Skip to main content
Top
Published in:

17-06-2024

A Comparative Study of Deep Leaning-Aided Relay Selection Protocols in Cooperative Communication

Authors: Bilgehan Akdemir, Muhammet Ali Karabulut, Hacı İlhan

Published in: Wireless Personal Communications | Issue 1/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Deep learning (DL) is an emerging topic that has found its place in various applications due to its many advantages, such as providing good performance and reducing complexity. In this paper, we used different DL algorithms for channel coefficients estimation in a cooperative communication by performing maximum likelihood estimation (MLE) to combine different copies of transmitted signal over a binary phase-shift keying (BPSK) modulation in a Rayleigh fading communication channel. We have proposed three different relay selection protocols in which, the first one is SNR-based; the SNRs of the transmission lines between nodes are calculated, and the relay with maximum SNR is selected among the relays. The second relay selection protocol is threshold-based; average SNRs have been obtained for all transmission links, and the links exceeding the average SNR join in the collaboration. The third proposed relay selection protocol is that all relays in the network participate in cooperation, which performed better performance metrics in terms of bit error rate (BER) and outage analysis. From our simulation results, DL-based forecasting achieved good performance for channel coefficients estimation in the proposed different relay selection protocols for the Decode and Forward (DF) relaying system.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Nosratinia, A., Hunter, T. E., & Hedayat, A. (2004). Cooperative communication in wireless networks. IEEE Communications Magazine, 42(10), 74–80.CrossRef Nosratinia, A., Hunter, T. E., & Hedayat, A. (2004). Cooperative communication in wireless networks. IEEE Communications Magazine, 42(10), 74–80.CrossRef
2.
go back to reference Karabulut, M.A., Ozdemir, O., ̇Ilhan, H. (2019). Performance analysis of multiple access relay channels for non-coherent modulations. Physical Communication, 1–8 Karabulut, M.A., Ozdemir, O., ̇Ilhan, H. (2019). Performance analysis of multiple access relay channels for non-coherent modulations. Physical Communication, 1–8
3.
go back to reference Su, Y., Lu, X., Zhao, Y., Huang, L., & Du, X. (2019). Cooperative communications with relay selection based on deep reinforcement learning in wireless sensor networks. IEEE Sensors Journal, 19(20), 9561–9569.CrossRef Su, Y., Lu, X., Zhao, Y., Huang, L., & Du, X. (2019). Cooperative communications with relay selection based on deep reinforcement learning in wireless sensor networks. IEEE Sensors Journal, 19(20), 9561–9569.CrossRef
4.
go back to reference Gunduz, D., de Kerret, P., Sidiropoulos, N. D., Gesbert, D., Murthy, C. R., & van der Schaar, M. (2019). Machine learning in the air. IEEE Journal on Selected Areas in Communications, 37(10), 2184–2199.CrossRef Gunduz, D., de Kerret, P., Sidiropoulos, N. D., Gesbert, D., Murthy, C. R., & van der Schaar, M. (2019). Machine learning in the air. IEEE Journal on Selected Areas in Communications, 37(10), 2184–2199.CrossRef
5.
go back to reference Alom, M.Z., et al. (2019). Remote heart rate measurement from highly compressed facial videos: A state-of-the-art survey on deep learning theory and architectures. Electronics 8(3) Alom, M.Z., et al. (2019). Remote heart rate measurement from highly compressed facial videos: A state-of-the-art survey on deep learning theory and architectures. Electronics 8(3)
6.
go back to reference Yu, Z., Peng, W., Li, X., Hong, X., Zhao, G. (2019). Remote heart rate measurement from highly compressed facial videos: An end-to-end deep learning solution with video enhancement. In IEEE/CVF International Conference on Computer Vision (ICCV), pp. 151–160 Yu, Z., Peng, W., Li, X., Hong, X., Zhao, G. (2019). Remote heart rate measurement from highly compressed facial videos: An end-to-end deep learning solution with video enhancement. In IEEE/CVF International Conference on Computer Vision (ICCV), pp. 151–160
7.
go back to reference Siami-Namini, S., Tavakoli, N., Namin, A.S. (2019). The performance of lstm and bilstm in forecasting time series. In IEEE International Conference on Big Data (Big Data), pp. 3285–3292 Siami-Namini, S., Tavakoli, N., Namin, A.S. (2019). The performance of lstm and bilstm in forecasting time series. In IEEE International Conference on Big Data (Big Data), pp. 3285–3292
8.
go back to reference Karras, T., Laine, S., & Aila, T. (2021). A style-based generator architecture for generative adversarial networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(12), 4217–4228.CrossRef Karras, T., Laine, S., & Aila, T. (2021). A style-based generator architecture for generative adversarial networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(12), 4217–4228.CrossRef
9.
