Skip to main content
Top
Published in: Mechanics of Composite Materials 1/2022

23-03-2022

A Comparative Study on the Failure Criteria for Predicting the Damage Initiation in Fiber-Reinforced Composites

Authors: J. Zheng, C. Maharaj, J. Liu, H. Chai, H. Liu, J. P. Dear

Published in: Mechanics of Composite Materials | Issue 1/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this research, the maximum stress, Hashin, Puck, LaRC03, and Northwestern University (NU) criteria are analyzed based literature data, analytical results obtained using a MATLAB program and numerical results obtained from an Abaqus finite-element model. The applicability and reliability of these failure criteria for predicting damage in thermoplastic laminates are evaluated based on analytical and numerical results. According to numerical results, the maximum stress criterion provided the most conservative prediction, but the Hashin and Northwestern University (NU) criteria gave reasonable and sensible outcomes at an acceptable running time. The Puck and LaRC03 criteria showed more accurate predictions, but at longer running times.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. J. Hinton and P. D. Soden, “Predicting failure in composite laminates: The background to the exercise,” Composite Science and Technology, 58, 1001–1010 (1998).CrossRef M. J. Hinton and P. D. Soden, “Predicting failure in composite laminates: The background to the exercise,” Composite Science and Technology, 58, 1001–1010 (1998).CrossRef
2.
go back to reference M. J. Hinton, A. S. Kaddour, and P. D. Soden, “Evaluation of failure prediction in composite laminates: Background to Part (B) of the exercise,” Composite Science and Technology, 62, 1481–1488 (2002).CrossRef M. J. Hinton, A. S. Kaddour, and P. D. Soden, “Evaluation of failure prediction in composite laminates: Background to Part (B) of the exercise,” Composite Science and Technology, 62, 1481–1488 (2002).CrossRef
3.
go back to reference M. J. Hinton, A. S. Kaddour, and P. D. Soden, Failure Criteria in Fiber Reinforced Polymer Composites: The World-Wide Failure Exercise, Elsevier Science, Oxford (2004). M. J. Hinton, A. S. Kaddour, and P. D. Soden, Failure Criteria in Fiber Reinforced Polymer Composites: The World-Wide Failure Exercise, Elsevier Science, Oxford (2004).
4.
go back to reference M. J. Hinton, A. S. Kaddour, and P. D. Soden, “Evaluation of failure prediction in composite laminates: Background to Part C of the exercise,” Composite Science and Technology, 64, 321–328 (2004).CrossRef M. J. Hinton, A. S. Kaddour, and P. D. Soden, “Evaluation of failure prediction in composite laminates: Background to Part C of the exercise,” Composite Science and Technology, 64, 321–328 (2004).CrossRef
5.
go back to reference M. J. Hinton, A. S. Kaddour, and P. D. Soden, “A further assessment of the predictive capabilities of current failure theories for composite laminates: Comparison with experimental evidence,” Composite Science and Technology, 64, 549–588 (2004).CrossRef M. J. Hinton, A. S. Kaddour, and P. D. Soden, “A further assessment of the predictive capabilities of current failure theories for composite laminates: Comparison with experimental evidence,” Composite Science and Technology, 64, 549–588 (2004).CrossRef
6.
go back to reference A. S. Kaddour and M. J. Hinton, “Evaluation of theories for predicting failure in polymer composite laminates under 3-D states of stress: Part A of the second world-wide failure exercise (WWFE-II),” Journal of Composite Materials, 46, 19–20 (2012).CrossRef A. S. Kaddour and M. J. Hinton, “Evaluation of theories for predicting failure in polymer composite laminates under 3-D states of stress: Part A of the second world-wide failure exercise (WWFE-II),” Journal of Composite Materials, 46, 19–20 (2012).CrossRef
7.
go back to reference A. S. Kaddour, M. J. Hinton, P. A. Smith, and S. Li, “Matrix cracking criteria for fiber reinforced polymer composites: Part A of the 3rd world-wide failure exercise,” Journal of Composite Materials, 47, 20–21 (2013). A. S. Kaddour, M. J. Hinton, P. A. Smith, and S. Li, “Matrix cracking criteria for fiber reinforced polymer composites: Part A of the 3rd world-wide failure exercise,” Journal of Composite Materials, 47, 20–21 (2013).
