Skip to main content
Top
Published in: Thermal Engineering 9/2023

01-09-2023 | HEAT AND MASS TRANSFER, PROPERTIES OF WORKING BODIES AND MATERIALS

A Complex Study of Superheated Water Atomization

Authors: Yu. A. Zeigarnik, V. I. Zalkind, V. L. Nizovskii, L. V. Nizovskii, S. S. Shchigel’, I. V. Maslakova

Published in: Thermal Engineering | Issue 9/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The article presents the results obtained from a complex study of heavily superheated water atomization during its discharging through various types of atomizers. A system for optic measurements of the spray cone dispersion structure has been developed and adjusted. The developed measurement system is based on measuring the scattering indicatrix of a probing laser emission in a wide range of angles (±45°) and solving the inverse scattering problem using the Mie theory. The results from a wide-scale experimental study of the spray cone dispersion structures produced by various types of nozzles with a sprayed water temperature of 140‒260°С and pressure at the nozzle exit equal to 0.1 MPa are presented, and the possibility of liquid atomization (to water droplets with a diameter of 5 µm or smaller down to submicrometer size) at high temperatures is shown. It has been found that the spray cone structure has a pronounced bimodal pattern: droplets 5‒8 µm in diameter combine with a submicrometer mode. With a growth of atomized water temperature, the fraction of submicrometer mode increases, reaching 60‒65 wt % at a temperature of 240‒260°С for cylindrical nozzles and 80‒90 wt % for convergent-divergent nozzles. For the case of water injection into the compressor of a gas turbine unit equipped with the TV-117 industrial grade turbine, the possibility of additionally controlling the peak power output has been demonstrated. It makes 4–8% per water flowrate percent (with respect to the air flowrate). The power output control quality is in compliance with the requirements of the UES of Russia network standards. Superheated water is finding an increasingly growing use for firefighting at power industry facilities, in closed premises, in spills of petroleum products, in performing operations with liquefied gas, and in other situations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. Jonsson and J. Yan, “Humidified gas turbines — A review of proposed and implemented cycles,” Energy 30, 1013−1078 (2005). CrossRef M. Jonsson and J. Yan, “Humidified gas turbines — A review of proposed and implemented cycles,” Energy 30, 1013−1078 (2005). CrossRef
2.
go back to reference L. V. Arsen’ev and A. L. Berkovich, “The parameters of gas-turbine units with water injected into the compressor,” Therm. Eng. 43, 461–465 (1996). L. V. Arsen’ev and A. L. Berkovich, “The parameters of gas-turbine units with water injected into the compressor,” Therm. Eng. 43, 461–465 (1996).
3.
go back to reference B. V. Raushenbakh, Physical Principles of the Working Process in Combustion Chambers of Jet Engines (Mashinostroenie, Moscow, 1964; Defense Technical Information Center, Ft. Belvoir, 1967). B. V. Raushenbakh, Physical Principles of the Working Process in Combustion Chambers of Jet Engines (Mashinostroenie, Moscow, 1964; Defense Technical Information Center, Ft. Belvoir, 1967).
4.
go back to reference M. Chacker, C. B. Meher, and T. Mee, “Inlet fogging of gas turbine engines. Part 2. Fog droplet sizing analysis, nozzle types, measurment and testing,” ASME J. Eng. Gas Turbines Power 126, 550−570 (2004). M. Chacker, C. B. Meher, and T. Mee, “Inlet fogging of gas turbine engines. Part 2. Fog droplet sizing analysis, nozzle types, measurment and testing,” ASME J. Eng. Gas Turbines Power 126, 550−570 (2004).