go back to reference Ravanelli, M., Brakel, P., Omologo, M., & Bengio, Y. (2018). Light gated recurrent units for speech recognition. IEEE Transactions on Emerging Topics in Computational Intelligence, 2(2), 92–102.CrossRef Ravanelli, M., Brakel, P., Omologo, M., & Bengio, Y. (2018). Light gated recurrent units for speech recognition. IEEE Transactions on Emerging Topics in Computational Intelligence, 2(2), 92–102.CrossRef
10.
go back to reference Lehmann, C., Trivisonno, R., Pandi, S., Marquezan, C., Fitzek, F.H.P. (2021). On the challenges and performance of cooperative communication in 5g and b5g systems. In IEEE Global Communications Conference (GLOBECOM), pp. 01–06 Lehmann, C., Trivisonno, R., Pandi, S., Marquezan, C., Fitzek, F.H.P. (2021). On the challenges and performance of cooperative communication in 5g and b5g systems. In IEEE Global Communications Conference (GLOBECOM), pp. 01–06
11.
go back to reference Akdemir, B., Karabulut, M.A., Ilhan, H. (2021). Performance of deep learning methods in df based cooperative communication systems. In: IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), pp. 1–6 Akdemir, B., Karabulut, M.A., Ilhan, H. (2021). Performance of deep learning methods in df based cooperative communication systems. In: IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), pp. 1–6
15.
go back to reference Bourtsoulatze, E., Kurka, D.B., Gunduz, D. (2019). Deep joint source-channel coding for wireless image transmission. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4774–4778 Bourtsoulatze, E., Kurka, D.B., Gunduz, D. (2019). Deep joint source-channel coding for wireless image transmission. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4774–4778
16.
go back to reference O’Shea, T., & Hoydis, J. (2017). An introduction to deep learning for the physical layer. IEEE Transactions on Cognitive Communications and Networking, 3(4), 563–575.CrossRef O’Shea, T., & Hoydis, J. (2017). An introduction to deep learning for the physical layer. IEEE Transactions on Cognitive Communications and Networking, 3(4), 563–575.CrossRef
17.
go back to reference Ye, H., Li, G. Y., & Juang, B.-H. (2018). Power of deep learning for channel estimation and signal detection in ofdm systems. IEEE Wireless Communications Letters, 7(1), 114–117.CrossRef Ye, H., Li, G. Y., & Juang, B.-H. (2018). Power of deep learning for channel estimation and signal detection in ofdm systems. IEEE Wireless Communications Letters, 7(1), 114–117.CrossRef
18.
go back to reference Kang, J.-M., Chun, C.-J., & Kim, I.-M. (2018). Deep-learning-based channel estimation for wireless energy transfer. IEEE Communications Letters, 22(11), 2310–2313.CrossRef Kang, J.-M., Chun, C.-J., & Kim, I.-M. (2018). Deep-learning-based channel estimation for wireless energy transfer. IEEE Communications Letters, 22(11), 2310–2313.CrossRef
19.
go back to reference Aldossari, S. M., & Chen, K.-C. (2019). Machine learning for wireless communication channel modeling: An overview. Wireless Personal Communications, 106(1), 41–70.CrossRef Aldossari, S. M., & Chen, K.-C. (2019). Machine learning for wireless communication channel modeling: An overview. Wireless Personal Communications, 106(1), 41–70.CrossRef
20.
go back to reference Soltani, M., Pourahmadi, V., Mirzaei, A., & Sheikhzadeh, H. (2019). Deep learning-based channel estimation. IEEE Communications Letters, 23(4), 652–655.CrossRef Soltani, M., Pourahmadi, V., Mirzaei, A., & Sheikhzadeh, H. (2019). Deep learning-based channel estimation. IEEE Communications Letters, 23(4), 652–655.CrossRef
22.
go back to reference Jadoon, M. A., & Kim, S. (2019). Learning-based relay selection for cooperative networks with space–time network coding. Wireless Personal Communications, 108(2), 907–920.CrossRef Jadoon, M. A., & Kim, S. (2019). Learning-based relay selection for cooperative networks with space–time network coding. Wireless Personal Communications, 108(2), 907–920.CrossRef
24.
go back to reference Jiang, W., & Schotten, H. D. (2021). A simple cooperative diversity method based on deep-learning-aided relay selection. IEEE Transactions on Vehicular Technology, 70(5), 4485–4500.CrossRef Jiang, W., & Schotten, H. D. (2021). A simple cooperative diversity method based on deep-learning-aided relay selection. IEEE Transactions on Vehicular Technology, 70(5), 4485–4500.CrossRef
25.
go back to reference Aydın, E., ̇Ilhan, H. (2015). Relay selection with threshold value for df based cooperative systems. In 23nd Signal Processing and Communications Applications Conference (SIU), pp. 483–486 Aydın, E., ̇Ilhan, H. (2015). Relay selection with threshold value for df based cooperative systems. In 23nd Signal Processing and Communications Applications Conference (SIU), pp. 483–486
26.
