Skip to main content
Top

2024 | OriginalPaper | Chapter

A Collage of Results on the Divisibility and Indivisibility of Class Numbers of Quadratic Fields

Authors : Srilakshmi Krishnamoorthy, Sunil Kumar Pasupulati, R. Muneeswaran

Published in: Class Groups of Number Fields and Related Topics

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter delves into the intricate properties of class numbers in quadratic fields, a fundamental topic in algebraic number theory. It begins with an introduction to the ideal class group and the class number, highlighting Gauss's conjectures on the divisibility of class numbers. The text then explores the Cohen-Lenstra heuristics and various conjectures by Chowla, Friedlander, and others. Notably, it covers quantitative results on the divisibility of class numbers, including theorems by Soundararajan and Murty, and advancements in understanding the indivisibility of class numbers. The chapter also discusses recent developments towards Iizuka's conjecture and the 3-divisibility of class numbers, providing a thorough overview of the state-of-the-art in the field. Additionally, it offers insights into the connection between class numbers and special values of L-functions, making it a valuable resource for researchers and scholars interested in the latest advancements in algebraic number theory.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ankeny, N.C., Chowla, S.: On the divisibility of the class number of quadratic fields. Pacific J. Math. 5, 321–324. 85301 (1955) Ankeny, N.C., Chowla, S.: On the divisibility of the class number of quadratic fields. Pacific J. Math. 5, 321–324. 85301 (1955)
2.
go back to reference Baker, A.: On the class number of imaginary quadratic fields. Bull. Am. Math. Soc. 77, 678–684. 286775 (1971) Baker, A.: On the class number of imaginary quadratic fields. Bull. Am. Math. Soc. 77, 678–684. 286775 (1971)
3.
go back to reference Bhand, A., Ram Murty, M.: Class numbers of quadratic fields. Hardy-Ramanujan J. 42, 17–25. 4221215 (2019) Bhand, A., Ram Murty, M.: Class numbers of quadratic fields. Hardy-Ramanujan J. 42, 17–25. 4221215 (2019)
4.
go back to reference Byeon, D.: Class numbers of quadratic fields \({\mathbb{Q}} (\sqrt{D})\) and \({\mathbb{Q}} (\sqrt{tD})\). Proc. Am. Math. Soc. 132(11), 3137–3140. 2073286 (2004) Byeon, D.: Class numbers of quadratic fields \({\mathbb{Q}} (\sqrt{D})\) and \({\mathbb{Q}} (\sqrt{tD})\). Proc. Am. Math. Soc. 132(11), 3137–3140. 2073286 (2004)
5.
go back to reference Byeon, D., Koh, E.: Real quadratic fields with class number divisible by 3. Manuscripta Math. 111(2), 261–263. 1989426 (2003) Byeon, D., Koh, E.: Real quadratic fields with class number divisible by 3. Manuscripta Math. 111(2), 261–263. 1989426 (2003)
6.
go back to reference Chakraborty, K., Hoque, A., Kishi, Y., Pandey, P.P.: Divisibility of the class numbers of imaginary quadratic fields. J. Number Theory 185, 339–348. 3734353 (2018) Chakraborty, K., Hoque, A., Kishi, Y., Pandey, P.P.: Divisibility of the class numbers of imaginary quadratic fields. J. Number Theory 185, 339–348. 3734353 (2018)
7.
go back to reference Chakraborty, K., Ram Murty, M.: On the number of real quadratic fields with class number divisible by 3. Proc. Am. Math. Soc. 131(1), 41–44. 1929021 (2003) Chakraborty, K., Ram Murty, M.: On the number of real quadratic fields with class number divisible by 3. Proc. Am. Math. Soc. 131(1), 41–44. 1929021 (2003)
8.
go back to reference Chakraborty, K., Hoque, A.: Exponent of class group of certain imaginary quadratic fields. Czechoslovak Math. J. 70(145)(4), 1167–1178. 4181805 (2020) Chakraborty, K., Hoque, A.: Exponent of class group of certain imaginary quadratic fields. Czechoslovak Math. J. 70(145)(4), 1167–1178. 4181805 (2020)
9.
go back to reference Chattopadhyay, J., Muthukrishnan, S.: On the simultaneous 3-divisibility of class numbers of triples of imaginary quadratic fields. Acta Arith. 197(1), 105–110. 4185918 (2021) Chattopadhyay, J., Muthukrishnan, S.: On the simultaneous 3-divisibility of class numbers of triples of imaginary quadratic fields. Acta Arith. 197(1), 105–110. 4185918 (2021)
10.
