Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 13/2021

10-09-2021 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

A Comparative Study on Misorientations to Determine the Extent of Recrystallization in Pure ETP Copper

Authors: N. Harshavardhana, S. P. Sundar Singh Sivam, Gulshan Kumar, Ashish Kumar Saxena

Published in: Physics of Metals and Metallography | Issue 13/2021

Login to get access
share
SHARE

Abstract

In electron backscatter diffraction (EBSD), kernel average misorientation (KAM), grain average misorientation (GAM), and grain orientation spread (GOS) are considered as the reflection of the extent of recrystallization. This work presents a comparative study of KAM, GAM, and GOS to bring out the best-suited parameter to determine the extent of recrystallization in pure copper. The pure ETP (electrolytic tough pitch) copper samples were characterized through EBSD at three different states: (i) deformed (ii) partially recrystallized and (iii) fully recrystallized. The result shows that the GOS found to be dominating over KAM and GAM in distinguishing the strain-free and deformed grains for pure ETP copper. The cut-off point for delineating the deformed and the strain-free grains has also been determined and applied to low percentage deformation study where higher mechanical strength and electrical conductivity is achieved than the as-received sample.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 15 Tage kostenlos.

Literature
1.
go back to reference F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena (Pergamon, Oxford, 2004). F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena (Pergamon, Oxford, 2004).
2.
go back to reference M. Segarra, M. Martínez, M. A. Fernández, J. M. Chimenos, F. Espiell, N. Sirvent, and O. Guixà, “Kinetic equation describing the annealing process of copper,” J. Mater. Sci. 40, 4483–4487 (2005). CrossRef M. Segarra, M. Martínez, M. A. Fernández, J. M. Chimenos, F. Espiell, N. Sirvent, and O. Guixà, “Kinetic equation describing the annealing process of copper,” J. Mater. Sci. 40, 4483–4487 (2005). CrossRef
3.
go back to reference R. K. Islamgaliev, K. M. Nesterov, and R. Z. Valiev, “Structure, strength, and electric conductivity of a Cu‒Cr copper-based alloy subjected to severe plastic deformation,” Phys. Met. Metallogr. 116, 209–218 (2015). CrossRef R. K. Islamgaliev, K. M. Nesterov, and R. Z. Valiev, “Structure, strength, and electric conductivity of a Cu‒Cr copper-based alloy subjected to severe plastic deformation,” Phys. Met. Metallogr. 116, 209–218 (2015). CrossRef
4.
go back to reference H. Jazaeri and F. J. Humphreys, “Quantifying recrystallization by electron backscatter diffraction,” J. Microsc. 213, 241–246 (2004). CrossRef H. Jazaeri and F. J. Humphreys, “Quantifying recrystallization by electron backscatter diffraction,” J. Microsc. 213, 241–246 (2004). CrossRef
5.
go back to reference T. N. Kon’kova, S. Y. Mironova, V. N. Danilenko, and A. V. Korznikov, “Effect of Low Temperature Rolling on the Structure of Copper,” Phys. Met. Metallogr. 110, 318–330 (2010). CrossRef T. N. Kon’kova, S. Y. Mironova, V. N. Danilenko, and A. V. Korznikov, “Effect of Low Temperature Rolling on the Structure of Copper,” Phys. Met. Metallogr. 110, 318–330 (2010). CrossRef
6.
go back to reference R. Garg, N. P. Gurao, S. Ranganathan, and S. Suwas, “Evolution of texture and grain boundary microstructure in two-phase (α+β) brass during recrystallization,” Philos. Mag. 91, 4089–4108 (2011). CrossRef R. Garg, N. P. Gurao, S. Ranganathan, and S. Suwas, “Evolution of texture and grain boundary microstructure in two-phase (α+β) brass during recrystallization,” Philos. Mag. 91, 4089–4108 (2011). CrossRef
7.
go back to reference R. Yoda, T. Yokomaku, and N. Tsuji, “Plastic deformation and creep damage evaluations of type 316 austenitic stainless steels by EBSD,” Mater. Charact. 61, 913–922 (2010). CrossRef R. Yoda, T. Yokomaku, and N. Tsuji, “Plastic deformation and creep damage evaluations of type 316 austenitic stainless steels by EBSD,” Mater. Charact. 61, 913–922 (2010). CrossRef
8.
