Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2020 | OriginalPaper | Chapter

A Comparison of Generalized Stochastic Milevsky-Promislov Mortality Models with Continuous Non-Gaussian Filters

Authors : Piotr Śliwka, Leslaw Socha

Published in: Computational Science – ICCS 2020

Publisher: Springer International Publishing

share
SHARE

Abstract

The ability to precisely model mortality rates \(\mu _{x,t}\) plays an important role from the economic point of view in healthcare. The aim of this article is to propose a comparison of the estimation of the mortality rates based on a class of stochastic Milevsky-Promislov mortality models. We assume that excitations are modeled by second, fourth and sixth order polynomials of outputs from a linear non-Gaussian filter. To estimate the model parameters we use the first and second moments of \(\mu _{x,t}\). The theoretical values obtained in both cases were compared with theoretical \(\widehat{\mu _{x,t}}\) based on a classical Lee-Carter model. The obtained results confirm the usefulness of the switched model based on the continuous non-Gaussian processes used for modeling \(\mu _{x,t}\).

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Appendix
Available only for authorised users
Literature
1.
go back to reference Booth, H., Tickle, L.: Mortality modelling and forecasting: a review of methods. ADSRI Working Paper 3 (2008) Booth, H., Tickle, L.: Mortality modelling and forecasting: a review of methods. ADSRI Working Paper 3 (2008)
2.
go back to reference Boukas, E.K.: Stochastic Hybrid Systems: Analysis and Design. Birkhauser, Boston (2005) Boukas, E.K.: Stochastic Hybrid Systems: Analysis and Design. Birkhauser, Boston (2005)
3.
go back to reference Cairns, A.J.G., et al.: Modelling and management of mortality risk: a review. Scand. Actuar. J. 2–3, 79–113 (2008) MathSciNetCrossRef Cairns, A.J.G., et al.: Modelling and management of mortality risk: a review. Scand. Actuar. J. 2–3, 79–113 (2008) MathSciNetCrossRef
4.
go back to reference Cairns, A.J.G., et al.: A quantitative comparison of stochastic mortality models using data from England and Wales and the United States. North Am. Actuar. J. 13, 1–35 (2009) MathSciNetCrossRef Cairns, A.J.G., et al.: A quantitative comparison of stochastic mortality models using data from England and Wales and the United States. North Am. Actuar. J. 13, 1–35 (2009) MathSciNetCrossRef
6.
go back to reference Chow, G.C.: Tests of equality between sets of coefficients in two linear regressions. Econometrica 28, 591–605 (1960) MathSciNetCrossRef Chow, G.C.: Tests of equality between sets of coefficients in two linear regressions. Econometrica 28, 591–605 (1960) MathSciNetCrossRef
7.
go back to reference Giacometti, R., et al.: A stochastic model for mortality rate on Italian Data. J. Optim. Theory Appl. 149, 216–228 (2011) MathSciNetCrossRef Giacometti, R., et al.: A stochastic model for mortality rate on Italian Data. J. Optim. Theory Appl. 149, 216–228 (2011) MathSciNetCrossRef
9.
go back to reference Jahangiri, K., et al.: Trend forecasting of main groups of causes-of-death in Iran using the Lee-Carter model. Med. J. Islam. Repub. Iran 32(1), 124 (2018) CrossRef Jahangiri, K., et al.: Trend forecasting of main groups of causes-of-death in Iran using the Lee-Carter model. Med. J. Islam. Repub. Iran 32(1), 124 (2018) CrossRef
10.