go back to reference Chattopadhyay, J., Saikia, A.: Simultaneous indivisibility of class numbers of pairs of real quadratic fields. Ramanujan J. 58(3), 905–911. 4437432 (2022) Chattopadhyay, J., Saikia, A.: Simultaneous indivisibility of class numbers of pairs of real quadratic fields. Ramanujan J. 58(3), 905–911. 4437432 (2022)
11.
go back to reference Chowla, S., Friedlander, J.: Class numbers and quadratic residues. Glasgow Math. J. 17(1), 47–52. 417117 (1976) Chowla, S., Friedlander, J.: Class numbers and quadratic residues. Glasgow Math. J. 17(1), 47–52. 417117 (1976)
12.
go back to reference Cohen, H., Lenstra, H.W.: Heuristics on class groups of number fields, Number theory, Noordwijkerhout 1983 (Noordwijkerhout, 1983), Lecture Notes in Mathematics, vol. 1068, pp. 33–62. 756082. Springer, Berlin (1984) Cohen, H., Lenstra, H.W.: Heuristics on class groups of number fields, Number theory, Noordwijkerhout 1983 (Noordwijkerhout, 1983), Lecture Notes in Mathematics, vol. 1068, pp. 33–62. 756082. Springer, Berlin (1984)
13.
go back to reference Cornell, G.: Abhyankar’s lemma and the class group, Number theory, Carbondale 1979 (Proc. Southern Illinois Conf., Southern Illinois Univ., Carbondale, Ill., 1979), Lecture Notes in Mathematics, vol. 751, pp. 82–88. 564924. Springer, Berlin (1979) Cornell, G.: Abhyankar’s lemma and the class group, Number theory, Carbondale 1979 (Proc. Southern Illinois Conf., Southern Illinois Univ., Carbondale, Ill., 1979), Lecture Notes in Mathematics, vol. 751, pp. 82–88. 564924. Springer, Berlin (1979)
14.
go back to reference Daniel, S., Fouvry, E.: On real quadratic fields with odd class number. Math. Ann. 313(2), 371–384. 1679790 (1999) Daniel, S.,  Fouvry, E.: On real quadratic fields with odd class number. Math. Ann. 313(2), 371–384. 1679790 (1999)
15.
go back to reference Daub, M., Lang, J., Merling, M., Pacelli, A.M., Pitiwan, N., Rosen, M.: Function fields with class number indivisible by a prime \(\ell \), Acta Arith. 150(4), 339–359. 2847264 (2011) Daub, M., Lang, J., Merling, M., Pacelli, A.M., Pitiwan, N., Rosen, M.: Function fields with class number indivisible by a prime \(\ell \), Acta Arith. 150(4), 339–359. 2847264 (2011)
16.
go back to reference Erickson, C., Kaplan, N., Mendoza, N., Pacelli, A.M., Shayler, T.: Parameterized families of quadratic number fields with 3-rank at least 2. Acta Arith. 130(2), 141–147. 2357651 (2007) Erickson, C., Kaplan, N., Mendoza, N., Pacelli, A.M., Shayler, T.: Parameterized families of quadratic number fields with 3-rank at least 2. Acta Arith. 130(2), 141–147. 2357651 (2007)
17.
go back to reference Hartung, P.: Proof of the existence of infinitely many imaginary quadratic fields whose class number is not divisible by \(3\). J. Number Theory 6, 276–278. 352040 (1974) Hartung, P.: Proof of the existence of infinitely many imaginary quadratic fields whose class number is not divisible by \(3\). J. Number Theory 6, 276–278. 352040 (1974)
18.
go back to reference Heath-Brown, D.R.: Quadratic class numbers divisible by 3. Funct. Approx. Comment. Math. 37, part 1, 203–211. 2357319 (2007) Heath-Brown, D.R.: Quadratic class numbers divisible by 3. Funct. Approx. Comment. Math. 37, part 1, 203–211. 2357319 (2007)
19.
go back to reference Hoque, A.: On the exponents of class groups of some families of imaginary quadratic fields. Mediterr. J. Math. 18(4), Paper No. 153, 13. 4270672 (2021) Hoque, A.: On the exponents of class groups of some families of imaginary quadratic fields. Mediterr. J. Math. 18(4), Paper No. 153, 13. 4270672 (2021)
20.
