Skip to main content
Top
Published in: Archive of Applied Mechanics 12/2018

06-08-2018 | Original

A comparative study of the principal methods for the analytical formulation and the numerical solution of the equations of motion of rigid multibody systems

Authors: Carmine Maria Pappalardo, Domenico Guida

Published in: Archive of Applied Mechanics | Issue 12/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The goal of this investigation is to perform a comparative analysis of the principal methodologies employed for the analytical formulation and the numerical solution of the equations of motion of rigid multibody mechanical systems. In particular, three formulation approaches are considered in this work for the analytical formulation of the equations of motion. The multibody formulation strategies discussed in this paper are the Reference Point Coordinate Formulation with Euler Angles (RPCF-EA), the Reference Point Coordinate Formulation with Euler Parameters (RPCF-EP), and the Natural Absolute Coordinate Formulation (NACF). Moreover, five computational algorithms are considered in this investigation for the development of effective and efficient solution procedures suitable for the numerical solution of the equations of motion. The multibody computational algorithms discussed in this paper are the Augmented Formulation (AF), the Embedding Technique (ET), the Amalgamated Formulation (AMF), the Projection Method (PM), and the Udwadia-Kalaba Equations (UKE). The multibody formulation approaches and solution procedures analyzed in this work are compared in terms of generality, versatility, ease of implementation, accuracy, effectiveness, and efficiency. In order to perform a general comparative study, four benchmark multibody systems are considered as numerical examples. The comparative study carried out in this paper demonstrates that all the methodologies considered can handle general multibody problems, are computationally effective and efficient, and lead to consistent numerical solutions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Schiehlen, W.: Multibody system dynamics: roots and perspectives. Multibody Syst. Dyn. 1(2), 149–188 (1997)MathSciNetMATH Schiehlen, W.: Multibody system dynamics: roots and perspectives. Multibody Syst. Dyn. 1(2), 149–188 (1997)MathSciNetMATH
2.
go back to reference Eberhard, P., Schiehlen, W.: Computational dynamics of multibody systems: history, formalisms, and applications. J. Comput. Nonlinear Dyn. 1(1), 3–12 (2006) Eberhard, P., Schiehlen, W.: Computational dynamics of multibody systems: history, formalisms, and applications. J. Comput. Nonlinear Dyn. 1(1), 3–12 (2006)
3.
go back to reference Hu, W., Tian, Q., Hu, H.: Dynamic simulation of liquid-filled flexible multibody systems via absolute nodal coordinate formulation and SPH method. Nonlinear Dyn. 75(4), 653–671 (2014)MathSciNet Hu, W., Tian, Q., Hu, H.: Dynamic simulation of liquid-filled flexible multibody systems via absolute nodal coordinate formulation and SPH method. Nonlinear Dyn. 75(4), 653–671 (2014)MathSciNet
4.
go back to reference Patel, M., Orzechowski, G., Tian, Q., Shabana, A.A.: A new multibody system approach for tire modeling using ANCF finite elements. Proc. Inst. Mech. Eng. Part K: J. Multi-body Dyn. 230(1), 69–84 (2016) Patel, M., Orzechowski, G., Tian, Q., Shabana, A.A.: A new multibody system approach for tire modeling using ANCF finite elements. Proc. Inst. Mech. Eng. Part K: J. Multi-body Dyn. 230(1), 69–84 (2016)
5.
go back to reference Cammarata, A., Angeles, J., Sinatra, R.: Kinetostatic and inertial conditioning of the McGill Schonflies-motion generator. Adv. Mech. Eng. 2, 186203 (2010) Cammarata, A., Angeles, J., Sinatra, R.: Kinetostatic and inertial conditioning of the McGill Schonflies-motion generator. Adv. Mech. Eng. 2, 186203 (2010)
6.
go back to reference Concilio, A., De Simone, M.C., Rivera, Z.B., Guida, D.: A new semi-active suspension system for racing vehicles. FME Trans. 45(4), 578–584 (2017) Concilio, A., De Simone, M.C., Rivera, Z.B., Guida, D.: A new semi-active suspension system for racing vehicles. FME Trans. 45(4), 578–584 (2017)
7.
go back to reference De Simone, M.C., Russo, S., Rivera, Z.B., Guida, D.: Multibody model of a UAV in presence of wind fields. In: International Conference on Control, Artificial Intelligence, Robotics, and Optimization (ICCAIRO), pp. 83–88. IEEE, Prague, Czech Republic, 20–22 May 2017 (2017) De Simone, M.C., Russo, S., Rivera, Z.B., Guida, D.: Multibody model of a UAV in presence of wind fields. In: International Conference on Control, Artificial Intelligence, Robotics, and Optimization (ICCAIRO), pp. 83–88. IEEE, Prague, Czech Republic, 20–22 May 2017 (2017)
8.
