Skip to main content
Top
Published in:

14-05-2023 | Original Paper

A comparative study of machine learning algorithms in the prediction of bead geometry in wire-arc additive manufacturing

Authors: Mukesh Chandra, K. E. K. Vimal, Sonu Rajak

Published in: International Journal on Interactive Design and Manufacturing (IJIDeM) | Issue 9/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The article presents a comparative study of machine learning algorithms for predicting bead geometry in wire-arc additive manufacturing. It highlights the importance of machine learning in optimizing manufacturing processes, particularly in predicting the bead width and height in WAAM. The study employs five different ML algorithms—Linear Regression, Decision Tree Regression, Random Forest Regression, XGBoost, and Artificial Neural Networks—to predict the bead geometry based on various input parameters. The research methodology includes data collection, pre-processing, and visualization, followed by hyper-parameter tuning and evaluation of the ML models. The results demonstrate the effectiveness of these algorithms in predicting bead geometry, with some models showing superior performance in terms of accuracy and efficiency. The study concludes by identifying the best-performing algorithms for predicting bead height and width, providing valuable insights for industrial applications in additive manufacturing.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
12.
go back to reference Farias, F.W.C., da Cruz Payão Filho, J., e Oliveira, V.H.P.M.: Prediction of the interpass temperature of a wire arc additive manufactured wall: FEM simulations and artificial neural network. Addit. Manuf. 48, 102387 (2021) Farias, F.W.C., da Cruz Payão Filho, J., e Oliveira, V.H.P.M.: Prediction of the interpass temperature of a wire arc additive manufactured wall: FEM simulations and artificial neural network. Addit. Manuf. 48, 102387 (2021)
24.
go back to reference Venkata Rao, K., Parimi, S., Suvarna Raju, L., Suresh, G.: Modelling and optimization of weld bead geometry in robotic gas metal arc-based additive manufacturing using machine learning, finite-element modelling and graph theory and matrix approach. Soft Comput. 26, 1–15 (2022)CrossRef Venkata Rao, K., Parimi, S., Suvarna Raju, L., Suresh, G.: Modelling and optimization of weld bead geometry in robotic gas metal arc-based additive manufacturing using machine learning, finite-element modelling and graph theory and matrix approach. Soft Comput. 26, 1–15 (2022)CrossRef
27.
go back to reference Deng, J., Xu, Y., Zuo, Z., Hou, Z., Chen, S.: Bead geometry prediction for multi-layer and multi-bead wire and arc additive manufacturing based on XGBoost. In: Transactions on Intelligent Welding Manufacturing, pp. 125–135. Springer, Berlin (2019)CrossRef Deng, J., Xu, Y., Zuo, Z., Hou, Z., Chen, S.: Bead geometry prediction for multi-layer and multi-bead wire and arc additive manufacturing based on XGBoost. In: Transactions on Intelligent Welding Manufacturing, pp. 125–135. Springer, Berlin (2019)CrossRef
37.
go back to reference Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, 2016, pp. 785–794 Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, 2016, pp. 785–794
39.
go back to reference Simon Haykin, C.: (McMaster University, Hamilton, Ontario, Neural Networks - A Comprehensive Foundation - Simon Haykin. 2005. Simon Haykin, C.: (McMaster University, Hamilton, Ontario, Neural Networks - A Comprehensive Foundation - Simon Haykin. 2005.
40.
go back to reference Barrionuevo, G.O., Ramos-grez, J.A., Walczak, M., Betancourt, C.A.: Comparative evaluation of supervised machine learning algorithms in the prediction of the relative density of 316L stainless steel fabricated by selective laser melting. pp. 419–433, 2021 Barrionuevo, G.O., Ramos-grez, J.A., Walczak, M., Betancourt, C.A.: Comparative evaluation of supervised machine learning algorithms in the prediction of the relative density of 316L stainless steel fabricated by selective laser melting. pp. 419–433, 2021
Metadata
Title
A comparative study of machine learning algorithms in the prediction of bead geometry in wire-arc additive manufacturing
Authors
Mukesh Chandra
K. E. K. Vimal
Sonu Rajak
Publication date
14-05-2023
Publisher
Springer Paris
Published in
International Journal on Interactive Design and Manufacturing (IJIDeM) / Issue 9/2024
Print ISSN: 1955-2513
Electronic ISSN: 1955-2505
DOI
https://doi.org/10.1007/s12008-023-01326-4

Premium Partner