Skip to main content
Top

2025 | OriginalPaper | Chapter

A Comprehensive Dataset for a Population of Experimental Bridges Under Changing Environmental Conditions for PBSHM

Authors : Valentina Giglioni, Jack Poole, Robin Mills, Nikolaos Dervilis, Ilaria Venanzi, Filippo Ubertini, Keith Worden

Published in: Dynamics of Civil Structures, Vol. 2

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Machine learning algorithms offer a promising approach for vibration-based Structural Health Monitoring (SHM) to assess damage in real time. However, the scarcity of labelled health-state data, especially considering various environmental conditions and damage cases, remains a significant challenge. Population-based Structural Health Monitoring (PBSHM) addresses this issue by enriching the available data via knowledge transfer across a population of similar structures. This approach is particularly powerful in bridge networks where structures can be classified into a few typologies. Scaling SHM from single assets to the entire network is crucial for modern risk assessment in transportation networks. However, PBSHM faces the challenge of obtaining and validating relevant technologies using datasets from multiple similar structures representing various health states. This chapter presents an experimental dataset from a model bridge, where the positions of supports were varied to represent different structures. The dataset includes a wide range of temperatures, including freezing effects, simulated using an environmental chamber. Multiple damage scenarios are also introduced to enable the investigation of damage detection and classification methods for both conventional SHM and PBSHM. This chapter provides an analysis of the dataset and demonstrates the assessment of damage under changing environmental conditions. The whole dataset contributes to advancing the field of PBSHM by providing valuable insights into the limitations of existing SHM methods towards damage assessment in diverse environmental conditions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference ARTBA: Reducing downtime and business loss: adressing business risk with effective technology. Technical report, ARTBA: American Road & Transportation Builders Association, Washington, D.C. (2021) ARTBA: Reducing downtime and business loss: adressing business risk with effective technology. Technical report, ARTBA: American Road & Transportation Builders Association, Washington, D.C. (2021)
2.
go back to reference He, Z., Li, W., Salehi, H., Zhang, H., Zhou, H., Jiao, P.: Integrated structural health monitoring in bridge engineering. Autom. Construct. 136, 104168 (2022)CrossRef He, Z., Li, W., Salehi, H., Zhang, H., Zhou, H., Jiao, P.: Integrated structural health monitoring in bridge engineering. Autom. Construct. 136, 104168 (2022)CrossRef
3.
go back to reference Figueiredo, E., Brownjohn, J.: Three decades of statistical pattern recognition paradigm for SHM of bridges. Struct. Health Monitor. 21, 3018–3054 (2022)CrossRef Figueiredo, E., Brownjohn, J.: Three decades of statistical pattern recognition paradigm for SHM of bridges. Struct. Health Monitor. 21, 3018–3054 (2022)CrossRef
4.
go back to reference La Mazza, D., Basone, F., Longo, M., Darò, P., Cigada, A.: Anomaly detection through long-term SHM: some interesting cases on bridges. In: Dynamics of Civil Structures, Volume 2: Proceedings of the 40th IMAC, A Conference and Exposition on Structural Dynamics 2022, pp. 57–65. Springer, Berlin (2022) La Mazza, D., Basone, F., Longo, M., Darò, P., Cigada, A.: Anomaly detection through long-term SHM: some interesting cases on bridges. In: Dynamics of Civil Structures, Volume 2: Proceedings of the 40th IMAC, A Conference and Exposition on Structural Dynamics 2022, pp. 57–65. Springer, Berlin (2022)
5.
go back to reference Bao, Y., Li, H.: Machine learning paradigm for structural health monitoring. Struct. Health Monitor. 20, 1353–1372 (2021)CrossRef Bao, Y., Li, H.: Machine learning paradigm for structural health monitoring. Struct. Health Monitor. 20, 1353–1372 (2021)CrossRef
6.
go back to reference Colombera, G., Rosafalco, L., Torzoni, M., Gatti, F., Mariani, S., Manzoni, A., Corigliano, A.: A generative adversarial network based autoencoder for structural health monitoring. Comput. Sci. Math. Forum 2, 9 (2022) Colombera, G., Rosafalco, L., Torzoni, M., Gatti, F., Mariani, S., Manzoni, A., Corigliano, A.: A generative adversarial network based autoencoder for structural health monitoring. Comput. Sci. Math. Forum 2, 9 (2022)
