Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

07-02-2020 | Original Article | Issue 8/2020

International Journal of Machine Learning and Cybernetics 8/2020

A competitive swarm optimizer with hybrid encoding for simultaneously optimizing the weights and structure of Extreme Learning Machines for classification problems

Journal:
International Journal of Machine Learning and Cybernetics > Issue 8/2020
Authors:
Mohammed Eshtay, Hossam Faris, Nadim Obeid
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Extreme Learning Machine (ELM) is a learning algorithm proposed recently to train single hidden layer feed forward networks (SLFN). It has many attractive properties that include better generalization performance and very fast learning. ELM starts by assigning random values to the input weights and hidden biases and then in one step it determines the output weights using Moore-Penrose generalized inverse. Despite the aforementioned advantages, ELM performance might be affected by the random initialization of weights and biases or by the large generated network which might contain unnecessary number of neurons. In order to increase the generalization performance and to produce more compact networks, a hybrid model that combines ELM with competitive swarm optimizer (CSO) is proposed in this paper. The proposed model (CSONN-ELM) optimizes the weights and biases and dynamically determines the most appropriate number of neurons. To evaluate the effectiveness of the CSONN-ELM, it is experimented using 23 benchmark datasets, and compared to a set of static rules extracted from literature that are used to determine the number of neurons of SLFN. Moreover, it is compared to two dynamic methods that are used to enhance the performance of ELM, that are Optimally pruned ELM (OP-ELM) and metaheuristic based ELMs (Particle Swarm Optimization-ELM and Differential Evolution-ELM). The obtained results show that the proposed method enhances the generalization performance of ELM and overcomes the static and dynamic methods.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 8/2020

International Journal of Machine Learning and Cybernetics 8/2020 Go to the issue