go back to reference Ruggiero, A., Affatato, S., Merola, M., De Simone M.C.: FEM analysis of metal on UHMWPE total hip prosthesis during normal walking cycle. In: Programme and Proceedings of the XXIII Conference of the Italian Association of Theoretical and Applied Mechanics (AIMETA 2017), 4–7 Sep 2017, Salerno, Italy, 2017, pp. 1885–1892 (2017) Ruggiero, A., Affatato, S., Merola, M., De Simone M.C.: FEM analysis of metal on UHMWPE total hip prosthesis during normal walking cycle. In: Programme and Proceedings of the XXIII Conference of the Italian Association of Theoretical and Applied Mechanics (AIMETA 2017), 4–7 Sep 2017, Salerno, Italy, 2017, pp. 1885–1892 (2017)
9.
go back to reference Barbagallo, R., Sequenzia, G., Cammarata, A., Oliveri, S.M., Fatuzzo, G.: Redesign and multibody simulation of a motorcycle rear suspension with eccentric mechanism. Int. J. Interact. Des. Manuf. (IJIDeM) 12(2), 517–524 (2018) Barbagallo, R., Sequenzia, G., Cammarata, A., Oliveri, S.M., Fatuzzo, G.: Redesign and multibody simulation of a motorcycle rear suspension with eccentric mechanism. Int. J. Interact. Des. Manuf. (IJIDeM) 12(2), 517–524 (2018)
10.
go back to reference Barbagallo, R., Sequenzia, G., Oliveri, S.M., Cammarata, A.: Dynamics of a high-performance motorcycle by an advanced multibody/control co-simulation. Proc. Inst. Mech. Eng. Part K: J. Multi-body Dyn. 230(2), 207–221 (2016) Barbagallo, R., Sequenzia, G., Oliveri, S.M., Cammarata, A.: Dynamics of a high-performance motorcycle by an advanced multibody/control co-simulation. Proc. Inst. Mech. Eng. Part K: J. Multi-body Dyn. 230(2), 207–221 (2016)
11.
go back to reference Kulkarni, S., Pappalardo, C.M., Shabana, A.A.: Pantograph/catenary contact formulations. ASME J. Vib. Acoust. 139(1), 011010 (2017) Kulkarni, S., Pappalardo, C.M., Shabana, A.A.: Pantograph/catenary contact formulations. ASME J. Vib. Acoust. 139(1), 011010 (2017)
12.
go back to reference Pappalardo, C.M., Patel, M.D., Tinsley, B., Shabana, A.A.: Contact force control in multibody pantograph/catenary systems. Proc. Inst. Mech. Eng. Part K: J. Multibody Dyn. 230(4), 307–328 (2016) Pappalardo, C.M., Patel, M.D., Tinsley, B., Shabana, A.A.: Contact force control in multibody pantograph/catenary systems. Proc. Inst. Mech. Eng. Part K: J. Multibody Dyn. 230(4), 307–328 (2016)
13.
go back to reference Marques, F., Souto, A.P., Flores, P.: On the constraints violation in forward dynamics of multibody systems. Multibody Syst. Dyn. 39(4), 385–419 (2017)MathSciNetMATH Marques, F., Souto, A.P., Flores, P.: On the constraints violation in forward dynamics of multibody systems. Multibody Syst. Dyn. 39(4), 385–419 (2017)MathSciNetMATH
14.
go back to reference Marques, F., Isaac, F., Dourado, N., Flores, P.: An enhanced formulation to model spatial revolute joints with radial and axial clearances. Mech. Mach. Theory 116, 123–144 (2017) Marques, F., Isaac, F., Dourado, N., Flores, P.: An enhanced formulation to model spatial revolute joints with radial and axial clearances. Mech. Mach. Theory 116, 123–144 (2017)
15.
go back to reference Marques, F., Flores, P., Claro, J.P., Lankarani, H.M.: A survey and comparison of several friction force models for dynamic analysis of multibody mechanical systems. Nonlinear Dyn. 86(3), 1407–1443 (2016)MathSciNet Marques, F., Flores, P., Claro, J.P., Lankarani, H.M.: A survey and comparison of several friction force models for dynamic analysis of multibody mechanical systems. Nonlinear Dyn. 86(3), 1407–1443 (2016)MathSciNet
16.
go back to reference Tian, Q., Flores, P., Lankarani, H.M.: A comprehensive survey of the analytical, numerical and experimental methodologies for dynamics of multibody mechanical systems with clearance or imperfect joints. Mech. Mach. Theory 122, 1–57 (2018) Tian, Q., Flores, P., Lankarani, H.M.: A comprehensive survey of the analytical, numerical and experimental methodologies for dynamics of multibody mechanical systems with clearance or imperfect joints. Mech. Mach. Theory 122, 1–57 (2018)
17.
go back to reference Tian, Q., Zhang, Y., Chen, L., Flores, P.: Dynamics of spatial flexible multibody systems with clearance and lubricated spherical joints. Comput. Struct. 87(13–14), 913–929 (2009) Tian, Q., Zhang, Y., Chen, L., Flores, P.: Dynamics of spatial flexible multibody systems with clearance and lubricated spherical joints. Comput. Struct. 87(13–14), 913–929 (2009)
18.
