Gander, M., Graham, I.G., Spence, E.: Applying GMRES to the Helmholtz equation with shifted Laplacian preconditioning: what is the largest shift for which wavenumber-independent convergence is guaranteed?. Numer. Math. 131, 567–614 (2015)MathSciNetCrossRef
20.
go back to reference Gander, M., Zhang, H.: Iterative solvers for the Helmholtz equation: factorization, sweeping preconditioners, source transfer, single layer potentials, polarized traces, and optimized Schwarz methods, SIAM Rev. pp. 3–76 (2019) Gander, M., Zhang, H.: Iterative solvers for the Helmholtz equation: factorization, sweeping preconditioners, source transfer, single layer potentials, polarized traces, and optimized Schwarz methods, SIAM Rev. pp. 3–76 (2019)
21.
go back to reference Ganesh, M., Morgenstern, C: High-order FEM-BEM computer models for wave propagation in unbounded and heterogeneous media: application to time-harmonic acoustic horn problem. J. Comp. Appl. Math. 37, 183–203 (2016)MathSciNetCrossRef Ganesh, M., Morgenstern, C: High-order FEM-BEM computer models for wave propagation in unbounded and heterogeneous media: application to time-harmonic acoustic horn problem. J. Comp. Appl. Math. 37, 183–203 (2016)MathSciNetCrossRef
22.
go back to reference Ganesh, M., Morgenstern, C.: An efficient multigrid algorithm for heterogeneous acoustic media sign-indefinite high-order FEM models, Numer. Linear Algebra Appl. p. e2049 (2017) Ganesh, M., Morgenstern, C.: An efficient multigrid algorithm for heterogeneous acoustic media sign-indefinite high-order FEM models, Numer. Linear Algebra Appl. p. e2049 (2017)
23.
go back to reference Ganesh, M., Morgenstern, C.: A sign-definite preconditioned high-order FEM part-I: formulation and simulation for bounded homogeneous media wave propagation. SIAM J Sci. Comput. 39, S563–S586 (2017)MathSciNetCrossRef Ganesh, M., Morgenstern, C.: A sign-definite preconditioned high-order FEM part-I: formulation and simulation for bounded homogeneous media wave propagation. SIAM J Sci. Comput. 39, S563–S586 (2017)MathSciNetCrossRef
24.
go back to reference Ganesh, M., Morgenstern, C.: High-order FEM domain decomposition sign-indefinite models for high-frequency wave propagation in heterogeneous media. Comp. Math. Appl. (CAMWA) 75, 1961–1972 (2018)CrossRef Ganesh, M., Morgenstern, C.: High-order FEM domain decomposition sign-indefinite models for high-frequency wave propagation in heterogeneous media. Comp. Math. Appl. (CAMWA) 75, 1961–1972 (2018)CrossRef
25.
go back to reference Graham, I.G., Pembery, O.R., Spence, E.A.: The Helmholtz equation in heterogeneous media: a priori bounds, well-posedness, and resonances, J. Diff. Eqns., pp. 2869–2923 (2019) Graham, I.G., Pembery, O.R., Spence, E.A.: The Helmholtz equation in heterogeneous media: a priori bounds, well-posedness, and resonances, J. Diff. Eqns., pp. 2869–2923 (2019)
26.
go back to reference Graham, I.G., Sauter, S.: Stability and finite element error analysis for the Helmholtz equation with variable coefficients. Math. Comput. arXiv:1803.00966 (2019), to appear Graham, I.G., Sauter, S.: Stability and finite element error analysis for the Helmholtz equation with variable coefficients. Math. Comput. arXiv:1803.​00966 (2019), to appear
27.
go back to reference Graham, I.G., Spence, E., Vainikko, E.: Domain decomposition preconditioning for high-frequency Helmholtz problems using absorption. Math. Comp. 86, 2089–2127 (2017)MathSciNetCrossRef Graham, I.G., Spence, E., Vainikko, E.: Domain decomposition preconditioning for high-frequency Helmholtz problems using absorption. Math. Comp. 86, 2089–2127 (2017)MathSciNetCrossRef
28.
29.
go back to reference Höllig, K: Finite element methods with B-Splines number 26 in. ‘Frontiers in Applied Mathematics’, SIAM, Philadelphia (2003) Höllig, K: Finite element methods with B-Splines number 26 in. ‘Frontiers in Applied Mathematics’, SIAM, Philadelphia (2003)
30.
