Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2019 | OriginalPaper | Chapter

A Cognitive Model of Human Bias in Matching

Authors : Rakefet Ackerman, Avigdor Gal, Tomer Sagi, Roee Shraga

Published in: PRICAI 2019: Trends in Artificial Intelligence

Publisher: Springer International Publishing

share
SHARE

Abstract

The schema matching problem is at the basis of integrating structured and semi-structured data. Being investigated in the fields of databases, AI, semantic Web and data mining for many years, the core challenge still remains the ability to create quality matchers, automatic tools for identifying correspondences among data concepts (e.g., database attributes). In this work, we investigate human matchers behavior using a new concept termed match consistency and introduce a novel use of cognitive models to explain human matcher performance. Using empirical evidence, we further show that human matching suffers from predictable biases when matching schemata, which prevent them from providing consistent matching.
Literature
1.
go back to reference Ackerman, R.: The diminishing criterion model for metacognitive regulation of time investment. J. Exp. Psychol.: Gen. 143, 1349 (2014) CrossRef Ackerman, R.: The diminishing criterion model for metacognitive regulation of time investment. J. Exp. Psychol.: Gen. 143, 1349 (2014) CrossRef
2.
go back to reference Ackerman, R., Thompson, V.: Meta-reasoning: monitoring and control of thinking and reasoning. TiCS 21, 607–617 (2017) Ackerman, R., Thompson, V.: Meta-reasoning: monitoring and control of thinking and reasoning. TiCS 21, 607–617 (2017)
3.
go back to reference Raykar, V.C., et al.: Supervised learning from multiple experts: whom to trust when everyone lies a bit. In: ICML (2009) Raykar, V.C., et al.: Supervised learning from multiple experts: whom to trust when everyone lies a bit. In: ICML (2009)
4.
go back to reference Barsalou, L.W.: Cognitive Psychology: An Overview for Cognitive Scientists. Psychology Press, New York (2014) Barsalou, L.W.: Cognitive Psychology: An Overview for Cognitive Scientists. Psychology Press, New York (2014)
6.
go back to reference Bernstein, P.A., Madhavan, J., Rahm, E.: Generic schema matching, ten years later. PVLDB 4, 695–701 (2011) Bernstein, P.A., Madhavan, J., Rahm, E.: Generic schema matching, ten years later. PVLDB 4, 695–701 (2011)
7.
go back to reference Bjork, R.A., Dunlosky, J., Kornell, N.: Self-regulated learning: beliefs, techniques, and illusions. Ann. Rev. Psychol. 64, 417–444 (2013) CrossRef Bjork, R.A., Dunlosky, J., Kornell, N.: Self-regulated learning: beliefs, techniques, and illusions. Ann. Rev. Psychol. 64, 417–444 (2013) CrossRef
8.
go back to reference Bozovic, N., Vassalos, V.: Two phase user driven schema matching. In: ADBIS (2015) Bozovic, N., Vassalos, V.: Two phase user driven schema matching. In: ADBIS (2015)
9.
go back to reference Brewer, N., Wells, G.L.: The confidence-accuracy relationship in eyewitness identification: effects of lineup instructions, foil similarity, and target-absent base rates. J. Exp. Psychol.: Appl. 12, 11 (2006) Brewer, N., Wells, G.L.: The confidence-accuracy relationship in eyewitness identification: effects of lineup instructions, foil similarity, and target-absent base rates. J. Exp. Psychol.: Appl. 12, 11 (2006)
10.
go back to reference De Una, D., Rümmele, N., Gange, G., Schachte, P., Stuckey, P.J.: Machine learning and constraint programming for relational-to-ontology schema mapping. In: IJCAI (2018) De Una, D., Rümmele, N., Gange, G., Schachte, P., Stuckey, P.J.: Machine learning and constraint programming for relational-to-ontology schema mapping. In: IJCAI (2018)
11.
go back to reference Do, H.H., Rahm, E.: COMA: a system for flexible combination of schema matching approaches. In: VLDB (2002) CrossRef Do, H.H., Rahm, E.: COMA: a system for flexible combination of schema matching approaches. In: VLDB (2002) CrossRef
13.
go back to reference Dunning, D., Heath, C., Suls, J.M.: Flawed self-assessment implications for health, education, and the workplace. Psychol. Sci. Public Interest 5, 69–106 (2004) CrossRef Dunning, D., Heath, C., Suls, J.M.: Flawed self-assessment implications for health, education, and the workplace. Psychol. Sci. Public Interest 5, 69–106 (2004) CrossRef
15.
go back to reference Franklin, M.J., Kossmann, D., Kraska, T., Ramesh, S., Xin, R.: CrowdDB: answering queries with crowdsourcing. In: SIGMOD (2011) Franklin, M.J., Kossmann, D., Kraska, T., Ramesh, S., Xin, R.: CrowdDB: answering queries with crowdsourcing. In: SIGMOD (2011)
16.
go back to reference Gal, A.: Uncertain Schema Matching. Morgan & Claypool Publishers, San Rafael (2011) MATH Gal, A.: Uncertain Schema Matching. Morgan & Claypool Publishers, San Rafael (2011) MATH
17.