go back to reference Tian, Q., Zhang, Y., Chen, L., Yang, J.J.: Simulation of planar flexible multibody systems with clearance and lubricated revolute joints. Nonlinear Dyn. 60(4), 489–511 (2010)MATH Tian, Q., Zhang, Y., Chen, L., Yang, J.J.: Simulation of planar flexible multibody systems with clearance and lubricated revolute joints. Nonlinear Dyn. 60(4), 489–511 (2010)MATH
19.
go back to reference Cammarata, A.: A novel method to determine position and orientation errors in clearance-affected overconstrained mechanisms. Mech. Mach. Theory 118, 247–264 (2017) Cammarata, A.: A novel method to determine position and orientation errors in clearance-affected overconstrained mechanisms. Mech. Mach. Theory 118, 247–264 (2017)
20.
go back to reference De Simone, M.C., Guida, D.: On the development of a low cost device for retrofitting tracked vehicles for autonomous navigation. In: Programme and Proceedings of the XXIII Conference of the Italian Association of Theoretical and Applied Mechanics (AIMETA 2017), 4–7 Sep 2017, Salerno, Italy, 2017, pp. 71–82 (2017) De Simone, M.C., Guida, D.: On the development of a low cost device for retrofitting tracked vehicles for autonomous navigation. In: Programme and Proceedings of the XXIII Conference of the Italian Association of Theoretical and Applied Mechanics (AIMETA 2017), 4–7 Sep 2017, Salerno, Italy, 2017, pp. 71–82 (2017)
21.
go back to reference Tian, Q., Sun, Y., Liu, C., Hu, H., Flores, P.: Elastohydrodynamic lubricated cylindrical joints for rigid-flexible multibody dynamics. Comput. Struct. 114, 106–120 (2013) Tian, Q., Sun, Y., Liu, C., Hu, H., Flores, P.: Elastohydrodynamic lubricated cylindrical joints for rigid-flexible multibody dynamics. Comput. Struct. 114, 106–120 (2013)
22.
go back to reference Virlez, G., Bruls, O., Tromme, E., Duysinx, P.: Modeling joints with clearance and friction in multibody dynamic simulation of automotive differentials. Theor. Appl. Mech. Lett. 3(1), 013003 (2013)MATH Virlez, G., Bruls, O., Tromme, E., Duysinx, P.: Modeling joints with clearance and friction in multibody dynamic simulation of automotive differentials. Theor. Appl. Mech. Lett. 3(1), 013003 (2013)MATH
23.
go back to reference De Simone, M.C., Guida, D.: Dry friction influence on structure dynamics. In: COMPDYN 2015: 5th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, 2015, pp. 4483–4491 (2015) De Simone, M.C., Guida, D.: Dry friction influence on structure dynamics. In: COMPDYN 2015: 5th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, 2015, pp. 4483–4491 (2015)
24.
go back to reference De Simone, M.C., Guida, D.: Modal coupling in presence of dry friction. Machines 6(1), 8 (2018) De Simone, M.C., Guida, D.: Modal coupling in presence of dry friction. Machines 6(1), 8 (2018)
25.
go back to reference Villecco, F., Pellegrino, A.: Evaluation of uncertainties in the design process of complex mechanical systems. Entropy 19(9), 475 (2017) Villecco, F., Pellegrino, A.: Evaluation of uncertainties in the design process of complex mechanical systems. Entropy 19(9), 475 (2017)
26.
go back to reference Villecco, F., Pellegrino, A.: Entropic measure of epistemic uncertainties in multibody system models by axiomatic design. Entropy 19(7), 291 (2017) Villecco, F., Pellegrino, A.: Entropic measure of epistemic uncertainties in multibody system models by axiomatic design. Entropy 19(7), 291 (2017)
27.
go back to reference Formato, A., Ianniello, D., Villecco, F., Lenza, T.L.L., Guida, D.: Design optimization of the plough working surface by computerized mathematical model. Emir. J. Food Agric. 29, 36–44 (2017) Formato, A., Ianniello, D., Villecco, F., Lenza, T.L.L., Guida, D.: Design optimization of the plough working surface by computerized mathematical model. Emir. J. Food Agric. 29, 36–44 (2017)
28.
go back to reference Lan, P., Liu, M.: Integration of computer aided design and analysis using the absolute nodal coordinate formulation. In: IEEE International Conference on Intelligent Computation Technology and Automation (ICICTA), vol. 1, pp. 159–162 (2011) Lan, P., Liu, M.: Integration of computer aided design and analysis using the absolute nodal coordinate formulation. In: IEEE International Conference on Intelligent Computation Technology and Automation (ICICTA), vol. 1, pp. 159–162 (2011)
29.
go back to reference Mikkola, A., Shabana, A.A., Sanchez-Rebollo, C., Jimenez-Octavio, J.R.: Comparison between ANCF and B-spline surfaces. Multibody Syst. Dyn. 30(2), 119–138 (2013)MathSciNet Mikkola, A., Shabana, A.A., Sanchez-Rebollo, C., Jimenez-Octavio, J.R.: Comparison between ANCF and B-spline surfaces. Multibody Syst. Dyn. 30(2), 119–138 (2013)MathSciNet
30.