go back to reference Hoque, A.: On a conjecture of Iizuka. J. Number Theory 238, 464–473. 4430107 (2022) Hoque, A.: On a conjecture of Iizuka. J. Number Theory 238, 464–473. 4430107 (2022)
21.
go back to reference Hoque, A., Chakraborty, K.: Divisibility of class numbers of certain families of quadratic fields. J. Ramanujan Math. Soc. 34(3), 281–289. 4010381 (2019) Hoque, A., Chakraborty, K.: Divisibility of class numbers of certain families of quadratic fields. J. Ramanujan Math. Soc. 34(3), 281–289. 4010381 (2019)
22.
go back to reference Hoque, A., Chakraborty, K.: Lehmer sequence approach to the divisibility of class numbers of imaginary quadratic fields. Ramanujan J. 60(4), 913–923. 1382-4090,1572-9303 (2023) Hoque, A.,   Chakraborty, K.: Lehmer sequence approach to the divisibility of class numbers of imaginary quadratic fields. Ramanujan J. 60(4), 913–923. 1382-4090,1572-9303 (2023)
23.
go back to reference Iizuka, Y.: On the class number divisibility of pairs of imaginary quadratic fields. J. Number Theory 184, 122–127. 3724158 (2018) Iizuka, Y.: On the class number divisibility of pairs of imaginary quadratic fields. J. Number Theory 184, 122–127. 3724158 (2018)
24.
go back to reference Iizuka, Y., Konomi, Y., Nakano, S.: On the class number divisibility of pairs of quadratic fields obtained from points on elliptic curves. J. Math. Soc. Jpn. 68(2), 899–915. 3488152 (2016) Iizuka, Y., Konomi, Y., Nakano, S.: On the class number divisibility of pairs of quadratic fields obtained from points on elliptic curves. J. Math. Soc. Jpn. 68(2), 899–915. 3488152 (2016)
25.
go back to reference Ito, A.: Existence of an infinite family of pairs of quadratic fields \(\mathbb{Q}\)\((\sqrt{m_1D})\) and \(\mathbb{Q}\)\((\sqrt{m_2D})\) whose class numbers are both divisible by \(3\) or both indivisible by \(3\). Funct. Approx. Comment. Math. 49(1), 111–135. 3127903 (2013) Ito, A.: Existence of an infinite family of pairs of quadratic fields \(\mathbb{Q}\)\((\sqrt{m_1D})\) and \(\mathbb{Q}\)\((\sqrt{m_2D})\) whose class numbers are both divisible by \(3\) or both indivisible by \(3\). Funct. Approx. Comment. Math. 49(1), 111–135. 3127903 (2013)
26.
go back to reference Kalita, H., Saikia, H.K.: A pair of quadratic fields with class number divisible by 3. In: Class Groups of Number Fields and Related Topics, pp. 141–146. 4292551. Springer, Singapore (2020) Kalita, H., Saikia, H.K.: A pair of quadratic fields with class number divisible by 3. In: Class Groups of Number Fields and Related Topics, pp. 141–146. 4292551. Springer, Singapore (2020)
27.
go back to reference Kishi, Y., Miyake, K.: Parametrization of the quadratic fields whose class numbers are divisible by three. J. Number Theory 80(2), 209–217. 1740511 (2000) Kishi, Y., Miyake, K.: Parametrization of the quadratic fields whose class numbers are divisible by three. J. Number Theory 80(2), 209–217. 1740511 (2000)
28.
go back to reference Kohnen, W., Ono, K.: Indivisibility of class numbers of imaginary quadratic fields and orders of Tate-Shafarevich groups of elliptic curves with complex multiplication. Invent. Math. 135(2), 387–398. 1666783 (1999) Kohnen, W., Ono, K.: Indivisibility of class numbers of imaginary quadratic fields and orders of Tate-Shafarevich groups of elliptic curves with complex multiplication. Invent. Math. 135(2), 387–398. 1666783 (1999)
29.
go back to reference Komatsu, T.: A family of infinite pairs of quadratic fields \(\mathbb{Q}\)\((\sqrt{D})\)and\(\mathbb{Q}\)\((\sqrt{-D})\)whose class numbers are both divisible by 3. Acta Arith. 96(3), 213–221. 1814277 (2001) Komatsu, T.: A family of infinite pairs of quadratic fields \(\mathbb{Q}\)\((\sqrt{D})\)and\(\mathbb{Q}\)\((\sqrt{-D})\)whose class numbers are both divisible by 3. Acta Arith. 96(3), 213–221. 1814277 (2001)
30.