8.
go back to reference R. Talreja, “Assessment of the fundamentals of failure theories for composite materials,” Composite Science and Technology, 105, 190-201 (2014).CrossRef R. Talreja, “Assessment of the fundamentals of failure theories for composite materials,” Composite Science and Technology, 105, 190-201 (2014).CrossRef
9.
go back to reference C. T. Sun, B. J. Quinn, and J. Tao, Comparative evaluation of failure analysis methods for composite laminates, DOT/FAA/AR-95/109 (1996). C. T. Sun, B. J. Quinn, and J. Tao, Comparative evaluation of failure analysis methods for composite laminates, DOT/FAA/AR-95/109 (1996).
10.
go back to reference F. T. Erskine, G. M. Bernstein, S. M. Brylow, W. T. Newbold, and R. C. Gauss, The place for thermoplastic composites in structural components, National Materials Advisory Board, National Research Council, AD-A189 149 (1987). F. T. Erskine, G. M. Bernstein, S. M. Brylow, W. T. Newbold, and R. C. Gauss, The place for thermoplastic composites in structural components, National Materials Advisory Board, National Research Council, AD-A189 149 (1987).
11.
go back to reference S. Béland, High Performance Thermoplastic Resins and Their Composites, William Andrew Publishing (2002). S. Béland, High Performance Thermoplastic Resins and Their Composites, William Andrew Publishing (2002).
12.
go back to reference J. D. Schaefer and I. M. Daniel, “Strain-rate-dependent yield criteria for progressive failure analysis of composite laminates based on the Northwestern failure theory,” Experimental Mechanics, 58, 487-497 (2018).CrossRef J. D. Schaefer and I. M. Daniel, “Strain-rate-dependent yield criteria for progressive failure analysis of composite laminates based on the Northwestern failure theory,” Experimental Mechanics, 58, 487-497 (2018).CrossRef
13.
go back to reference I. M. Daniel, S. M. Daniel, and J. S. Fenner, “A new yield and failure theory for composite materials under static and dynamic loading,” International Journal of Solids and Structures, 148, 79-93 (2018).CrossRef I. M. Daniel, S. M. Daniel, and J. S. Fenner, “A new yield and failure theory for composite materials under static and dynamic loading,” International Journal of Solids and Structures, 148, 79-93 (2018).CrossRef
14.
go back to reference X. Li, D. Ma, H. Liu, W. Tan, X. Gong, C. Zhang, and Y. Li, “Assessment of failure criteria and damage evolution methods for composite laminates under low-velocity impact,” Composite Structures, 207, 727-739 (2019).CrossRef X. Li, D. Ma, H. Liu, W. Tan, X. Gong, C. Zhang, and Y. Li, “Assessment of failure criteria and damage evolution methods for composite laminates under low-velocity impact,” Composite Structures, 207, 727-739 (2019).CrossRef
15.
go back to reference C. T. Sun and G. Chen, “Elastic-plastic finite element analysis of thermoplastic composite plates and shells,” AIAA Journal, 30, 513–518 (1992).CrossRef C. T. Sun and G. Chen, “Elastic-plastic finite element analysis of thermoplastic composite plates and shells,” AIAA Journal, 30, 513–518 (1992).CrossRef
16.
go back to reference W. Tan and B. G. Falzon, “Modelling the nonlinear behaviour and fracture process of AS4/PEKK thermoplastic composite under shear loading,” Composite Science and Technology, 126, 60-77 (2016).CrossRef W. Tan and B. G. Falzon, “Modelling the nonlinear behaviour and fracture process of AS4/PEKK thermoplastic composite under shear loading,” Composite Science and Technology, 126, 60-77 (2016).CrossRef
17.
go back to reference H. Liu, B. G. Falzon, S. Li, W. Tan, J. Liu, H. Chai, B. R. K. Blackman, and J. P. Dear, “Compressive failure of woven fabric reinforced thermoplastic composites with an open-hole: An experimental and numerical study,” Composite Structures, 213, 108-117 (2019).CrossRef H. Liu, B. G. Falzon, S. Li, W. Tan, J. Liu, H. Chai, B. R. K. Blackman, and J. P. Dear, “Compressive failure of woven fabric reinforced thermoplastic composites with an open-hole: An experimental and numerical study,” Composite Structures, 213, 108-117 (2019).CrossRef
18.
go back to reference I. M. Daniel and O. Ishai, Engineering Mechanics of Composite Materials, Oxford University Press, New York (2006). I. M. Daniel and O. Ishai, Engineering Mechanics of Composite Materials, Oxford University Press, New York (2006).