7.
go back to reference Mao, J., Su, X., Wang, H., Li, J.: Automated Bayesian operational modal analysis of the long-span bridge using machine-learning algorithms. Eng. Struct. 289, 116336 (2023)CrossRef Mao, J., Su, X., Wang, H., Li, J.: Automated Bayesian operational modal analysis of the long-span bridge using machine-learning algorithms. Eng. Struct. 289, 116336 (2023)CrossRef
8.
go back to reference Bull, L., Gardner, P., Gosliga, J., Rogers, T., Dervilis, N., Cross, E., Papatheou, E., Maguire, A., Campos, C., Worden, K.: Foundations of population-based SHM, Part I: homogeneous populations and forms. Mech. Syst. Signal Process. 148, 107141 (2021)CrossRef Bull, L., Gardner, P., Gosliga, J., Rogers, T., Dervilis, N., Cross, E., Papatheou, E., Maguire, A., Campos, C., Worden, K.: Foundations of population-based SHM, Part I: homogeneous populations and forms. Mech. Syst. Signal Process. 148, 107141 (2021)CrossRef
9.
go back to reference Gosliga, J., Gardner, P., Bull, L., Dervilis, N., Worden, K.: Foundations of population-based SHM, Part II: heterogeneous populations – graphs, networks, and communities. Mech. Syst. Signal Process. 148, 107144 (2021)CrossRef Gosliga, J., Gardner, P., Bull, L., Dervilis, N., Worden, K.: Foundations of population-based SHM, Part II: heterogeneous populations – graphs, networks, and communities. Mech. Syst. Signal Process. 148, 107144 (2021)CrossRef
10.
go back to reference Gardner, P., Bull, L., Gosliga, J., Dervilis, N., Worden, K.: Foundations of population-based SHM, Part III: heterogeneous populations – mapping and transfer. Mech. Syst. Signal Process. 148, 107142 (2021)CrossRef Gardner, P., Bull, L., Gosliga, J., Dervilis, N., Worden, K.: Foundations of population-based SHM, Part III: heterogeneous populations – mapping and transfer. Mech. Syst. Signal Process. 148, 107142 (2021)CrossRef
11.
go back to reference Gardner, P., Bull, L.A., Dervilis, N., Worden, K.: Domain-adapted Gaussian mixture models for population-based structural health monitoring. J. Civil Struct. Health Monitor. 12, 1343–1353 (2022)CrossRef Gardner, P., Bull, L.A., Dervilis, N., Worden, K.: Domain-adapted Gaussian mixture models for population-based structural health monitoring. J. Civil Struct. Health Monitor. 12, 1343–1353 (2022)CrossRef
12.
go back to reference Tronci, E.M., Beigi, H., Feng, M.Q., Betti, R.: Transfer learning from audio domains a valuable tool for structural health monitoring. In: Dynamics of Civil Structures, Volume 2: Proceedings of the 39th IMAC, A Conference and Exposition on Structural Dynamics 2021, pp. 99–107 (2022) Tronci, E.M., Beigi, H., Feng, M.Q., Betti, R.: Transfer learning from audio domains a valuable tool for structural health monitoring. In: Dynamics of Civil Structures, Volume 2: Proceedings of the 39th IMAC, A Conference and Exposition on Structural Dynamics 2021, pp. 99–107 (2022)
13.
go back to reference Brincker, R., Andersen, P.: Understanding stochastic subspace identification. In: Conference Proceedings: IMAC-XXIV: A Conference & Exposition on Structural Dynamics (2006) Brincker, R., Andersen, P.: Understanding stochastic subspace identification. In: Conference Proceedings: IMAC-XXIV: A Conference & Exposition on Structural Dynamics (2006)
14.
go back to reference García-Macías, E., Ubertini, F.: MOVA/MOSS: two integrated software solutions for comprehensive structural health monitoring of structures. Mech. Syst. Signal Process. 143, 106830 (2020)CrossRef García-Macías, E., Ubertini, F.: MOVA/MOSS: two integrated software solutions for comprehensive structural health monitoring of structures. Mech. Syst. Signal Process. 143, 106830 (2020)CrossRef
15.
go back to reference Wang, L.: Support Vector Machines: Theory and Applications, vol. 177. Springer, Berlin (2005)CrossRef Wang, L.: Support Vector Machines: Theory and Applications, vol. 177. Springer, Berlin (2005)CrossRef
Metadata
Title
A Comprehensive Dataset for a Population of Experimental Bridges Under Changing Environmental Conditions for PBSHM
Authors
Valentina Giglioni
Jack Poole
Robin Mills
Nikolaos Dervilis
Ilaria Venanzi
Filippo Ubertini
Keith Worden
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-68889-8_8