go back to reference Keogh, E., et al.: Segmenting time series: a survey and novel approach. In: Last, M., Bunke, H., Kandel, A. (eds.) Data Mining in Time Series Databases, vol. 83, pp. 1–22. World Scientific, Singapore (2004) Keogh, E., et al.: Segmenting time series: a survey and novel approach. In: Last, M., Bunke, H., Kandel, A. (eds.) Data Mining in Time Series Databases, vol. 83, pp. 1–22. World Scientific, Singapore (2004)
11.
go back to reference Lee, R.D., Carter, L.: Modeling and forecasting the time series of U.S. mortality. J. Am. Stat. Assoc. 87, 659–671 (1992) Lee, R.D., Carter, L.: Modeling and forecasting the time series of U.S. mortality. J. Am. Stat. Assoc. 87, 659–671 (1992)
12.
go back to reference Lee, R.D., Miller, T.: Evaluating the performance of the Lee-Carter method for forecasting mortality. Demography 38, 537–549 (2001) CrossRef Lee, R.D., Miller, T.: Evaluating the performance of the Lee-Carter method for forecasting mortality. Demography 38, 537–549 (2001) CrossRef
13.
go back to reference Liberzon, D.: Switching in Systems and Control, Boston, Basel. Birkhauser, Berlin (2003) CrossRef Liberzon, D.: Switching in Systems and Control, Boston, Basel. Birkhauser, Berlin (2003) CrossRef
14.
go back to reference Lovrić, M., et al.: Algorithmic methods for segmentation of time series: an overview. J. Contemp. Econ. Bus. Iss. 1, 31–53 (2014) Lovrić, M., et al.: Algorithmic methods for segmentation of time series: an overview. J. Contemp. Econ. Bus. Iss. 1, 31–53 (2014)
15.
go back to reference Milevsky, M.A., Promislov, S.D.: Mortality derivatives and the option to annuitise. Insur. Math. Econ. 29(3), 299–318 (2001) MathSciNetCrossRef Milevsky, M.A., Promislov, S.D.: Mortality derivatives and the option to annuitise. Insur. Math. Econ. 29(3), 299–318 (2001) MathSciNetCrossRef
16.
go back to reference Renshaw, A., Haberman, S.: Lee-Carter mortality forecasting with age-specific enhancement. Insur. Math. Econ. 33(2), 255–272 (2003) MathSciNetCrossRef Renshaw, A., Haberman, S.: Lee-Carter mortality forecasting with age-specific enhancement. Insur. Math. Econ. 33(2), 255–272 (2003) MathSciNetCrossRef
17.
go back to reference Renshaw, A., Haberman, S.: A cohort-based extension to the Lee-Carter model for mortality reduction factor. Insur. Math. Econ. 38(3), 556–570 (2006) CrossRef Renshaw, A., Haberman, S.: A cohort-based extension to the Lee-Carter model for mortality reduction factor. Insur. Math. Econ. 38(3), 556–570 (2006) CrossRef
18.
go back to reference Rossa, A., Socha, L.: Proposition of a hybrid stochastic Lee-Carter mortality model. Metodol. zvezki (Adv. Methodol. Stat.) 10, 1–17 (2013) Rossa, A., Socha, L.: Proposition of a hybrid stochastic Lee-Carter mortality model. Metodol. zvezki (Adv. Methodol. Stat.) 10, 1–17 (2013)
19.
go back to reference Rossa, A., Socha, L., Szymanski, A.: Hybrid Dynamic and Fuzzy Models of Mortality, 1st edn. WUL, Lodz (2018) Rossa, A., Socha, L., Szymanski, A.: Hybrid Dynamic and Fuzzy Models of Mortality, 1st edn. WUL, Lodz (2018)
21.
go back to reference Sliwka, P.: Proposed methods for modeling the mortgage and reverse mortgage installment. In: Recent Trends in the Real Estate Market and Its Analysis, pp. 189–206. SGH, Warszawa (2018) Sliwka, P.: Proposed methods for modeling the mortgage and reverse mortgage installment. In: Recent Trends in the Real Estate Market and Its Analysis, pp. 189–206. SGH, Warszawa (2018)
Metadata
Title
A Comparison of Generalized Stochastic Milevsky-Promislov Mortality Models with Continuous Non-Gaussian Filters
Authors
Piotr Śliwka
Leslaw Socha
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-50423-6_26