go back to reference Tian, Q., Chen, L.P., Zhang, Y.Q., Yang, J.: An efficient hybrid method for multibody dynamics simulation based on absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 4(2), 021009 (2009) Tian, Q., Chen, L.P., Zhang, Y.Q., Yang, J.: An efficient hybrid method for multibody dynamics simulation based on absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 4(2), 021009 (2009)
31.
go back to reference Liu, C., Tian, Q., Hu, H.: Dynamics and control of a spatial rigid-flexible multibody system with multiple cylindrical clearance joints. Mech. Mach. Theory 52, 106–129 (2012) Liu, C., Tian, Q., Hu, H.: Dynamics and control of a spatial rigid-flexible multibody system with multiple cylindrical clearance joints. Mech. Mach. Theory 52, 106–129 (2012)
32.
go back to reference Tian, Q., Zhang, Y., Chen, L.P., Yang, J.: Two-link flexible manipulator modelling and tip trajectory tracking based on the absolute nodal coordinate method. Int. J. Robot. Autom. 24(2), 103 (2009) Tian, Q., Zhang, Y., Chen, L.P., Yang, J.: Two-link flexible manipulator modelling and tip trajectory tracking based on the absolute nodal coordinate method. Int. J. Robot. Autom. 24(2), 103 (2009)
33.
go back to reference Wang, Z., Tian, Q., Hu, H.: Dynamics of spatial rigid-flexible multibody systems with uncertain interval parameters. Nonlinear Dyn. 84(2), 527–548 (2016)MathSciNetMATH Wang, Z., Tian, Q., Hu, H.: Dynamics of spatial rigid-flexible multibody systems with uncertain interval parameters. Nonlinear Dyn. 84(2), 527–548 (2016)MathSciNetMATH
34.
go back to reference De Simone, M.C., Guida, D.: Identification and control of an unmanned ground vehicle by using Arduino. UPB Sci. Bull. Ser. D: Mech. Eng. 80(1), 141–154 (2018) De Simone, M.C., Guida, D.: Identification and control of an unmanned ground vehicle by using Arduino. UPB Sci. Bull. Ser. D: Mech. Eng. 80(1), 141–154 (2018)
35.
go back to reference Sharifzadeh, M., Timpone, F., Farnam, A., Senatore, A., Akbari, A.: Tyre-road adherence conditions estimation for intelligent vehicle safety applications. In: Mechanisms and Machine Science, vol. 47, pp. 389–398. Springer, Cham (2017) Sharifzadeh, M., Timpone, F., Farnam, A., Senatore, A., Akbari, A.: Tyre-road adherence conditions estimation for intelligent vehicle safety applications. In: Mechanisms and Machine Science, vol. 47, pp. 389–398. Springer, Cham (2017)
36.
go back to reference Sharifzadeh, M., Akbari, A., Timpone, F., Daryani, R.: Vehicle tyre/road interaction modeling and identification of its parameters using real-time trust-region methods. IFAC-PapersOnLine 49(3), 111–116 (2016)MathSciNet Sharifzadeh, M., Akbari, A., Timpone, F., Daryani, R.: Vehicle tyre/road interaction modeling and identification of its parameters using real-time trust-region methods. IFAC-PapersOnLine 49(3), 111–116 (2016)MathSciNet
37.
go back to reference Quatrano, A., De Simone, M.C., Rivera, Z.B., Guida, D.: Development and implementation of a control system for a retrofitted CNC machine by using Arduino. FME Trans. 45(4), 578–584 (2017) Quatrano, A., De Simone, M.C., Rivera, Z.B., Guida, D.: Development and implementation of a control system for a retrofitted CNC machine by using Arduino. FME Trans. 45(4), 578–584 (2017)
38.
go back to reference Ruggiero, A., De Simone, M.C., Russo, D., Guida, D.: Sound pressure measurement of orchestral instruments in the concert hall of a public school. Int. J. Circuits Syst. Signal Process. 10, 75–812 (2016) Ruggiero, A., De Simone, M.C., Russo, D., Guida, D.: Sound pressure measurement of orchestral instruments in the concert hall of a public school. Int. J. Circuits Syst. Signal Process. 10, 75–812 (2016)
39.
go back to reference Pappalardo, C.M., Guida, D.: Adjoint-based optimization procedure for active vibration control of nonlinear mechanical systems. ASME J. Dyn. Syst. Meas. Control 139(8), 081010 (2017) Pappalardo, C.M., Guida, D.: Adjoint-based optimization procedure for active vibration control of nonlinear mechanical systems. ASME J. Dyn. Syst. Meas. Control 139(8), 081010 (2017)
40.
go back to reference Pappalardo, C.M., Guida, D.: Control of nonlinear vibrations using the adjoint method. Meccanica 52(11–12), 2503–2526 (2017)MathSciNetMATH Pappalardo, C.M., Guida, D.: Control of nonlinear vibrations using the adjoint method. Meccanica 52(11–12), 2503–2526 (2017)MathSciNetMATH
41.