5.
go back to reference “The TopHat turbine cycle,” Mod. Power Syst., Apr., 35−37 (2001). https://​www.​modernpowersyste​ms.​com/​ features/featurethe-tophat-turbine-cycle/ “The TopHat turbine cycle,” Mod. Power Syst., Apr., 35−37 (2001). https://​www.​modernpowersyste​ms.​com/​ features/featurethe-tophat-turbine-cycle/
6.
go back to reference L. A. Dombrovskii, V. I. Zalkind, Yu. A. Zeigarnik, D. V. Marinichev, V. L. Nizovskii, A. A. Oksman, and K. A. Khodakov, “Atomization of superheated water: Results from experimental studies,” Therm. Eng. 56, 191–200 (2009). CrossRef L. A. Dombrovskii, V. I. Zalkind, Yu. A. Zeigarnik, D. V. Marinichev, V. L. Nizovskii, A. A. Oksman, and K. A. Khodakov, “Atomization of superheated water: Results from experimental studies,” Therm. Eng. 56, 191–200 (2009). CrossRef
7.
go back to reference L. A. Dombrovsky, Radiation Heat Transfer in Disperse Systems (Begell House, New York, 1996). L. A. Dombrovsky, Radiation Heat Transfer in Disperse Systems (Begell House, New York, 1996).
8.
go back to reference H. C. Van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981). H. C. Van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
9.
go back to reference C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, Chichester, 1998). CrossRef C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, Chichester, 1998). CrossRef
10.
go back to reference K. S. Shifrin, “Significant range of scattering angles when measuring the size distribution of particles by the small angle method,” Izv. Akad. Nauk SSSR, Ser.: Fiz. Atmos. Okeana 11, 928−932 (1966). K. S. Shifrin, “Significant range of scattering angles when measuring the size distribution of particles by the small angle method,” Izv. Akad. Nauk SSSR, Ser.: Fiz. Atmos. Okeana 11, 928−932 (1966).
11.
go back to reference D. M. Marinichev, Experimental Study of the Finely Dispersed Spray of Superheated Water, Candidate’s Dissertation in Engineering (Joint Inst. for High Temperatures, Russian Academy of Sciences, Moscow, 2013). D. M. Marinichev, Experimental Study of the Finely Dispersed Spray of Superheated Water, Candidate’s Dissertation in Engineering (Joint Inst. for High Temperatures, Russian Academy of Sciences, Moscow, 2013).
12.
go back to reference C. Dumouchell, P. Yangyingsakthavorn, and J. Cousin, “Light multiple scattering correction of laser-diffraction spray drop-size distribution measurements,” Int. J. Multiphase Flow. 35, 277–287 (2009). CrossRef C. Dumouchell, P. Yangyingsakthavorn, and J. Cousin, “Light multiple scattering correction of laser-diffraction spray drop-size distribution measurements,” Int. J. Multiphase Flow. 35, 277–287 (2009). CrossRef
13.
go back to reference V. B. Alekseev, V. I. Zalkind, Yu. A. Zeigarnik, D. V. Marinichev, V. L. Nizovskii, and L. V. Nizovskii, “On the nature of bimodal drop distribution over sizes under superheated water atomization,” High Temp. 53, 214–216 (2015). CrossRef V. B. Alekseev, V. I. Zalkind, Yu. A. Zeigarnik, D. V. Marinichev, V. L. Nizovskii, and L. V. Nizovskii, “On the nature of bimodal drop distribution over sizes under superheated water atomization,” High Temp. 53, 214–216 (2015). CrossRef
14.
go back to reference E. Yu. Kumzerova, Numerical Study of the Formation and Growth of Vapor Bubbles under Conditions of a Drop in Liquid Pressure, Candidate’s Dissertation in Mathematics and Physics (Ioffe Inst., St. Petersburg, 2012). E. Yu. Kumzerova, Numerical Study of the Formation and Growth of Vapor Bubbles under Conditions of a Drop in Liquid Pressure, Candidate’s Dissertation in Mathematics and Physics (Ioffe Inst., St. Petersburg, 2012).