go back to reference Komatsu, T.: An infinite family of pairs of quadratic fields \(\mathbb{Q}\)\((\sqrt{D})\) and \(\mathbb{Q}\)\((\sqrt{mD})\) whose class numbers are both divisible by 3. Acta Arith. 104(2), 129–136. 1914248 (2002) Komatsu, T.: An infinite family of pairs of quadratic fields \(\mathbb{Q}\)\((\sqrt{D})\) and \(\mathbb{Q}\)\((\sqrt{mD})\) whose class numbers are both divisible by 3. Acta Arith. 104(2), 129–136. 1914248 (2002)
31.
go back to reference Krishnamoorthy, S., Muneeswaran, R.: The divisibility of the class number of the imaginary quadratic fields \(\mathbb{Q}\)\(\sqrt{1-2m^y})\). Ramanujan J. 64(3), 991–1002. 1382-4090,1572-9303 (2024) Krishnamoorthy, S.,  Muneeswaran, R.: The divisibility of the class number of the imaginary quadratic fields \(\mathbb{Q}\)\(\sqrt{1-2m^y})\). Ramanujan J. 64(3), 991–1002. 1382-4090,1572-9303 (2024)
32.
go back to reference Krishnamoorthy, S., Pasupulati, S.K.: Note on the p-divisibility of class numbers of an infinite family of imaginary quadratic fields. Glasg. Math. J. 64(2), 352–357. 4404101 (2022) Krishnamoorthy, S., Pasupulati, S.K.: Note on the p-divisibility of class numbers of an infinite family of imaginary quadratic fields. Glasg. Math. J. 64(2), 352–357. 4404101 (2022)
33.
go back to reference Lee, J., Lee, Y.: Indivisibility of class numbers of real quadratic function fields. J. Pure Appl. Algebra 220(8), 2828–2835. 3471189 (2016) Lee, J., Lee, Y.: Indivisibility of class numbers of real quadratic function fields. J. Pure Appl. Algebra 220(8), 2828–2835. 3471189 (2016)
34.
go back to reference Lee, S., Lee, Y., Yoo, J.: Infinite families of class groups of quadratic fields with 3-rank at least one: quantitative bounds. Int. J. Number Theory 19(3), 621–637. 4547469 (2023) Lee, S., Lee, Y., Yoo, J.: Infinite families of class groups of quadratic fields with 3-rank at least one: quantitative bounds. Int. J. Number Theory 19(3), 621–637. 4547469 (2023)
35.
go back to reference Li, W., Zhang, X.K.: Parametrization of the quadratic function fields whose divisor class numbers are divisible by three. Acta Math. Sin. (Engl. Ser.) 25(4), 593–596. 2495511 (2009) Li, W., Zhang, X.K.: Parametrization of the quadratic function fields whose divisor class numbers are divisible by three. Acta Math. Sin. (Engl. Ser.) 25(4), 593–596. 2495511 (2009)
36.
go back to reference Louboutin, S.R.: On the divisibility of the class number of imaginary quadratic number fields. Proc. Am. Math. Soc. 137(12), 4025–4028. 2538563 (2009) Louboutin, S.R.: On the divisibility of the class number of imaginary quadratic number fields. Proc. Am. Math. Soc. 137(12), 4025–4028. 2538563 (2009)
37.
go back to reference Mishra, M., Schoof, R., Washington, L.C.: Class groups of real cyclotomic fields. Monatsh. Math. 195(3), 489–496. 4270784 (2021) Mishra, M., Schoof, R., Washington, L.C.: Class groups of real cyclotomic fields. Monatsh. Math. 195(3), 489–496. 4270784 (2021)
38.
go back to reference Murty, M.R.: Exponents of class groups of quadratic fields. In: Topics in Number Theory (University Park, PA, 1997). Mathematics Applied, vol. 467, pp. 229–239. 1691322. Kluwer Academic Publishers, Dordrecht (1999) Murty, M.R.: Exponents of class groups of quadratic fields. In: Topics in Number Theory (University Park, PA, 1997). Mathematics Applied, vol. 467, pp. 229–239. 1691322. Kluwer Academic Publishers, Dordrecht (1999)
39.