go back to reference Ibrahim, A. S., Sadek, A. K., Su, W., & Liu, K. J. R. (2008). Cooperative communications with relay-selection: When to cooperate and whom to cooperate with? IEEE Transactions on Wireless Communications, 7(7), 2814–2827.CrossRef Ibrahim, A. S., Sadek, A. K., Su, W., & Liu, K. J. R. (2008). Cooperative communications with relay-selection: When to cooperate and whom to cooperate with? IEEE Transactions on Wireless Communications, 7(7), 2814–2827.CrossRef
27.
go back to reference Zhao, Z.-Q., Zheng, P., Xu, S.-T., & Wu, X. (2019). Object detection with deep learning: A review. IEEE Transactions on Neural Networks and Learning Systems, 30(11), 3212–3232.CrossRef Zhao, Z.-Q., Zheng, P., Xu, S.-T., & Wu, X. (2019). Object detection with deep learning: A review. IEEE Transactions on Neural Networks and Learning Systems, 30(11), 3212–3232.CrossRef
28.
go back to reference Wang, T., Wen, C.-K., Wang, H., Gao, F., Jiang, T., & Jin, S. (2017). Deep learning for wireless physical layer: Opportunities and challenges. China Communications, 14(11), 92–111.CrossRef Wang, T., Wen, C.-K., Wang, H., Gao, F., Jiang, T., & Jin, S. (2017). Deep learning for wireless physical layer: Opportunities and challenges. China Communications, 14(11), 92–111.CrossRef
29.
go back to reference Wagner, K. H., & McComb, S. (2020). Optical rectifying linear units for back-propagation learning in a deep holographic convolutional neural network. IEEE Journal of Selected Topics in Quantum Electronics, 26(1), 1–18.CrossRef Wagner, K. H., & McComb, S. (2020). Optical rectifying linear units for back-propagation learning in a deep holographic convolutional neural network. IEEE Journal of Selected Topics in Quantum Electronics, 26(1), 1–18.CrossRef
30.
go back to reference Goodfellow, I., Bengio, Y., Courville, A. (2016). Deep Learning. MIT Press Goodfellow, I., Bengio, Y., Courville, A. (2016). Deep Learning. MIT Press
31.
go back to reference Kido, S., Hirano, Y., Hashimoto, N. (2018). Detection and classification of lung abnormalities by use of convolutional neural network (cnn) and regions with cnn features (r-cnn). In International Workshop on Advanced Image Technology (IWAIT), pp. 1–4 Kido, S., Hirano, Y., Hashimoto, N. (2018). Detection and classification of lung abnormalities by use of convolutional neural network (cnn) and regions with cnn features (r-cnn). In International Workshop on Advanced Image Technology (IWAIT), pp. 1–4
32.
go back to reference Samek, W., Montavon, G., Lapuschkin, S., Anders, C.J., M ̈uller, K.-R. (2021). Explaining deep neural networks and beyond: A review of methods and applications. Proceedings of the IEEE 109(3), 247–278 Samek, W., Montavon, G., Lapuschkin, S., Anders, C.J., M ̈uller, K.-R. (2021). Explaining deep neural networks and beyond: A review of methods and applications. Proceedings of the IEEE 109(3), 247–278
33.
go back to reference Karim, F., Majumdar, S., Darabi, H., & Chen, S. (2018). Lstm fully convolutional networks for time series classification. IEEE Access, 6, 1662–1669.CrossRef Karim, F., Majumdar, S., Darabi, H., & Chen, S. (2018). Lstm fully convolutional networks for time series classification. IEEE Access, 6, 1662–1669.CrossRef
36.
go back to reference Ioffe, S., Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv:1502.03167 Ioffe, S., Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv:1502.03167
37.
go back to reference Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(56), 1929–1958.MathSciNet Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(56), 1929–1958.MathSciNet
38.
go back to reference Ibrahim, A. S., Han, Z., & Liu, K. J. R. (2008). Distributed energy-efficient cooperative routing in wireless networks. IEEE Transactions on Wireless Communications, 7(10), 3930–3941.CrossRef Ibrahim, A. S., Han, Z., & Liu, K. J. R. (2008). Distributed energy-efficient cooperative routing in wireless networks. IEEE Transactions on Wireless Communications, 7(10), 3930–3941.CrossRef
39.
go back to reference Du, X., Xiao, Y., Guizani, M., & Chen, H.-H. (2007). An effective key management scheme for heterogeneous sensor networks. Ad Hoc Networks, 5(1), 24–34.CrossRef Du, X., Xiao, Y., Guizani, M., & Chen, H.-H. (2007). An effective key management scheme for heterogeneous sensor networks. Ad Hoc Networks, 5(1), 24–34.CrossRef
Metadata
Title
A Comparative Study of Deep Leaning-Aided Relay Selection Protocols in Cooperative Communication
Authors
Bilgehan Akdemir
Muhammet Ali Karabulut
Hacı İlhan
Publication date
17-06-2024
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 1/2024
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-024-11269-y