go back to reference Gal, A., Roitman, H., Sagi, T.: From diversity-based prediction to better ontology & schema matching. In: WWW (2016) Gal, A., Roitman, H., Sagi, T.: From diversity-based prediction to better ontology & schema matching. In: WWW (2016)
18.
go back to reference Gal, A., Roitman, H., Shraga, R.: Heterogeneous data integration by learning to rerank schema matches. In: ICDM (2018) Gal, A., Roitman, H., Shraga, R.: Heterogeneous data integration by learning to rerank schema matches. In: ICDM (2018)
19.
go back to reference Goodman, L.A., Kruskal, W.H.: Measures of association for cross classifications. J. Am. Stat. Assoc. 49, 732–764 (1954) MATH Goodman, L.A., Kruskal, W.H.: Measures of association for cross classifications. J. Am. Stat. Assoc. 49, 732–764 (1954) MATH
20.
go back to reference Halevy, A.Y., Madhavan, J.: Corpus-based knowledge representation. In: IJCAI (2003) Halevy, A.Y., Madhavan, J.: Corpus-based knowledge representation. In: IJCAI (2003)
21.
go back to reference Hung, N.Q.V., Nguyen, T.T., Miklós, Z., Aberer, K., Gal, A., Weidlich, M.: Pay-as-you-go reconciliation in schema matching networks. In: ICDE (2014) Hung, N.Q.V., Nguyen, T.T., Miklós, Z., Aberer, K., Gal, A., Weidlich, M.: Pay-as-you-go reconciliation in schema matching networks. In: ICDE (2014)
23.
go back to reference Jeffery, S.R., Franklin, M.J., Halevy, A.Y.: Pay-as-you-go user feedback for dataspace systems. In: SIGMOD (2008) Jeffery, S.R., Franklin, M.J., Halevy, A.Y.: Pay-as-you-go user feedback for dataspace systems. In: SIGMOD (2008)
24.
go back to reference Koriat, A.: Subjective confidence in one’s answers: the consensuality principle. J. Exp. Psychol.: Learn. Memory Cognit. 34, 945–959 (2008) Koriat, A.: Subjective confidence in one’s answers: the consensuality principle. J. Exp. Psychol.: Learn. Memory Cognit. 34, 945–959 (2008)
25.
go back to reference Koriat, A.: When reality is out of focus: can people tell whether their beliefs and judgments are correct or wrong? J. Exp. Psychol.: Gen. 147, 613 (2018) CrossRef Koriat, A.: When reality is out of focus: can people tell whether their beliefs and judgments are correct or wrong? J. Exp. Psychol.: Gen. 147, 613 (2018) CrossRef
26.
go back to reference McCann, R., Shen, W., Doan, A.: Matching schemas in online communities: a web 2.0 approach. In: ICDE (2008) McCann, R., Shen, W., Doan, A.: Matching schemas in online communities: a web 2.0 approach. In: ICDE (2008)
27.
go back to reference Peukert, E., Eberius, J., Rahm, E.: AMC-a framework for modelling and comparing matching systems as matching processes. In: ICDE (2011) Peukert, E., Eberius, J., Rahm, E.: AMC-a framework for modelling and comparing matching systems as matching processes. In: ICDE (2011)
28.
go back to reference Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDBJ 10, 334–350 (2001) CrossRef Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDBJ 10, 334–350 (2001) CrossRef
29.
go back to reference Sagi, T., Gal, A.: In schema matching, even experts are human. towards expert sourcing in schema matching. In: IIWeb (2014) Sagi, T., Gal, A.: In schema matching, even experts are human. towards expert sourcing in schema matching. In: IIWeb (2014)
30.
go back to reference Sarasua, C., Simperl, E., Noy, N.F.: CrowdMap: crowdsourcing ontology alignment with microtasks. In: ISWC (2012) Sarasua, C., Simperl, E., Noy, N.F.: CrowdMap: crowdsourcing ontology alignment with microtasks. In: ISWC (2012)
31.
go back to reference Shraga, R., Gal, A., Roitman, H.: What type of a matcher are you?: coordination of human and algorithmic matchers. In: HILDA@SIGMOD (2018) Shraga, R., Gal, A., Roitman, H.: What type of a matcher are you?: coordination of human and algorithmic matchers. In: HILDA@SIGMOD (2018)
32.
go back to reference Sidi, Y., Shpigelman, M., Zalmanov, H., Ackerman, R.: Understanding metacognitive inferiority on screen by exposing cues for depth of processing. Learn. Instr. 51, 61–73 (2017) CrossRef Sidi, Y., Shpigelman, M., Zalmanov, H., Ackerman, R.: Understanding metacognitive inferiority on screen by exposing cues for depth of processing. Learn. Instr. 51, 61–73 (2017) CrossRef
33.
go back to reference Simonsen, J.C.: Coefficient of variation as a measure of subject effort. Arch. PM&R 76, 516–520 (1995) Simonsen, J.C.: Coefficient of variation as a measure of subject effort. Arch. PM&R 76, 516–520 (1995)
34.
go back to reference Undorf, M., Ackerman, R.: The puzzle of study time allocation for the most challenging items. Psychon. Bull. Rev. 24, 2003–2011 (2017) CrossRef Undorf, M., Ackerman, R.: The puzzle of study time allocation for the most challenging items. Psychon. Bull. Rev. 24, 2003–2011 (2017) CrossRef
Metadata
Title
A Cognitive Model of Human Bias in Matching
Authors
Rakefet Ackerman
Avigdor Gal
Tomer Sagi
Roee Shraga
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-29908-8_50

Premium Partner