19.
go back to reference P. A. Zinoviev, S. V. Grigoriev, O. V. Lebedeva, and L. P. Tairova, “The strength of multi-layered composites under a plane-stress state,” Composite Science and Technology, 58, 1209-1223 (1998).CrossRef P. A. Zinoviev, S. V. Grigoriev, O. V. Lebedeva, and L. P. Tairova, “The strength of multi-layered composites under a plane-stress state,” Composite Science and Technology, 58, 1209-1223 (1998).CrossRef
20.
go back to reference P. Zinoviev, O. V. Lebedeva, and L. R. Tairova, “Coupled analysis of experimental and theoretical on the deformation and failure of laminated composites under a plane state of stress,” Composite Science and Technology, 62, 1711-1724 (2002).CrossRef P. Zinoviev, O. V. Lebedeva, and L. R. Tairova, “Coupled analysis of experimental and theoretical on the deformation and failure of laminated composites under a plane state of stress,” Composite Science and Technology, 62, 1711-1724 (2002).CrossRef
21.
go back to reference T. A. Bogetti, R. C. P. Hoppel, V. M. Harik, J. F. Newill, and B. P. Burns, “Predicting the nonlinear response and progressive failure of composite laminates,” Composite Science and Technology, 64, 329-342 (2004).CrossRef T. A. Bogetti, R. C. P. Hoppel, V. M. Harik, J. F. Newill, and B. P. Burns, “Predicting the nonlinear response and progressive failure of composite laminates,” Composite Science and Technology, 64, 329-342 (2004).CrossRef
22.
go back to reference T. A. Bogetti, R. C. P. Hoppel, V. M. Harik, J. F. Newill, and B. P. Burns, “Predicting the nonlinear response and failure of composite laminates: Correlation with experimental results,” Composite Science and Technology, 64, 477-485 (2004).CrossRef T. A. Bogetti, R. C. P. Hoppel, V. M. Harik, J. F. Newill, and B. P. Burns, “Predicting the nonlinear response and failure of composite laminates: Correlation with experimental results,” Composite Science and Technology, 64, 477-485 (2004).CrossRef
23.
go back to reference A. Puck and H. Schürmann, “Failure Analysis of FRP Laminates by means of physically based phenomenological models,” Composite Science and Technology, 58, 1045-1067 (1998).CrossRef A. Puck and H. Schürmann, “Failure Analysis of FRP Laminates by means of physically based phenomenological models,” Composite Science and Technology, 58, 1045-1067 (1998).CrossRef
24.
go back to reference A. Puck and H. Schürmann, “Failure analysis of FRP laminates by means of physically based phenomenological models,” Composite Science and Technology, 62, 1633-1662 (2002).CrossRef A. Puck and H. Schürmann, “Failure analysis of FRP laminates by means of physically based phenomenological models,” Composite Science and Technology, 62, 1633-1662 (2002).CrossRef
25.
go back to reference R. G. Cuntze and A. Freund, “The predictive capability of failure mode concept-based strength criteria for multidirectional laminates,” Composites Science and Technology, 64, 343-377 (2004).CrossRef R. G. Cuntze and A. Freund, “The predictive capability of failure mode concept-based strength criteria for multidirectional laminates,” Composites Science and Technology, 64, 343-377 (2004).CrossRef
26.
go back to reference R. G. Cuntze, “The predictive capability of failure mode concept-based strength criteria for multi-directional laminates - Part B,” Composites Science and Technology, 64, 487-516 (2004).CrossRef R. G. Cuntze, “The predictive capability of failure mode concept-based strength criteria for multi-directional laminates - Part B,” Composites Science and Technology, 64, 487-516 (2004).CrossRef
27.
go back to reference K. S. Liu and S. W. Tsai, “A progressive quadratic failure criterion of a laminate,” Composites Science and Technology, 58, 1023–1032 (1998).CrossRef K. S. Liu and S. W. Tsai, “A progressive quadratic failure criterion of a laminate,” Composites Science and Technology, 58, 1023–1032 (1998).CrossRef
28.
go back to reference R. Talreja, “Assessment of the fundamentals of failure theories for composite materials,” Composite Science and Technology, 105, 190-201 (2014).CrossRef R. Talreja, “Assessment of the fundamentals of failure theories for composite materials,” Composite Science and Technology, 105, 190-201 (2014).CrossRef
29.
go back to reference S. W. Tsai, Strength characteristics of composite materials, NASA/CR-224, Washington D.C. (1965). S. W. Tsai, Strength characteristics of composite materials, NASA/CR-224, Washington D.C. (1965).