go back to reference Nagel, T.: Über die Klassenzahl imaginär-quadratischer Zahlkörper. Abh. Math. Sem. Univ. Hamburg 1(1), 140–150. 3069394 (1922) Nagel, T.: Über die Klassenzahl imaginär-quadratischer Zahlkörper. Abh. Math. Sem. Univ. Hamburg 1(1), 140–150. 3069394 (1922)
40.
go back to reference Scholz, A.: Über die Beziehung der Klassenzahlen quadratischer Körper zueinander. J. Reine Angew. Math. 166, 201–203. 1581309 (1932) Scholz, A.: Über die Beziehung der Klassenzahlen quadratischer Körper zueinander. J. Reine Angew. Math. 166, 201–203. 1581309 (1932)
41.
go back to reference Soundararajan, K.: Divisibility of class numbers of imaginary quadratic fields. J. Lond. Math. Soc. 61(2, 3), 681–690. 1766097 (2000) Soundararajan, K.: Divisibility of class numbers of imaginary quadratic fields. J. Lond. Math. Soc. 61(2, 3), 681–690. 1766097 (2000)
42.
go back to reference Stark, H.: On complex quadratic fields with class number equal to one. Trans. Am. Math. Soc. 122, 112–119. 195845 (1966) Stark, H.: On complex quadratic fields with class number equal to one. Trans. Am. Math. Soc. 122, 112–119. 195845 (1966)
43.
go back to reference Wang, J.: Non-divisibility of the class number of imaginary quadratic fields and some applications. Quaest. Math. 44(6), 809–813. 4281334 (2021) Wang, J.: Non-divisibility of the class number of imaginary quadratic fields and some applications. Quaest. Math. 44(6), 809–813. 4281334 (2021)
44.
go back to reference Weinberger, P.J.: Real quadratic fields with class numbers divisible by \(n\). J. Number Theory 5, 237–241. 335471 (1973) Weinberger, P.J.: Real quadratic fields with class numbers divisible by \(n\). J. Number Theory 5, 237–241. 335471 (1973)
45.
go back to reference Wiles, A.: On class groups of imaginary quadratic fields. J. Lond. Math. Soc. 92(2), 411–426. 3404031 (2015) Wiles, A.: On class groups of imaginary quadratic fields. J. Lond. Math. Soc. 92(2), 411–426. 3404031 (2015)
46.
go back to reference Xie, J., Chao, K.F.: A note on 3-divisibility of class number of quadratic field. Chinese Ann. Math. Ser. B 43(2), 307–318. 4414116 (2022) Xie, J., Chao, K.F.: A note on 3-divisibility of class number of quadratic field. Chinese Ann. Math. Ser. B 43(2), 307–318. 4414116 (2022)
47.
go back to reference Yamamoto, Y: On unramified Galois extensions of quadratic number fields. Osaka Math. J. 7, 57–76. 266898 (1970) Yamamoto, Y: On unramified Galois extensions of quadratic number fields. Osaka Math. J. 7, 57–76. 266898 (1970)
48.
go back to reference Yokoi, H.: Class-number one problem for certain kind of real quadratic fields. In: Proceedings of the International Conference on Class Numbers and Fundamental Units of Algebraic Number Fields (Katata, 1986), Nagoya University, Nagoya, pp. 125–137. 891892 (1986) Yokoi, H.: Class-number one problem for certain kind of real quadratic fields. In: Proceedings of the International Conference on Class Numbers and Fundamental Units of Algebraic Number Fields (Katata, 1986), Nagoya University, Nagoya, pp. 125–137. 891892 (1986)
49.
go back to reference Yu, G.: A note on the divisibility of class numbers of real quadratic fields. J. Number Theory 97(1), 35–44. 1939135 (2002) Yu, G.: A note on the divisibility of class numbers of real quadratic fields. J. Number Theory 97(1), 35–44. 1939135 (2002)
50.
go back to reference Yu, G.: Imaginary quadratic fields with class groups of 3-rank at least 2. Manuscripta Math. 163(3–4), 569–574. 4159812 (2020) Yu, G.: Imaginary quadratic fields with class groups of 3-rank at least 2. Manuscripta Math. 163(3–4), 569–574. 4159812 (2020)
Metadata
Title
A Collage of Results on the Divisibility and Indivisibility of Class Numbers of Quadratic Fields
Authors
Srilakshmi Krishnamoorthy
Sunil Kumar Pasupulati
R. Muneeswaran
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-6911-7_6

Premium Partner