Skip to main content
Top

2024 | OriginalPaper | Chapter

A Comparative Analysis of Memory-Based and Model-Based Collaborative Filtering on Recommender System Implementation

Authors : Karim Seridi, Abdessamad El Rharras

Published in: Innovations in Smart Cities Applications Volume 7

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter delves into the transformative influence of the sharing economy and the crucial role of recommender systems (RS) in enhancing user experiences. It categorizes RSs into memory-based and model-based methods, highlighting the strengths and limitations of each. Memory-based methods, such as cosine similarity, excel in capturing user preferences but are computationally intensive. Model-based methods, like Singular Value Decomposition (SVD), offer superior scalability and accuracy, especially with larger datasets. The study evaluates these approaches using the Netflix dataset, showcasing the trade-offs between accuracy and computational resources. The analysis reveals that while memory-based methods improve accuracy with larger datasets, they demand significant computational power. Conversely, model-based methods like SVD strike a balance between accuracy and scalability, making them suitable for larger datasets. The findings provide valuable insights for practitioners to select the most appropriate RS method for their specific applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Ricci, F., Rokach, L., Shapira, B.: Recommender systems: techniques, applications, and challenges. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, 3rd edn., pp. 1–35. Springer, New York (2022)CrossRef Ricci, F., Rokach, L., Shapira, B.: Recommender systems: techniques, applications, and challenges. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, 3rd edn., pp. 1–35. Springer, New York (2022)CrossRef
go back to reference Lu, J., Wu, D., Mao, M., Wang, W., Zhang, G.:. Recommender System Application Developments: A Survey (n.d.) Lu, J., Wu, D., Mao, M., Wang, W., Zhang, G.:. Recommender System Application Developments: A Survey (n.d.)
go back to reference Raghuwanshi, S.K., Pateriya, R.K.: Recommendation systems: techniques, challenges, application, and evaluation. In: Bansal, J.C., Das, K.N., Nagar, A., Deep, K., Ojha, A.K. (eds.) Soft Computing for Problem Solving, vol. 817, pp. 151–164. Springer Singapore (2019). https://doi.org/10.1007/978-981-13-1595-4_12 Raghuwanshi, S.K., Pateriya, R.K.: Recommendation systems: techniques, challenges, application, and evaluation. In: Bansal, J.C., Das, K.N., Nagar, A., Deep, K., Ojha, A.K. (eds.) Soft Computing for Problem Solving, vol. 817, pp. 151–164. Springer Singapore (2019). https://​doi.​org/​10.​1007/​978-981-13-1595-4_​12
go back to reference Lops, P., Gemmis, M.D., Semeraro, G.: Content-based recommender systems: state of the art and trends. In: Shapira, B. Ricci, F., Rokach, L., Kantor, P.B. (eds.) Recommender Systems Handbook, 1st edn, pp. 73–105. Springer, New York (2011) Lops, P., Gemmis, M.D., Semeraro, G.: Content-based recommender systems: state of the art and trends. In: Shapira, B. Ricci, F., Rokach, L., Kantor, P.B. (eds.) Recommender Systems Handbook, 1st edn, pp. 73–105. Springer, New York (2011)
go back to reference Shah, S.H., Duni, F.: A review on matrix factorization techniques used for an intelligent recommender system. Turkish J. Comput. Math. Educ. 12(7), 1812–1823 (2021) Shah, S.H., Duni, F.: A review on matrix factorization techniques used for an intelligent recommender system. Turkish J. Comput. Math. Educ. 12(7), 1812–1823 (2021)
go back to reference Hanafi, M., Suryana, N., Basari, A.S.H.: An understanding and approach solution for cold start problem associated with recommender system: a literature review 96(9), 2677–2695 (2005) Hanafi, M., Suryana, N., Basari, A.S.H.: An understanding and approach solution for cold start problem associated with recommender system: a literature review 96(9), 2677–2695 (2005)
go back to reference Do, M.-P., Nguyen, D.V., Nguyen, L.: Model-based approach for collaborative filtering [Paper presentation]. In: The 6th International Conference on Information Technology for Education, Ho Chi Minh City (2010) Do, M.-P., Nguyen, D.V., Nguyen, L.: Model-based approach for collaborative filtering [Paper presentation]. In: The 6th International Conference on Information Technology for Education, Ho Chi Minh City (2010)
go back to reference Zagranovskaia, A.V., Mitiura, D.Yu., Makarchuk, T.A.: Designing a digital content recommendation system for films. In: Nazarov, A.D. (ed.) Proceedings of the 2nd International Scientific and Practical Conference “Modern Management Trends and the Digital Economy: From Regional Development To Global Economic Growth” (MTDE 2020), Atlantis Press, Yekaterinburg (2020). https://doi.org/10.2991/aebmr.k.200502.001 Zagranovskaia, A.V., Mitiura, D.Yu., Makarchuk, T.A.: Designing a digital content recommendation system for films. In: Nazarov, A.D. (ed.) Proceedings of the 2nd International Scientific and Practical Conference “Modern Management Trends and the Digital Economy: From Regional Development To Global Economic Growth” (MTDE 2020), Atlantis Press, Yekaterinburg (2020). https://​doi.​org/​10.​2991/​aebmr.​k.​200502.​001
go back to reference Bennett, J., Lanning, S.: The Netflix Prize. 2007, 35 (2007) Bennett, J., Lanning, S.: The Netflix Prize. 2007, 35 (2007)
go back to reference Gunawardana, A., Shani, G., Yogev, S.: Evaluating recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, 3rd edn., pp. 547–601. Springer, New York (2022)CrossRef Gunawardana, A., Shani, G., Yogev, S.: Evaluating recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, 3rd edn., pp. 547–601. Springer, New York (2022)CrossRef
Metadata
Title
A Comparative Analysis of Memory-Based and Model-Based Collaborative Filtering on Recommender System Implementation
Authors
Karim Seridi
Abdessamad El Rharras
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-54376-0_7