go back to reference D. N. Githinji, PhD thesis (The Open University, 2014). D. N. Githinji, PhD thesis (The Open University, 2014).
9.
go back to reference S. I. Wright, M. M. Nowell, and D. P. Field, “A review of strain analysis using electron backscatter diffraction. Microsc. Microanal,” 17, 316–329 (2011). CrossRef S. I. Wright, M. M. Nowell, and D. P. Field, “A review of strain analysis using electron backscatter diffraction. Microsc. Microanal,” 17, 316–329 (2011). CrossRef
10.
go back to reference M. Kamaya, A. J. Wilkinson, and J. M. Titchmarsh, “Quantification of plastic strain of stainless steel and nickel alloy by electron backscatter diffraction,” Acta Mater. 54, 539–548 (2006). CrossRef M. Kamaya, A. J. Wilkinson, and J. M. Titchmarsh, “Quantification of plastic strain of stainless steel and nickel alloy by electron backscatter diffraction,” Acta Mater. 54, 539–548 (2006). CrossRef
11.
go back to reference R. Kakimoto, M. Koyama, and K. Tsuzaki, “EBSD- and ECCI-based assessments of inhomogeneous plastic strain evolution coupled with digital image correlation,” ISIJ Int. 59, 2334–2342 (2019). CrossRef R. Kakimoto, M. Koyama, and K. Tsuzaki, “EBSD- and ECCI-based assessments of inhomogeneous plastic strain evolution coupled with digital image correlation,” ISIJ Int. 59, 2334–2342 (2019). CrossRef
12.
go back to reference D. P. Field, L. T. Bradford, M. M. Nowell, and T. M. Lillo, “The role of annealing twins during recrystallization of Cu,” Acta Mater. 55, 4233–4241 (2007). CrossRef D. P. Field, L. T. Bradford, M. M. Nowell, and T. M. Lillo, “The role of annealing twins during recrystallization of Cu,” Acta Mater. 55, 4233–4241 (2007). CrossRef
13.
go back to reference N. Harshavardhana, M.P. Gururajan, and P. Pant, “Microstructure engineering to optimize hardness and conductivity in electrolytic tough pitch copper,” Metall. Mater. Trans. A 50, 3566–3577 (2019). CrossRef N. Harshavardhana, M.P. Gururajan, and P. Pant, “Microstructure engineering to optimize hardness and conductivity in electrolytic tough pitch copper,” Metall. Mater. Trans. A 50, 3566–3577 (2019). CrossRef
14.
go back to reference H. Lin, Y. Chen, D. Chen, and J. Kuo, “Effect of cold deformation on the recrystallization behavior of FePd alloy at the ordering temperature using electron backscatter diffraction,” Mater. Charact. 94, 138–148 (2014). CrossRef H. Lin, Y. Chen, D. Chen, and J. Kuo, “Effect of cold deformation on the recrystallization behavior of FePd alloy at the ordering temperature using electron backscatter diffraction,” Mater. Charact. 94, 138–148 (2014). CrossRef
15.
go back to reference R. Unnikrishnan, PhD thesis (The Open University, 2019). R. Unnikrishnan, PhD thesis (The Open University, 2019).
16.
go back to reference S. Mandal, P. V. Sivaprasad, and V. S. Sarma, “Dynamic recrystallization in a Ti modified austenitic stainless steel during high strain rate deformation,” Mater. Manuf. Process. 25, 54–59 (2010). CrossRef S. Mandal, P. V. Sivaprasad, and V. S. Sarma, “Dynamic recrystallization in a Ti modified austenitic stainless steel during high strain rate deformation,” Mater. Manuf. Process. 25, 54–59 (2010). CrossRef
17.
go back to reference M. H. Alvi, S. Cheong, H. Weiland, and A. D. Rollett, “Microstructural evolution during recrystallization in hot rolled aluminum alloy 1050,” Proc. from Mater. Solut. Conf. 2003 1st Int. Symp. Metall. Model. Alum. Alloy (2003), pp. 191–197. M. H. Alvi, S. Cheong, H. Weiland, and A. D. Rollett, “Microstructural evolution during recrystallization in hot rolled aluminum alloy 1050,” Proc. from Mater. Solut. Conf. 2003 1st Int. Symp. Metall. Model. Alum. Alloy (2003), pp. 191–197.
18.
go back to reference K. Radwański, “Application of FEG-SEM and EBSD methods for the analysis of the restoration processes occurring during continuous annealing of dual-phase steel strips,” Steel Res. Int. 86, 1379–1390 (2015). CrossRef K. Radwański, “Application of FEG-SEM and EBSD methods for the analysis of the restoration processes occurring during continuous annealing of dual-phase steel strips,” Steel Res. Int. 86, 1379–1390 (2015). CrossRef