30.
go back to reference Z. Hashin, “Failure criteria for unidirectional fiber composites,” Journal of Applied Mechanics, 47, 329-334 (1980).CrossRef Z. Hashin, “Failure criteria for unidirectional fiber composites,” Journal of Applied Mechanics, 47, 329-334 (1980).CrossRef
31.
go back to reference G. Catalanotti, P. P. Camanho, and A. T. Marques, “Three-dimensional failure criteria for fiber- reinforced laminates,” Composite Structures, 95, 63-79 (2013).CrossRef G. Catalanotti, P. P. Camanho, and A. T. Marques, “Three-dimensional failure criteria for fiber- reinforced laminates,” Composite Structures, 95, 63-79 (2013).CrossRef
32.
go back to reference C. G. Davila, Failure Criteria for FRP Laminates in Plane Stress, NASA/TM-2003 0212663 (2003). C. G. Davila, Failure Criteria for FRP Laminates in Plane Stress, NASA/TM-2003 0212663 (2003).
33.
go back to reference O. Hoffman, “The brittle strength of orthotropic materials,” Journal of Composite Materials, 1, 200-206 (1967).CrossRef O. Hoffman, “The brittle strength of orthotropic materials,” Journal of Composite Materials, 1, 200-206 (1967).CrossRef
34.
go back to reference M. R. Garnich and V. M. K. Akula, “Review of degradation models for progressive failure analysis of fiber reinforced polymer composites,” Applied Mechanics Reviews, 62, 1-33 (2009).CrossRef M. R. Garnich and V. M. K. Akula, “Review of degradation models for progressive failure analysis of fiber reinforced polymer composites,” Applied Mechanics Reviews, 62, 1-33 (2009).CrossRef
35.
go back to reference Z. Hashin and A. Rotem, “A fatigue failure criterion for fiber reinforced materials,” Composite Materials, 7, 448-464 (1973).CrossRef Z. Hashin and A. Rotem, “A fatigue failure criterion for fiber reinforced materials,” Composite Materials, 7, 448-464 (1973).CrossRef
36.
go back to reference H. Jiang, Y. Ren, Z. Liu, S. Zhang, and X. Wang, “Evaluations of failure initiation criteria for predicting damages of composite structures under crushing loading,” Journal of Reinforced Plastics and Composites, 37, 1279-1303 (2018).CrossRef H. Jiang, Y. Ren, Z. Liu, S. Zhang, and X. Wang, “Evaluations of failure initiation criteria for predicting damages of composite structures under crushing loading,” Journal of Reinforced Plastics and Composites, 37, 1279-1303 (2018).CrossRef
37.
go back to reference A. Gliszczynski and T. Kubiak, “Load-carrying capacity of thin-walled composite beams subjected to pure bending,” Thin-Walled Structures, 115, 76-85 (2017).CrossRef A. Gliszczynski and T. Kubiak, “Load-carrying capacity of thin-walled composite beams subjected to pure bending,” Thin-Walled Structures, 115, 76-85 (2017).CrossRef
38.
go back to reference J. Gu and P. Chen, “Some modifications of Hashin failure criteria for unidirectional composite materials,” Composite Structures, 182, 143-152 (2017).CrossRef J. Gu and P. Chen, “Some modifications of Hashin failure criteria for unidirectional composite materials,” Composite Structures, 182, 143-152 (2017).CrossRef
39.
go back to reference F. L. Chaht, M. Mokhtari, and H. Benzaama, “Using a Hashin Criteria to predict the damage of composite notched plate under traction and torsion behavior,” Frattura ed Integrità Strutturale, 50, 331-341 (2019).CrossRef F. L. Chaht, M. Mokhtari, and H. Benzaama, “Using a Hashin Criteria to predict the damage of composite notched plate under traction and torsion behavior,” Frattura ed Integrità Strutturale, 50, 331-341 (2019).CrossRef
40.
go back to reference N. Li and C. Ju, “Mode-independent and mode-interactive failure criteria for unidirectional composites based on strain energy density,” Polymers, 12, 2813 (2020).CrossRef N. Li and C. Ju, “Mode-independent and mode-interactive failure criteria for unidirectional composites based on strain energy density,” Polymers, 12, 2813 (2020).CrossRef
41.
go back to reference J. D. Schaefer, B. T. Werner, and I. M. Daniel, “Progressive failure analysis of multi-directional composite laminates based on the strain-rate-dependent Northwestern Failure Theory,” In: P. Thakre, R. Singh, and G. Slipher (eds) Mechanics of Composite and Multi-functional Materials, Volume 6. Conference Proceedings of the Society for Experimental Mechanics Series. Springer (2017). J. D. Schaefer, B. T. Werner, and I. M. Daniel, “Progressive failure analysis of multi-directional composite laminates based on the strain-rate-dependent Northwestern Failure Theory,” In: P. Thakre, R. Singh, and G. Slipher (eds) Mechanics of Composite and Multi-functional Materials, Volume 6. Conference Proceedings of the Society for Experimental Mechanics Series. Springer (2017).