go back to reference Guida, D., Pappalardo, C.M.: A new control algorithm for active suspension systems featuring hysteresis. FME Trans. 41(4), 285–290 (2013) Guida, D., Pappalardo, C.M.: A new control algorithm for active suspension systems featuring hysteresis. FME Trans. 41(4), 285–290 (2013)
42.
go back to reference Guida, D., Pappalardo, C.M.: Control design of an active suspension system for a quarter-car model with hysteresis. J. Vib. Eng. Technol. 3(3), 277–299 (2015) Guida, D., Pappalardo, C.M.: Control design of an active suspension system for a quarter-car model with hysteresis. J. Vib. Eng. Technol. 3(3), 277–299 (2015)
43.
go back to reference Strano, S., Terzo, M.: A SDRE-based tracking control for a hydraulic actuation system. Mech. Syst. Signal Process. 60, 715–726 (2015) Strano, S., Terzo, M.: A SDRE-based tracking control for a hydraulic actuation system. Mech. Syst. Signal Process. 60, 715–726 (2015)
44.
go back to reference Strano, S., Terzo, M.: A first order model based control of a hydraulic seismic isolator test rig. Eng. Lett. 21(2), 52–60 (2013) Strano, S., Terzo, M.: A first order model based control of a hydraulic seismic isolator test rig. Eng. Lett. 21(2), 52–60 (2013)
45.
go back to reference Guida, D., Nilvetti, F., Pappalardo, C.M.: Parameter identification of a two degrees of freedom mechanical system. Int. J. Mech. 3(2), 23–30 (2009) Guida, D., Nilvetti, F., Pappalardo, C.M.: Parameter identification of a two degrees of freedom mechanical system. Int. J. Mech. 3(2), 23–30 (2009)
46.
go back to reference Guida, D., Pappalardo, C.M.: Sommerfeld and mass parameter identification of lubricated journal bearing. WSEAS Trans. Appl. Theor. Mech. 4(4), 205–214 (2009) Guida, D., Pappalardo, C.M.: Sommerfeld and mass parameter identification of lubricated journal bearing. WSEAS Trans. Appl. Theor. Mech. 4(4), 205–214 (2009)
47.
go back to reference Pappalardo, C.M., Guida, D.: System identification and experimental modal analysis of a frame structure. Eng. Lett. 26(1), 56–68 (2018) Pappalardo, C.M., Guida, D.: System identification and experimental modal analysis of a frame structure. Eng. Lett. 26(1), 56–68 (2018)
48.
go back to reference Pappalardo, C.M., Guida, D.: System identification algorithm for computing the modal parameters of linear mechanical systems. Machines 6(2), 12 (2018) Pappalardo, C.M., Guida, D.: System identification algorithm for computing the modal parameters of linear mechanical systems. Machines 6(2), 12 (2018)
49.
go back to reference Strano, S., Terzo, M.: On the real-time estimation of the wheel-rail contact force by means of a new nonlinear estimator design model. Mech. Syst. Signal Process. 105, 391–403 (2018) Strano, S., Terzo, M.: On the real-time estimation of the wheel-rail contact force by means of a new nonlinear estimator design model. Mech. Syst. Signal Process. 105, 391–403 (2018)
50.
go back to reference Palomba, I., Richiedei, D., Trevisani, A.: Kinematic state estimation for rigid-link multibody systems by means of nonlinear constraint equations. Multibody Syst. Dyn. 40(1), 1–22 (2017)MathSciNetMATH Palomba, I., Richiedei, D., Trevisani, A.: Kinematic state estimation for rigid-link multibody systems by means of nonlinear constraint equations. Multibody Syst. Dyn. 40(1), 1–22 (2017)MathSciNetMATH
51.
go back to reference Palomba, I., Richiedei, D., Trevisani, A.: Two-stage approach to state and force estimation in rigid-link multibody systems. Multibody Syst. Dyn. 39(1–2), 115–134 (2017)MathSciNetMATH Palomba, I., Richiedei, D., Trevisani, A.: Two-stage approach to state and force estimation in rigid-link multibody systems. Multibody Syst. Dyn. 39(1–2), 115–134 (2017)MathSciNetMATH
52.
go back to reference Sun, J., Tian, Q., Hu, H.: Structural optimization of flexible components in a flexible multibody system modeled via ANCF. Mech. Mach. Theory 104, 59–80 (2016) Sun, J., Tian, Q., Hu, H.: Structural optimization of flexible components in a flexible multibody system modeled via ANCF. Mech. Mach. Theory 104, 59–80 (2016)
53.
go back to reference Tian, Q., Liu, C., Machado, M., Flores, P.: A new model for dry and lubricated cylindrical joints with clearance in spatial flexible multibody systems. Nonlinear Dyn. 64(1–2), 25–47 (2011)MATH Tian, Q., Liu, C., Machado, M., Flores, P.: A new model for dry and lubricated cylindrical joints with clearance in spatial flexible multibody systems. Nonlinear Dyn. 64(1–2), 25–47 (2011)MATH
54.
