Skip to main content
Top

2015 | OriginalPaper | Chapter

A Collective Approach for Reconstructing 3D Fiber Arrangements in Virtual Musculoskeletal Soft Tissue Models

Authors : Hon Fai Choi, Andra Chincisan, Nadia Magnenat-Thalmann

Published in: Computational Biomechanics for Medicine

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Clinical evaluation of the mechanical condition in musculoskeletal soft tissues is challenging due to the wide range in morphology, size, and function of the anatomical structures. Virtual biomechanical simulations in 3D anatomical models reconstructed from medical imaging provide an instrument to receive feedback on realistic mechanics and deformation, but require an adequate computational representation of the anisotropic fibrous architecture. In this study, we investigate the application of a Laplacian based approach as a collective basis to generate fiber bundle orientations in 3D anatomical models of the various musculoskeletal soft tissue structures. Methodological adaptations for specific cases are evaluated, while feasibility is demonstrated in anatomical examples of muscles and joint connective tissue structures.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Blemker, S.S., Delp, S.L.: Three-dimensional representation of complex muscle architectures and geometries. Ann. Biomed. Eng. 33(5), 661–673 (2005)CrossRef Blemker, S.S., Delp, S.L.: Three-dimensional representation of complex muscle architectures and geometries. Ann. Biomed. Eng. 33(5), 661–673 (2005)CrossRef
2.
go back to reference Weiss, J.A., Gardiner, J.C., Ellis, B.J., et al.: Three-dimensional finite element modeling of ligaments: technical aspects. Med. Eng. Phys. 27(10), 845–861 (2005)CrossRef Weiss, J.A., Gardiner, J.C., Ellis, B.J., et al.: Three-dimensional finite element modeling of ligaments: technical aspects. Med. Eng. Phys. 27(10), 845–861 (2005)CrossRef
3.
go back to reference Kim, S.Y., Boynton, E.L., Ravichandiran, K., et al.: Three-dimensional study of the musculotendinous architecture of supraspinatus and its functional correlations. Clin. Anat. 20, 648–655 (2007)CrossRef Kim, S.Y., Boynton, E.L., Ravichandiran, K., et al.: Three-dimensional study of the musculotendinous architecture of supraspinatus and its functional correlations. Clin. Anat. 20, 648–655 (2007)CrossRef
4.
go back to reference Klimstra, M., Dowling, J., Durkin, J.L., et al.: The effect of ultrasound probe orientation on muscle architecture measurement. J. Electromyogr. Kinesiol. 17, 504–514 (2007)CrossRef Klimstra, M., Dowling, J., Durkin, J.L., et al.: The effect of ultrasound probe orientation on muscle architecture measurement. J. Electromyogr. Kinesiol. 17, 504–514 (2007)CrossRef
5.
go back to reference Longwei, X.: Clinical application of diffusion tensor magnetic resonance imaging in skeletal muscle. Muscles Ligaments Tendons J. 3(2), 58–59 (2012) Longwei, X.: Clinical application of diffusion tensor magnetic resonance imaging in skeletal muscle. Muscles Ligaments Tendons J. 3(2), 58–59 (2012)
6.
go back to reference Kermarrec, E., Budzik, J.F., Khalil, C., et al.: In vivo diffusion tensor imaging and tractography of human thigh muscles in healthy subjects. AJR Am. J. Roentgenol. 195, W352–W356 (2010)CrossRef Kermarrec, E., Budzik, J.F., Khalil, C., et al.: In vivo diffusion tensor imaging and tractography of human thigh muscles in healthy subjects. AJR Am. J. Roentgenol. 195, W352–W356 (2010)CrossRef