42.
go back to reference J. Reinoso, G. Catalanotti, A. Blázquez, P. Areias, P. P. Camanho, and F. París, “A consistent anisotropic damage model for laminated fiber-reinforced composites using the 3D-version of the Puck failure criterion,” International Journal of Solids and Structures, 126, 37-53 (2017).CrossRef J. Reinoso, G. Catalanotti, A. Blázquez, P. Areias, P. P. Camanho, and F. París, “A consistent anisotropic damage model for laminated fiber-reinforced composites using the 3D-version of the Puck failure criterion,” International Journal of Solids and Structures, 126, 37-53 (2017).CrossRef
43.
go back to reference X. Chang, X. Guo, M. Ren, and T. Li, “Micromechanical matrix failure analysis for unidirectional fiber-reinforced composites,” Thin-Walled Structures, 141, 275–282 (2019).CrossRef X. Chang, X. Guo, M. Ren, and T. Li, “Micromechanical matrix failure analysis for unidirectional fiber-reinforced composites,” Thin-Walled Structures, 141, 275–282 (2019).CrossRef
44.
go back to reference Abaqus 2017 documentation. Dassault Systèmes. Provid Rhode Island, USA (2017). Abaqus 2017 documentation. Dassault Systèmes. Provid Rhode Island, USA (2017).
45.
go back to reference C. T. Sun and J. L. Chen, “A simple flow rule for characterizing nonlinear behavior of fiber composites,” Journal of Composite Materials, 23, 1009–1020 (1989).CrossRef C. T. Sun and J. L. Chen, “A simple flow rule for characterizing nonlinear behavior of fiber composites,” Journal of Composite Materials, 23, 1009–1020 (1989).CrossRef
46.
go back to reference H. Liu, B. G. Falzon, and J. P. Dear, “An experimental and numerical study on the crush behaviour of hybrid unidirectional/woven carbon-fiber reinforced composite laminates,” International Journal of Mechanical Sciences, 164, 105160 (2019).CrossRef H. Liu, B. G. Falzon, and J. P. Dear, “An experimental and numerical study on the crush behaviour of hybrid unidirectional/woven carbon-fiber reinforced composite laminates,” International Journal of Mechanical Sciences, 164, 105160 (2019).CrossRef
47.
go back to reference H. Liu, B. G. Falzon, and W. Tan, “Predicting the compression-after-impact (CAI) strength of damage-tolerant hybrid unidirectional/woven carbon-fiber reinforced composite laminates,” Composites Part A: Applied Science and Manufacturing, 105, 189-202 (2018).CrossRef H. Liu, B. G. Falzon, and W. Tan, “Predicting the compression-after-impact (CAI) strength of damage-tolerant hybrid unidirectional/woven carbon-fiber reinforced composite laminates,” Composites Part A: Applied Science and Manufacturing, 105, 189-202 (2018).CrossRef
48.
go back to reference H. Liu, B. G. Falzon, and W. Tan, “Experimental and numerical studies on the impact response of damage-tolerant hybrid unidirectional/woven carbon-fiber reinforced composite laminates,” Composites Part B: Engineering, 136,101-18 (2018).CrossRef H. Liu, B. G. Falzon, and W. Tan, “Experimental and numerical studies on the impact response of damage-tolerant hybrid unidirectional/woven carbon-fiber reinforced composite laminates,” Composites Part B: Engineering, 136,101-18 (2018).CrossRef
Metadata
Title
A Comparative Study on the Failure Criteria for Predicting the Damage Initiation in Fiber-Reinforced Composites
Authors
J. Zheng
C. Maharaj
J. Liu
H. Chai
H. Liu
J. P. Dear
Publication date
23-03-2022
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 1/2022
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-022-10016-3

Other articles of this Issue 1/2022

Mechanics of Composite Materials 1/2022 Go to the issue

Premium Partners