go back to reference Guida, D., Nilvetti, F., Pappalardo, C.M.: Instability induced by dry friction. Int. J. Mech. 3(3), 44–51 (2009) Guida, D., Nilvetti, F., Pappalardo, C.M.: Instability induced by dry friction. Int. J. Mech. 3(3), 44–51 (2009)
55.
go back to reference Guida, D., Nilvetti, F., Pappalardo, C.M.: Dry friction influence on cart pendulum dynamics. Int. J. Mech. 3(2), 31–38 (2009) Guida, D., Nilvetti, F., Pappalardo, C.M.: Dry friction influence on cart pendulum dynamics. Int. J. Mech. 3(2), 31–38 (2009)
56.
go back to reference Shabana, A.A.: Comput. Contin. Mech., 3rd edn. Wiley, New York (2018) Shabana, A.A.: Comput. Contin. Mech., 3rd edn. Wiley, New York (2018)
57.
go back to reference Shabana, A.A.: Definition of ANCF finite elements. J. Comput. Nonlinear Dyn. 10(5), 054506 (2015) Shabana, A.A.: Definition of ANCF finite elements. J. Comput. Nonlinear Dyn. 10(5), 054506 (2015)
58.
go back to reference Nachbagauer, K.: State of the art of ANCF elements regarding geometric description, interpolation strategies, definition of elastic forces, validation and the locking phenomenon in comparison with proposed beam finite elements. Arch. Comput. Methods Eng. 21(3), 293–319 (2014)MathSciNetMATH Nachbagauer, K.: State of the art of ANCF elements regarding geometric description, interpolation strategies, definition of elastic forces, validation and the locking phenomenon in comparison with proposed beam finite elements. Arch. Comput. Methods Eng. 21(3), 293–319 (2014)MathSciNetMATH
59.
go back to reference Nachbagauer, K., Gruber, P., Gerstmayr, J.: Structural and continuum mechanics approaches for a 3D shear deformable ANCF beam finite element: application to static and linearized dynamic examples. J. Comput. Nonlinear Dyn. 8(2), 021004 (2013) Nachbagauer, K., Gruber, P., Gerstmayr, J.: Structural and continuum mechanics approaches for a 3D shear deformable ANCF beam finite element: application to static and linearized dynamic examples. J. Comput. Nonlinear Dyn. 8(2), 021004 (2013)
60.
go back to reference De Simone, M.C., Rivera, Z.B., Guida, D.: Finite element analysis on squeal-noise in railway applications. FME Trans. 46(1), 93–100 (2018) De Simone, M.C., Rivera, Z.B., Guida, D.: Finite element analysis on squeal-noise in railway applications. FME Trans. 46(1), 93–100 (2018)
61.
go back to reference Lan, P., Shabana, A.A.: Integration of B-spline geometry and ANCF finite element analysis. Nonlinear Dyn. 61(1–2), 193–206 (2010)MathSciNetMATH Lan, P., Shabana, A.A.: Integration of B-spline geometry and ANCF finite element analysis. Nonlinear Dyn. 61(1–2), 193–206 (2010)MathSciNetMATH
62.
go back to reference Pappalardo, C.M., Zhang, Z., Shabana, A.A.: Use of independent volume parameters in the development of new large displacement ANCF triangular plate/shell elements. Nonlinear Dyn. 91(4), 2171–2202 (2018) Pappalardo, C.M., Zhang, Z., Shabana, A.A.: Use of independent volume parameters in the development of new large displacement ANCF triangular plate/shell elements. Nonlinear Dyn. 91(4), 2171–2202 (2018)
63.
go back to reference Pappalardo, C.M., Wang, T., Shabana, A.A.: Development of ANCF tetrahedral finite elements for the nonlinear dynamics of flexible structures. Nonlinear Dyn. 89(4), 2905–2932 (2017)MathSciNetMATH Pappalardo, C.M., Wang, T., Shabana, A.A.: Development of ANCF tetrahedral finite elements for the nonlinear dynamics of flexible structures. Nonlinear Dyn. 89(4), 2905–2932 (2017)MathSciNetMATH
64.
go back to reference Pappalardo, C.M., Wang, T., Shabana, A.A.: On the formulation of the planar ANCF triangular finite elements. Nonlinear Dyn. 89(2), 1019–1045 (2017)MathSciNetMATH Pappalardo, C.M., Wang, T., Shabana, A.A.: On the formulation of the planar ANCF triangular finite elements. Nonlinear Dyn. 89(2), 1019–1045 (2017)MathSciNetMATH
65.
go back to reference Nachbagauer, K., Pechstein, A.S., Irschik, H., Gerstmayr, J.: A mew locking-free formulation for planar, shear deformable, linear and quadratic beam finite elements based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 26(3), 245–263 (2011)MATH Nachbagauer, K., Pechstein, A.S., Irschik, H., Gerstmayr, J.: A mew locking-free formulation for planar, shear deformable, linear and quadratic beam finite elements based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 26(3), 245–263 (2011)MATH
66.