go back to reference Ihlenburg, F., Babuska, I.: Finite element solution of the Helmholtz equation with high wave number part II: The h-p version of the fem. SIAM J. Numer. Anal. 34(1), 315–358 (1997)MathSciNetCrossRef Ihlenburg, F., Babuska, I.: Finite element solution of the Helmholtz equation with high wave number part II: The h-p version of the fem. SIAM J. Numer. Anal. 34(1), 315–358 (1997)MathSciNetCrossRef
31.
go back to reference McLean, W.: Strongly elliptic systems and boundary integral equations. Cambridge University Press, Cambridge (2000)MATH McLean, W.: Strongly elliptic systems and boundary integral equations. Cambridge University Press, Cambridge (2000)MATH
32.
go back to reference Melenk, J.: On generalized finite element methods, PhD thesis (1995) Melenk, J.: On generalized finite element methods, PhD thesis (1995)
33.
go back to reference Melenk, J.M., Sauter, S.: Wavenumber explicit convergence analysis for Galerkin discretizations of the Helmholtz equation. SIAM J. Numerical Analysis 49, 1210–1243 (2011)MathSciNetCrossRef Melenk, J.M., Sauter, S.: Wavenumber explicit convergence analysis for Galerkin discretizations of the Helmholtz equation. SIAM J. Numerical Analysis 49, 1210–1243 (2011)MathSciNetCrossRef
34.
go back to reference Melenk, J., Sauter, S.: Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions. Math. Comput. 79, 1871–1914 (2010)MathSciNetCrossRef Melenk, J., Sauter, S.: Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions. Math. Comput. 79, 1871–1914 (2010)MathSciNetCrossRef
35.
36.
go back to reference Moiola, A., Spence, E.: Acoustic transmission problems: wavenumber-explicit bounds and resonance-free regions. M3As 39, 317–354 (2019)MathSciNetMATH Moiola, A., Spence, E.: Acoustic transmission problems: wavenumber-explicit bounds and resonance-free regions. M3As 39, 317–354 (2019)MathSciNetMATH
37.
38.
go back to reference Ohlberger, M., Verfurth, B.: A new heterogeneous multiscale method for the Helmholtz equation with high contrast. Multiscale Model Simul. 16, 385411 (2018)MathSciNetCrossRef Ohlberger, M., Verfurth, B.: A new heterogeneous multiscale method for the Helmholtz equation with high contrast. Multiscale Model Simul. 16, 385411 (2018)MathSciNetCrossRef
39.
go back to reference Sauter, S., Torres, C.: Stability estimate for the Helmholtz equation with rapidly jumping coefficients. arXiv:1711.05430 (2017) Sauter, S., Torres, C.: Stability estimate for the Helmholtz equation with rapidly jumping coefficients. arXiv:1711.​05430 (2017)
40.
go back to reference Sheikh, A., Lahaye, D.C.: Vuik On the convergence of shifted laplace preconditioner combined with multilevel deflation. Numerical Linear Algebra with Applications 20(4), 645–662 (2013)MathSciNetCrossRef Sheikh, A., Lahaye, D.C.: Vuik On the convergence of shifted laplace preconditioner combined with multilevel deflation. Numerical Linear Algebra with Applications 20(4), 645–662 (2013)MathSciNetCrossRef
41.
go back to reference Spence, E: Wavenumber-explicit bounds in time-harmonic acoustic scattering. SIAM J. Math. Anal. 46, 2987–3024 (2014)MathSciNetCrossRef Spence, E: Wavenumber-explicit bounds in time-harmonic acoustic scattering. SIAM J. Math. Anal. 46, 2987–3024 (2014)MathSciNetCrossRef
42.
go back to reference Zhu, L.H.: Pre-asymptotic error analysis of CIP-FEM and FEM for Helmholtz equation with high wave number. part II: h-p version. SIAM J. Numer. Anal. 51, 1828–1852 (2012)CrossRef Zhu, L.H.: Pre-asymptotic error analysis of CIP-FEM and FEM for Helmholtz equation with high wave number. part II: h-p version. SIAM J. Numer. Anal. 51, 1828–1852 (2012)CrossRef
Metadata
Title
A coercive heterogeneous media Helmholtz model: formulation, wavenumber-explicit analysis, and preconditioned high-order FEM
Authors
M. Ganesh
C. Morgenstern
Publication date
13-06-2019
Publisher
Springer US
Published in
Numerical Algorithms / Issue 4/2020
Print ISSN: 1017-1398
Electronic ISSN: 1572-9265
DOI
https://doi.org/10.1007/s11075-019-00732-8

Other articles of this Issue 4/2020

Numerical Algorithms 4/2020 Go to the issue

Premium Partner