19.
go back to reference T. Konkova, S. Mironova, A. Korznikov, and S. L. Semiatin, “On the room-temperature annealing of cryogenically rolled copper,” Mater. Sci. Eng. A. 528, 7432–7443 (2011). CrossRef T. Konkova, S. Mironova, A. Korznikov, and S. L. Semiatin, “On the room-temperature annealing of cryogenically rolled copper,” Mater. Sci. Eng. A. 528, 7432–7443 (2011). CrossRef
20.
go back to reference Aashranth B, M. A. Davinci, D. Samantaray, U. Borah, S. K. Albert, “A new critical point on the stress-strain curve : Delineation of dynamic recrystallization from grain growth,” Mater. Des. 116, 495–503 (2017). CrossRef Aashranth B, M. A. Davinci, D. Samantaray, U. Borah, S. K. Albert, “A new critical point on the stress-strain curve : Delineation of dynamic recrystallization from grain growth,” Mater. Des. 116, 495–503 (2017). CrossRef
21.
go back to reference A. Hadadzadeh, F. Mokdad, M. A. Wells, and D. L. Chen, “A new grain orientation spread approach to analyze the dynamic recrystallization behavior of a cast-homogenized Mg–Zn–Zr alloy using electron backscattered diffraction,” Mater. Sci. Eng., A 709, 285–289 (2018). CrossRef A. Hadadzadeh, F. Mokdad, M. A. Wells, and D. L. Chen, “A new grain orientation spread approach to analyze the dynamic recrystallization behavior of a cast-homogenized Mg–Zn–Zr alloy using electron backscattered diffraction,” Mater. Sci. Eng., A 709, 285–289 (2018). CrossRef
22.
go back to reference M. H. Alvi, S. W. Cheong, H. Weiland, and A. D. Rollett, “Recrystallization and texture development in hot rolled 1050 aluminum,” Mater. Sci. Forum 467, 357–362 (2004). CrossRef M. H. Alvi, S. W. Cheong, H. Weiland, and A. D. Rollett, “Recrystallization and texture development in hot rolled 1050 aluminum,” Mater. Sci. Forum 467, 357–362 (2004). CrossRef
23.
go back to reference Sepideh Abolghasem, S. Basu, and M. R. Shankar, “Quantifying the progression of dynamic recrystallization in severe shear deformation at high strain rates,” J. Mater. Res. 28, 2056–2069 (2013). CrossRef Sepideh Abolghasem, S. Basu, and M. R. Shankar, “Quantifying the progression of dynamic recrystallization in severe shear deformation at high strain rates,” J. Mater. Res. 28, 2056–2069 (2013). CrossRef
24.
go back to reference M. V. Degtyarev, V. P. Pilyugin, T. I. Chashchukhina, and L. M. Voronova, “Structure of iron deformed at 250°C by torsion under a pressure,” Phys. Met. Metallogr. 120, 1193–1199 (2019). CrossRef M. V. Degtyarev, V. P. Pilyugin, T. I. Chashchukhina, and L. M. Voronova, “Structure of iron deformed at 250°C by torsion under a pressure,” Phys. Met. Metallogr. 120, 1193–1199 (2019). CrossRef
25.
go back to reference F. M. Castro Cerda, F. Vercruysse, T. N. Minh, L. Kestens, A. Monsalve, and R. Petrov, “The effect of heating rate on the recrystallization behavior in cold rolled ultra low carbon steel,” Steel Res. Int. 88, 1–9 (2017). CrossRef F. M. Castro Cerda, F. Vercruysse, T. N. Minh, L. Kestens, A. Monsalve, and R. Petrov, “The effect of heating rate on the recrystallization behavior in cold rolled ultra low carbon steel,” Steel Res. Int. 88, 1–9 (2017). CrossRef
26.
go back to reference J. Cho, H. Ha, and K. Oh, “Recrystallization and grain growth of cold-rolled gold sheet,” Metall. Mater. Trans. A 36, 3415–3425 (2005). CrossRef J. Cho, H. Ha, and K. Oh, “Recrystallization and grain growth of cold-rolled gold sheet,” Metall. Mater. Trans. A 36, 3415–3425 (2005). CrossRef
27.
go back to reference H. Mirzadeh, J. M. Cabrera, A. Najafizadeh, and P. R. Calvillo, “EBSD study of a hot deformed austenitic stainless steel,” Mater. Sci. Eng., A 538, 236–245 (2012). CrossRef H. Mirzadeh, J. M. Cabrera, A. Najafizadeh, and P. R. Calvillo, “EBSD study of a hot deformed austenitic stainless steel,” Mater. Sci. Eng., A 538, 236–245 (2012). CrossRef
28.
go back to reference Y. Zhong, F. Yin, T. Sakaguchi, K. Nagai, and K. Yang, “Dislocation structure evolution and characterization in the compression deformed Mn-Cu alloy,” Acta Mater. 55, 2747–2756 (2007). CrossRef Y. Zhong, F. Yin, T. Sakaguchi, K. Nagai, and K. Yang, “Dislocation structure evolution and characterization in the compression deformed Mn-Cu alloy,” Acta Mater. 55, 2747–2756 (2007). CrossRef