7.
go back to reference Belvedere, C., Ensini, A., Feliciangeli, A., et al.: Geometrical changes of knee ligaments and patellar tendon during passive flexion. J. Biomech. 45, 1886–1892 (2012)CrossRef Belvedere, C., Ensini, A., Feliciangeli, A., et al.: Geometrical changes of knee ligaments and patellar tendon during passive flexion. J. Biomech. 45, 1886–1892 (2012)CrossRef
8.
go back to reference Blankevoort, L., Huiskes, R., de Lange, A.: Recruitment of knee joint ligaments. J. Biomech. Eng. 113, 94–103 (1991)CrossRef Blankevoort, L., Huiskes, R., de Lange, A.: Recruitment of knee joint ligaments. J. Biomech. Eng. 113, 94–103 (1991)CrossRef
9.
go back to reference Taylor, Z.A., Kirk, T.B., Miller, K.: Confocal arthroscopy-based patient-specific constitutive models of cartilaginous tissues – I: development of a microstructural model. Comput. Meth. Biomech. Biomed. Eng. 10(4), 307–316 (2007)CrossRef Taylor, Z.A., Kirk, T.B., Miller, K.: Confocal arthroscopy-based patient-specific constitutive models of cartilaginous tissues – I: development of a microstructural model. Comput. Meth. Biomech. Biomed. Eng. 10(4), 307–316 (2007)CrossRef
10.
go back to reference Taylor, Z.A., Kirk, T.B., Miller, K.: Confocal arthroscopy-based patient-specific constitutive models of cartilaginous tissues – II: prediction of reaction force history of meniscal cartilage specimens. Comput. Meth. Biomech. Biomed. Eng. 10(5), 327–336 (2007)CrossRef Taylor, Z.A., Kirk, T.B., Miller, K.: Confocal arthroscopy-based patient-specific constitutive models of cartilaginous tissues – II: prediction of reaction force history of meniscal cartilage specimens. Comput. Meth. Biomech. Biomed. Eng. 10(5), 327–336 (2007)CrossRef
11.
go back to reference Hirokawa, S., Tsuruno, R.: Three-dimensional deformation and stress distribution in an analytical/computational model of the anterior cruciate ligament. J. Biomech. 33(9), 1069–1077 (2000)CrossRef Hirokawa, S., Tsuruno, R.: Three-dimensional deformation and stress distribution in an analytical/computational model of the anterior cruciate ligament. J. Biomech. 33(9), 1069–1077 (2000)CrossRef
12.
go back to reference Lu, Y.T., Zhu, H.X., Richmond, S., et al.: Modelling skeletal muscle fibre orientation arrangement. Comput. Methods Biomech. Biomed. Eng. 14(12), 1079–1088 (2011)CrossRef Lu, Y.T., Zhu, H.X., Richmond, S., et al.: Modelling skeletal muscle fibre orientation arrangement. Comput. Methods Biomech. Biomed. Eng. 14(12), 1079–1088 (2011)CrossRef
13.
go back to reference Erdemir, A.: Open knee: a pathway to community driven modeling and simulation in joint biomechanics. In: Proceedings of the ASME/FDA 2013 1st Annual Frontiers in Medical Devices, Washington, DC, USA (2013) Erdemir, A.: Open knee: a pathway to community driven modeling and simulation in joint biomechanics. In: Proceedings of the ASME/FDA 2013 1st Annual Frontiers in Medical Devices, Washington, DC, USA (2013)
14.
go back to reference Maurice, X., Sandholm, A., Pronost, N., et al.: A subject-specific software solution for the modeling and the visualization of muscles deformations. Vis. Comput. 25(9), 835–842 (2009)CrossRef Maurice, X., Sandholm, A., Pronost, N., et al.: A subject-specific software solution for the modeling and the visualization of muscles deformations. Vis. Comput. 25(9), 835–842 (2009)CrossRef
15.