go back to reference Pappalardo, C.M., Wallin, M., Shabana, A.A.: A new ANCF/CRBF fully parametrized plate finite element. ASME J. Comput. Nonlinear Dyn. 12(3), 031008 (2017) Pappalardo, C.M., Wallin, M., Shabana, A.A.: A new ANCF/CRBF fully parametrized plate finite element. ASME J. Comput. Nonlinear Dyn. 12(3), 031008 (2017)
67.
go back to reference Pappalardo, C.M., Yu, Z., Zhang, X., Shabana, A.A.: Rational ANCF thin plate finite element. ASME J. Comput. Nonlinear Dyn. 11(5), 051009 (2016) Pappalardo, C.M., Yu, Z., Zhang, X., Shabana, A.A.: Rational ANCF thin plate finite element. ASME J. Comput. Nonlinear Dyn. 11(5), 051009 (2016)
68.
go back to reference Flores, P., Lankarani, H.M.: Multibody systems formulation. In: Solid Mechanics and its Applications, vol. 226, pp. 23–45. Springer, Berlin (2016) Flores, P., Lankarani, H.M.: Multibody systems formulation. In: Solid Mechanics and its Applications, vol. 226, pp. 23–45. Springer, Berlin (2016)
69.
go back to reference Nikravesh, P.E.: An overview of several formulations for multibody dynamics. In: Product Engineering: Eco-Design, Technologies and Green Energy, pp. 189–226. Springer (2005) Nikravesh, P.E.: An overview of several formulations for multibody dynamics. In: Product Engineering: Eco-Design, Technologies and Green Energy, pp. 189–226. Springer (2005)
70.
go back to reference Pappalardo, C.M.: A natural absolute coordinate formulation for the kinematic and dynamic analysis of rigid multibody systems. Nonlinear Dyn. 81(4), 1841–1869 (2015)MathSciNetMATH Pappalardo, C.M.: A natural absolute coordinate formulation for the kinematic and dynamic analysis of rigid multibody systems. Nonlinear Dyn. 81(4), 1841–1869 (2015)MathSciNetMATH
71.
go back to reference Garcia De Jalon, J.G., Unda, J., Avello, A.: Natural coordinates for the computer analysis of multibody systems. Comput. Methods Appl. Mech. Eng. 56(3), 309–327 (1986)MATH Garcia De Jalon, J.G., Unda, J., Avello, A.: Natural coordinates for the computer analysis of multibody systems. Comput. Methods Appl. Mech. Eng. 56(3), 309–327 (1986)MATH
72.
go back to reference Garcia De Jalon, J.G.: Twenty-five years of natural coordinates. Multibody Syst. Dyn. 18(1), 15–33 (2007)MathSciNetMATH Garcia De Jalon, J.G.: Twenty-five years of natural coordinates. Multibody Syst. Dyn. 18(1), 15–33 (2007)MathSciNetMATH
73.
go back to reference Udwadia, F.E., Schutte, A.D.: Equations of motion for general constrained systems in Lagrangian mechanics. Acta Mech. 213(1–2), 111–129 (2010)MATH Udwadia, F.E., Schutte, A.D.: Equations of motion for general constrained systems in Lagrangian mechanics. Acta Mech. 213(1–2), 111–129 (2010)MATH
74.
go back to reference Kalaba, R.E., Udwadia, F.E.: Equations of motion for nonholonomic, constrained dynamical systems via Gauss principle. J. Appl. Mech. 60(3), 662–668 (1993)MathSciNetMATH Kalaba, R.E., Udwadia, F.E.: Equations of motion for nonholonomic, constrained dynamical systems via Gauss principle. J. Appl. Mech. 60(3), 662–668 (1993)MathSciNetMATH
75.
go back to reference Udwadia, F.E., Phohomsiri, P.: Explicit equations of motion for constrained mechanical systems with singular mass matrices and applications to multi-body dynamics. Proc. R. Soc. A: Math. Phys. Eng. Sci. 462(2071), 2097–2117 (2006)MathSciNetMATH Udwadia, F.E., Phohomsiri, P.: Explicit equations of motion for constrained mechanical systems with singular mass matrices and applications to multi-body dynamics. Proc. R. Soc. A: Math. Phys. Eng. Sci. 462(2071), 2097–2117 (2006)MathSciNetMATH
76.
go back to reference Udwadia, F.E., Koganti, P.B.: Dynamics and control of a multi-body planar pendulum. Nonlinear Dyn. 81(1–2), 845–866 (2015)MathSciNet Udwadia, F.E., Koganti, P.B.: Dynamics and control of a multi-body planar pendulum. Nonlinear Dyn. 81(1–2), 845–866 (2015)MathSciNet
77.