29.
go back to reference Y. H. Jo, S. Jung, W. M. Choi, S. S. Sohn, H. S. Kim, B. J. Lee, N. J. Kim, and S. Lee, “Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy,” Nat. Commun. 8, 1–8 (2017). CrossRef Y. H. Jo, S. Jung, W. M. Choi, S. S. Sohn, H. S. Kim, B. J. Lee, N. J. Kim, and S. Lee, “Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy,” Nat. Commun. 8, 1–8 (2017). CrossRef
30.
go back to reference S. Zaefferer, P. Romano, and F. Friedel, “EBSD as a tool to identify and quantify bainite and ferrite in low-alloyed Al-TRIP steels,” J. Microsc. 230, 499–508 (2008). CrossRef S. Zaefferer, P. Romano, and F. Friedel, “EBSD as a tool to identify and quantify bainite and ferrite in low-alloyed Al-TRIP steels,” J. Microsc. 230, 499–508 (2008). CrossRef
31.
go back to reference R. James, A. Walter, D. Robert, K. Diederik, and I. Jane, “Microstructure effects on the recrystallization of low-symmetry alpha-uranium,” J. Nucl. Mater. 465, 189–195 (2015). CrossRef R. James, A. Walter, D. Robert, K. Diederik, and I. Jane, “Microstructure effects on the recrystallization of low-symmetry alpha-uranium,” J. Nucl. Mater. 465, 189–195 (2015). CrossRef
32.
go back to reference T. B. Britton, S. Birosca, M. Preuss, and A. J. Wilkinson, “Electron backscatter diffraction study of dislocation content of a macrozone in hot-rolled Ti – 6Al – 4V alloy,” Scr. Mater. 62, 639–642 (2010). CrossRef T. B. Britton, S. Birosca, M. Preuss, and A. J. Wilkinson, “Electron backscatter diffraction study of dislocation content of a macrozone in hot-rolled Ti – 6Al – 4V alloy,” Scr. Mater. 62, 639–642 (2010). CrossRef
33.
go back to reference M. Eskandari, M. A. Mohtadi-Bonab, A. Zarei-Hanzaki, J. A. Szpunar, and R. Basu, “Texture and microstructure development of tensile deformed high-mn steel during early stage of recrystallization,” Phys. Met. Metallogr. 120, 32–40 (2019). CrossRef M. Eskandari, M. A. Mohtadi-Bonab, A. Zarei-Hanzaki, J. A. Szpunar, and R. Basu, “Texture and microstructure development of tensile deformed high-mn steel during early stage of recrystallization,” Phys. Met. Metallogr. 120, 32–40 (2019). CrossRef
34.
go back to reference M. Rout, R. Ranjan, S. K. Pal, and S. B. Singh, “EBSD study of microstructure evolution during axisymmetric hot compression of 304LN stainless steel,” Mater. Sci. Eng., A 711, 378–388 (2018). CrossRef M. Rout, R. Ranjan, S. K. Pal, and S. B. Singh, “EBSD study of microstructure evolution during axisymmetric hot compression of 304LN stainless steel,” Mater. Sci. Eng., A 711, 378–388 (2018). CrossRef
35.
go back to reference J. Bouquerel, B. Diawara, A. Dubois, M. Dubar, J. Vogt, and D. Najjar, “Investigations of the microstructural response to a cold forging process of the 6082-T6 alloy,” Mater. Des. 68, 245–258 (2014). CrossRef J. Bouquerel, B. Diawara, A. Dubois, M. Dubar, J. Vogt, and D. Najjar, “Investigations of the microstructural response to a cold forging process of the 6082-T6 alloy,” Mater. Des. 68, 245–258 (2014). CrossRef
36.
go back to reference F. Cruz-Gandarilla, A. M. Salcedo-Garrido, R. E. Bolmaro, T. Baudin, N. S. De Vincentis, M. Avalos, J. G. Cabañas-Moreno, and H. Mendoza-Leon, “Microstructural evolution and mechanical properties on an ARB processed if steel studied by X‑ray diffraction and EBSD,” Mater. Charact. 118, 332–339 (2016). CrossRef F. Cruz-Gandarilla, A. M. Salcedo-Garrido, R. E. Bolmaro, T. Baudin, N. S. De Vincentis, M. Avalos, J. G. Cabañas-Moreno, and H. Mendoza-Leon, “Microstructural evolution and mechanical properties on an ARB processed if steel studied by X‑ray diffraction and EBSD,” Mater. Charact. 118, 332–339 (2016). CrossRef
Metadata
Title
A Comparative Study on Misorientations to Determine the Extent of Recrystallization in Pure ETP Copper
Authors
N. Harshavardhana
S. P. Sundar Singh Sivam
Gulshan Kumar
Ashish Kumar Saxena
Publication date
10-09-2021
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 13/2021
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X20140094