18.
go back to reference V. I. Zalkind, Yu. A. Zeigarnik, V. L. Nizovskii, L. V. Nizovskii, and S. S. Shchigel’, “Study of superheated water spray through an expanding nozzle: Report theses,” in Thermophysics and Physical Hydrodynamics: Proc. 7th All-Russian Sci. Conf., Sochi, Russia, Sept. 5−14, 2022 (ITTF, Novosibirsk, 2022). V. I. Zalkind, Yu. A. Zeigarnik, V. L. Nizovskii, L. V. Nizovskii, and S. S. Shchigel’, “Study of superheated water spray through an expanding nozzle: Report theses,” in Thermophysics and Physical Hydrodynamics: Proc. 7th All-Russian Sci. Conf., Sochi, Russia, Sept. 5−14, 2022 (ITTF, Novosibirsk, 2022).
20.
go back to reference V. I. Zalkind, Yu. A. Zeigarnik, V. L. Nizovskii, L. V. Nizovskii, and S. S. Shchigel’, “Study of superheated water spray in a confuser–diffuser nozzle; Specific features of heterogeneous nucleation,” in Proc. 8th Russian Nats. Conf. on Heat Transfer (RNKT-8), Moscow, Russia, Oct. 17−22, 2022 (Mosk. Energ. Inst., Moscow, 2022), Vol. 1, pp. 413−414. V. I. Zalkind, Yu. A. Zeigarnik, V. L. Nizovskii, L. V. Nizovskii, and S. S. Shchigel’, “Study of superheated water spray in a confuser–diffuser nozzle; Specific features of heterogeneous nucleation,” in Proc. 8th Russian Nats. Conf. on Heat Transfer (RNKT-8), Moscow, Russia, Oct. 17−22, 2022 (Mosk. Energ. Inst., Moscow, 2022), Vol. 1, pp. 413−414.
21.
go back to reference V. I. Zalkind, Yu. A. Zeigarnik, V. L. Nizovskii, L. V. Nizovskii, and S. S. Shchigel’, “A comparison of models of heterogeneous nucleation in superheated water boiling in a confuser–diffuser nozzle: Report theses,” in Thermophysics and Physical Hydrodynamics: Proc. 7th All-Russian Sci. Conf., Sochi, Russia, Sept. 5−14, 2022 (ITTF, Novosibirsk, 2022). V. I. Zalkind, Yu. A. Zeigarnik, V. L. Nizovskii, L. V. Nizovskii, and S. S. Shchigel’, “A comparison of models of heterogeneous nucleation in superheated water boiling in a confuser–diffuser nozzle: Report theses,” in Thermophysics and Physical Hydrodynamics: Proc. 7th All-Russian Sci. Conf., Sochi, Russia, Sept. 5−14, 2022 (ITTF, Novosibirsk, 2022).
22.
go back to reference S. Crampsie, “Wet compression boost for power output and efficiency,” Gas Turbine World 2 (2012). S. Crampsie, “Wet compression boost for power output and efficiency,” Gas Turbine World 2 (2012).
23.
go back to reference S. Higuchi, S. Hatamiya, N. Seiki, and S. Marushima, “A study of performance on advanced humid air turbine systems,” in Proc. Int. Gas Turbine Congr. (IGTC'03), Tokyo, Japan, Nov. 2−7, 2003 (Gas Turbine Society of Japan, Tokyo, 2003). S. Higuchi, S. Hatamiya, N. Seiki, and S. Marushima, “A study of performance on advanced humid air turbine systems,” in Proc. Int. Gas Turbine Congr. (IGTC'03), Tokyo, Japan, Nov. 2−7, 2003 (Gas Turbine Society of Japan, Tokyo, 2003).
24.
go back to reference K. Brun, R. Kurtz, M. Nored, and J. Thorp, “Inlet fogging and overspray impact on industrial gas turbine life and performance,” in Proc. 2nd Middle East Turbomachinery Symp., Doha, Quatar, Mar. 17–20, 2013 (Turbomachinery Laboratory, College Station, Tex, 2013). K. Brun, R. Kurtz, M. Nored, and J. Thorp, “Inlet fogging and overspray impact on industrial gas turbine life and performance,” in Proc. 2nd Middle East Turbomachinery Symp., Doha, Quatar, Mar. 17–20, 2013 (Turbomachinery Laboratory, College Station, Tex, 2013).
25.