go back to reference Guida, D., Pappalardo, C.M.: Forward and inverse dynamics of nonholonomic mechanical systems. Meccanica 49(7), 1547–1559 (2014)MathSciNetMATH Guida, D., Pappalardo, C.M.: Forward and inverse dynamics of nonholonomic mechanical systems. Meccanica 49(7), 1547–1559 (2014)MathSciNetMATH
78.
go back to reference Pappalardo, C.M., Guida, D.: Dynamic analysis of planar rigid multibody systems modeled using natural absolute coordinates. Appl. Comput. Mech. 12, 73–110 (2018) Pappalardo, C.M., Guida, D.: Dynamic analysis of planar rigid multibody systems modeled using natural absolute coordinates. Appl. Comput. Mech. 12, 73–110 (2018)
79.
go back to reference Shampine, L.F.: Numerical Solution of Ordinary Differential Equations. CRC Press, Cambridge (1994)MATH Shampine, L.F.: Numerical Solution of Ordinary Differential Equations. CRC Press, Cambridge (1994)MATH
80.
go back to reference Pappalardo, C.M., Guida, D.: On the Lagrange multipliers of the intrinsic constraint equations of rigid multibody mechanical systems. Arch. Appl. Mech. 88(3), 419–451 (2017) Pappalardo, C.M., Guida, D.: On the Lagrange multipliers of the intrinsic constraint equations of rigid multibody mechanical systems. Arch. Appl. Mech. 88(3), 419–451 (2017)
81.
go back to reference Shabana, A.A.: Dynamics of Multibody Systems. Cambridge University Press, Cambridge (2013)MATH Shabana, A.A.: Dynamics of Multibody Systems. Cambridge University Press, Cambridge (2013)MATH
82.
go back to reference Shabana, A.A.: Computational Dynamics. Wiley, New York (2009)MATH Shabana, A.A.: Computational Dynamics. Wiley, New York (2009)MATH
83.
go back to reference Garcia De Jalon, J.G., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems: The Real-time Challenge. Springer, New York (2012) Garcia De Jalon, J.G., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems: The Real-time Challenge. Springer, New York (2012)
84.
go back to reference Udwadia, F.E., Kalaba, R.E.: Analytical Dynamics: A New Approach. Cambridge University Press, Cambridge (2007)MATH Udwadia, F.E., Kalaba, R.E.: Analytical Dynamics: A New Approach. Cambridge University Press, Cambridge (2007)MATH
85.
go back to reference De Falco, D., Pennestrí, E., Vita, L.: Investigation of the influence of pseudoinverse matrix calculations on multibody dynamics simulations by means of the Udwadia–Kalaba formulation. J. Aerosp. Eng. 22(4), 365–372 (2009) De Falco, D., Pennestrí, E., Vita, L.: Investigation of the influence of pseudoinverse matrix calculations on multibody dynamics simulations by means of the Udwadia–Kalaba formulation. J. Aerosp. Eng. 22(4), 365–372 (2009)
86.
go back to reference Pappalardo, C.M., Guida, D.: On the use of two-dimensional Euler parameters for the dynamic simulation of planar rigid multibody systems. Arch. Appl. Mech. 87(10), 1647–1665 (2017) Pappalardo, C.M., Guida, D.: On the use of two-dimensional Euler parameters for the dynamic simulation of planar rigid multibody systems. Arch. Appl. Mech. 87(10), 1647–1665 (2017)
87.
go back to reference Wehage, R.A., Haug, E.: Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems. J. Mech. Des. 104(1), 247–255 (1982) Wehage, R.A., Haug, E.: Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems. J. Mech. Des. 104(1), 247–255 (1982)
88.
go back to reference Wehage, K.T., Wehage, R.A., Ravani, B.: Generalized coordinate partitioning for complex mechanisms based on kinematic substructuring. Mech. Mach. Theory 92, 464–483 (2015) Wehage, K.T., Wehage, R.A., Ravani, B.: Generalized coordinate partitioning for complex mechanisms based on kinematic substructuring. Mech. Mach. Theory 92, 464–483 (2015)
89.
go back to reference Wehage, K., Ravani, B.: A computational method for formulation and solution of dynamical equations for complex mechanisms and multibody systems. In: ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, p. V05AT08A031 (2017) Wehage, K., Ravani, B.: A computational method for formulation and solution of dynamical equations for complex mechanisms and multibody systems. In: ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, p. V05AT08A031 (2017)
90.
go back to reference Press, W.H., Teukolsky, S.A.: Numerical Recipes: The Art of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge (2007)MATH Press, W.H., Teukolsky, S.A.: Numerical Recipes: The Art of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge (2007)MATH
Metadata
Title
A comparative study of the principal methods for the analytical formulation and the numerical solution of the equations of motion of rigid multibody systems
Authors
Carmine Maria Pappalardo
Domenico Guida
Publication date
06-08-2018
Publisher
Springer Berlin Heidelberg
Published in
Archive of Applied Mechanics / Issue 12/2018
Print ISSN: 0939-1533
Electronic ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-018-1441-3

Other articles of this Issue 12/2018

Archive of Applied Mechanics 12/2018 Go to the issue

Premium Partners