go back to reference Heimann, T., Chung, F., Lamecker, H., et al.: Subject-specific ligament models: toward real-time simulation of the knee joint. In: Computational Biomechanics for Medicine IV, pp. 107–119. Springer, New York (2010)CrossRef Heimann, T., Chung, F., Lamecker, H., et al.: Subject-specific ligament models: toward real-time simulation of the knee joint. In: Computational Biomechanics for Medicine IV, pp. 107–119. Springer, New York (2010)CrossRef
16.
go back to reference Wu, F.T., Ng-Thow-Hing, V., Singh, K., et al.: Computational representation of the aponeuroses as NURBS surfaces in 3D musculoskeletal models. Comput. Methods Programs Biomed. 88(2), 112–122 (2007)CrossRef Wu, F.T., Ng-Thow-Hing, V., Singh, K., et al.: Computational representation of the aponeuroses as NURBS surfaces in 3D musculoskeletal models. Comput. Methods Programs Biomed. 88(2), 112–122 (2007)CrossRef
17.
go back to reference Choi, H.F., Blemker, S.S.: Skeletal muscle fascicle arrangements can be reconstructed using a laplacian vector field simulation. PLoS One 8(10), e77576 (2013)CrossRef Choi, H.F., Blemker, S.S.: Skeletal muscle fascicle arrangements can be reconstructed using a laplacian vector field simulation. PLoS One 8(10), e77576 (2013)CrossRef
18.
go back to reference Greis, P.E., Bardana, D.D., Holmstrom, M.C., et al.: Meniscal injury: I. basic science and evaluation. J. Am. Acad. Orthop. Sur. 10(3), 168–176 (2002) Greis, P.E., Bardana, D.D., Holmstrom, M.C., et al.: Meniscal injury: I. basic science and evaluation. J. Am. Acad. Orthop. Sur. 10(3), 168–176 (2002)
19.
go back to reference Geuzaine, C., Remacle, J.F.: Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods. Eng. 79, 1309–1331 (2009)CrossRefMATHMathSciNet Geuzaine, C., Remacle, J.F.: Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods. Eng. 79, 1309–1331 (2009)CrossRefMATHMathSciNet
20.
go back to reference Heemskerk, A.M., Sinha, T.K., Wilson, K.J., et al.: Quantitative assessment of DTI-based muscle fiber tracking and optimal tracking parameters. Magn. Reson. Med. 61(2), 467–472 (2009)CrossRef Heemskerk, A.M., Sinha, T.K., Wilson, K.J., et al.: Quantitative assessment of DTI-based muscle fiber tracking and optimal tracking parameters. Magn. Reson. Med. 61(2), 467–472 (2009)CrossRef
21.
go back to reference Maas, S.A., Ellis, B.J., Atheshian, G.A., Weiss, J.A.: Febio: finite elements for biomechanics. J. Biomech. Eng. 134(1), 011005 (2012)CrossRef Maas, S.A., Ellis, B.J., Atheshian, G.A., Weiss, J.A.: Febio: finite elements for biomechanics. J. Biomech. Eng. 134(1), 011005 (2012)CrossRef
22.
go back to reference Miranda, D.L., Rainbow, M.J., Leventhal, E.L., et al.: Automatic determination of anatomical coordinate systems for three-dimensional bone models of the isolated human knee. J. Biomech. 43(8), 1623–1626 (2010)CrossRef Miranda, D.L., Rainbow, M.J., Leventhal, E.L., et al.: Automatic determination of anatomical coordinate systems for three-dimensional bone models of the isolated human knee. J. Biomech. 43(8), 1623–1626 (2010)CrossRef
24.
go back to reference Wedmid, A., Llukani, E., Lee, D.I.: Future perspectives in robotic surgery. BJU Int. 108(6b), 1028–1036 (2011)CrossRef Wedmid, A., Llukani, E., Lee, D.I.: Future perspectives in robotic surgery. BJU Int. 108(6b), 1028–1036 (2011)CrossRef
Metadata
Title
A Collective Approach for Reconstructing 3D Fiber Arrangements in Virtual Musculoskeletal Soft Tissue Models
Authors
Hon Fai Choi
Andra Chincisan
Nadia Magnenat-Thalmann
Copyright Year
2015
DOI
https://doi.org/10.1007/978-3-319-15503-6_11