go back to reference O. N. Favorskii, V. M. Batenin, V. E. Belyaev, V. Yu. Vasyutinskii, I. T. Goryunov, Yu. S. Eliseev, Yu. A. Zeigarnik, A. S. Kosoi, V. M. Maslennikov, A. K. Makhan’kov, S. I. Pishchikov, A. N. Remezov, M. V. Sinkevich, and Yu. N. Sokolov, “The PGU MES-60 combined-cycle (steam–gas) installation with steam injection and a heat pump for the Mosenergo power system,” Thern. Eng. 48, 751–560 (2001). O. N. Favorskii, V. M. Batenin, V. E. Belyaev, V. Yu. Vasyutinskii, I. T. Goryunov, Yu. S. Eliseev, Yu. A. Zeigarnik, A. S. Kosoi, V. M. Maslennikov, A. K. Makhan’kov, S. I. Pishchikov, A. N. Remezov, M. V. Sinkevich, and Yu. N. Sokolov, “The PGU MES-60 combined-cycle (steam–gas) installation with steam injection and a heat pump for the Mosenergo power system,” Thern. Eng. 48, 751–560 (2001).
27.
go back to reference STO (Standard) SO-TsDU EES 001-2005. Norms for the Participation of TPP Power Units in the Normalized Primary and Automatic Secondary Frequency Control (Sist. Oper. Tsentr. Dispetcher. Upr. Edin. Energ. Syst., Moscow, 2005). STO (Standard) SO-TsDU EES 001-2005. Norms for the Participation of TPP Power Units in the Normalized Primary and Automatic Secondary Frequency Control (Sist. Oper. Tsentr. Dispetcher. Upr. Edin. Energ. Syst., Moscow, 2005).
28.
go back to reference A. V. Pryanichnikov, V. V. Roenko, and E. B. Bondarev, “Extinguishing spills of petroleum and its products with metastable vapor-droplet jets,” Pozhary Chrezvychainye Situatsii: Predotvrashchenie Likvidatsiya, No. 4, 7−12 (2015). A. V. Pryanichnikov, V. V. Roenko, and E. B. Bondarev, “Extinguishing spills of petroleum and its products with metastable vapor-droplet jets,” Pozhary Chrezvychainye Situatsii: Predotvrashchenie Likvidatsiya, No. 4, 7−12 (2015).
29.
go back to reference V. V. Roenko, A. V. Pryanichnikov, and E. B. Bondarev, “Application of temperature-activated water for extinguishing turbine oils at power facilities,” Tekhnol. Tekhnosfernoi Bezop., No. 4(62), 84−93 (2015). V. V. Roenko, A. V. Pryanichnikov, and E. B. Bondarev, “Application of temperature-activated water for extinguishing turbine oils at power facilities,” Tekhnol. Tekhnosfernoi Bezop., No. 4(62), 84−93 (2015).
30.
go back to reference A. D. Ishchenko, V. V. Roenko, and I. G. Malygin, “Experiments of extinguishing fires of power facilities and premises of ships with an aqueous medium by volumetric way,” Morsk. Intell. Tekhnol. 1 (3), 128−133 (2018). A. D. Ishchenko, V. V. Roenko, and I. G. Malygin, “Experiments of extinguishing fires of power facilities and premises of ships with an aqueous medium by volumetric way,” Morsk. Intell. Tekhnol. 1 (3), 128−133 (2018).
Metadata
Title
A Complex Study of Superheated Water Atomization
Authors
Yu. A. Zeigarnik
V. I. Zalkind
V. L. Nizovskii
L. V. Nizovskii
S. S. Shchigel’
I. V. Maslakova
Publication date
01-09-2023
Publisher
Pleiades Publishing
Published in
Thermal Engineering / Issue 9/2023
Print ISSN: 0040-6015
Electronic ISSN: 1555-6301
DOI
https://doi.org/10.1134/S0040601523090082

Other articles of this Issue 9/2023

Thermal Engineering 9/2023 Go to the issue

STEAM-TURBINE, GAS-TURBINE, COMBINED-CYCLE POWER PLANTS AND THEIR AUXILIARY EQUIPMENT

Efficiency of Multistage Filtration of Turbine Oil in the Oil-Supply System of Turbo Units

STEAM-TURBINE, GAS-TURBINE, COMBINED-CYCLE POWER PLANTS AND THEIR AUXILIARY EQUIPMENT

A New Method for Determining the Aerodynamic Forces Arising in Turbine Seals

HEAT AND MASS TRANSFER, PROPERTIES OF WORKING BODIES AND MATERIALS

Simulation of Mixing of Single-Phase Fluids in T-Junctions

Premium Partner