Skip to main content
Top
Published in: Advances in Manufacturing 2/2019

22-05-2019

A comprehensive review of extrusion-based additive manufacturing processes for rapid production of metallic and ceramic parts

Authors: Kedarnath Rane, Matteo Strano

Published in: Advances in Manufacturing | Issue 2/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The extrusion-based additive manufacturing (EAM) technique is recently being employed for rapid production of metals and ceramic components. This technique involves extruding the metal or ceramic material in solid powder form mixed with a binder (i.e., an expendable viscous fluid), which is removed from the part after 3D printing. These technologies rely on the large design freedom allowed and the cost efficiency advantage over alternative metal additive manufacturing processes that are based on high energy beams, such as laser or electron beams. The EAM of metals and ceramics is not yet widespread, but published scientific and technical literature on it is rapidly growing. However, this literature is still less extensive than that on the fused deposition modeling (FDM) of plastics or the selective laser melting (SLM) of metals. This paper aims at filling this gap. FDM and powder injection molding are identified as preceding or enabling technologies for EAM. This paper systematically reviews all aspects of the feedstock EAM processes used for production of complex-shaped parts. The unique characteristics and advantages of these processes are also discussed with respect to materials and process steps. In addition, the key process parameters are explained to illustrate the suitability of the EAM process for diverse application domains.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference ISO/ASTM 52900:2015(E) Standard terminology for additive manufacturing. ASTM 2015 ISO/ASTM 52900:2015(E) Standard terminology for additive manufacturing. ASTM 2015
2.
go back to reference Deckers J, Vleugels J, Kruth JP (2014) Additive manufacturing of ceramics: a review. J Ceram Sci Tech 5(4):245–260 Deckers J, Vleugels J, Kruth JP (2014) Additive manufacturing of ceramics: a review. J Ceram Sci Tech 5(4):245–260
3.
go back to reference Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23(6):1917–1928CrossRef Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23(6):1917–1928CrossRef
4.
go back to reference Turner BN, Gold SA (2015) A review of melt extrusion additive manufacturing processes: II. materials, dimensional accuracy, and surface roughness. Rapid Prototyp J 21(3):250–261CrossRef Turner BN, Gold SA (2015) A review of melt extrusion additive manufacturing processes: II. materials, dimensional accuracy, and surface roughness. Rapid Prototyp J 21(3):250–261CrossRef
5.
go back to reference Turner N, Strong B, Gold S (2014) A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyp J 20(3):192–204CrossRef Turner N, Strong B, Gold S (2014) A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyp J 20(3):192–204CrossRef
6.
go back to reference Karunakaran KP, Alain Bernard, Suryakumar S et al (2012) Rapid manufacturing of metallic objects. Rapid Prototyp J 18(4):264–280CrossRef Karunakaran KP, Alain Bernard, Suryakumar S et al (2012) Rapid manufacturing of metallic objects. Rapid Prototyp J 18(4):264–280CrossRef
7.
go back to reference Lewis JA, Smay JE, Stuecker J et al (2006) Direct ink writing of three-dimensional ceramic structures. J Am Ceram Soc 89(12):3599–3609CrossRef Lewis JA, Smay JE, Stuecker J et al (2006) Direct ink writing of three-dimensional ceramic structures. J Am Ceram Soc 89(12):3599–3609CrossRef
9.
go back to reference Bikas H, Stavropoulos P, Chryssolouris G (2016) Additive manufacturing methods and modeling approaches: a critical review. Int J Adv Manuf Technol 83(1–4):389–405CrossRef Bikas H, Stavropoulos P, Chryssolouris G (2016) Additive manufacturing methods and modeling approaches: a critical review. Int J Adv Manuf Technol 83(1–4):389–405CrossRef
10.
go back to reference Carneiro OS, Silva AF, Gomes R (2015) Fused deposition modeling with polypropylene. Mater Des 83(15):768–776CrossRef Carneiro OS, Silva AF, Gomes R (2015) Fused deposition modeling with polypropylene. Mater Des 83(15):768–776CrossRef
11.
go back to reference Tymrak BM, Kreiger M, Pearce JM (2014) Mechanical properties of components fabricated with open-source 3D printers under realistic environmental conditions. Mater Des 58:242–246CrossRef Tymrak BM, Kreiger M, Pearce JM (2014) Mechanical properties of components fabricated with open-source 3D printers under realistic environmental conditions. Mater Des 58:242–246CrossRef
12.
go back to reference Bottini A, Boschetto L (2014) Accuracy prediction in fused deposition modeling. Int J Adv Manuf Technol 73(5–8):913–928 Bottini A, Boschetto L (2014) Accuracy prediction in fused deposition modeling. Int J Adv Manuf Technol 73(5–8):913–928
13.
go back to reference Ning F, Cong W, Qiu J et al (2015) Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos B Eng 80:369–378CrossRef Ning F, Cong W, Qiu J et al (2015) Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos B Eng 80:369–378CrossRef
14.
go back to reference Brünler R, Aibibu D, Wöltje M et al (2017) In silico modeling of structural and porosity properties of additive manufactured implants for regenerative medicine. Mater Sci Eng C 76:810–817CrossRef Brünler R, Aibibu D, Wöltje M et al (2017) In silico modeling of structural and porosity properties of additive manufactured implants for regenerative medicine. Mater Sci Eng C 76:810–817CrossRef
15.
go back to reference xjet3d.com, XJet’s system. Accessed on 06 Sept 2017 xjet3d.com, XJet’s system. Accessed on 06 Sept 2017
16.
go back to reference Miyanaji H, Zhang S, Lassell A et al (2016) Process development of porcelain ceramic material with binder jetting process for dental applications. JOM 68(3):831–841CrossRef Miyanaji H, Zhang S, Lassell A et al (2016) Process development of porcelain ceramic material with binder jetting process for dental applications. JOM 68(3):831–841CrossRef
17.
go back to reference King WE, Anderson AT, Ferencz RM et al (2015) Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges. Appl Phys Rev 2(4):41304CrossRef King WE, Anderson AT, Ferencz RM et al (2015) Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges. Appl Phys Rev 2(4):41304CrossRef
18.
go back to reference Khoshnevis B, Zhang J (2015) Selective separation sintering (SSS) A new layer based additive manufacturing approach for metals and ceramics. In: AIAA SPACE conference and exposition Khoshnevis B, Zhang J (2015) Selective separation sintering (SSS) A new layer based additive manufacturing approach for metals and ceramics. In: AIAA SPACE conference and exposition
21.
go back to reference Stavropoulos P, Foteinopoulos P (2018) Modelling of additive manufacturing processes: a review and classification. Manuf Rev 5(2):1–26 Stavropoulos P, Foteinopoulos P (2018) Modelling of additive manufacturing processes: a review and classification. Manuf Rev 5(2):1–26
22.
go back to reference Atzeni E, Salmi A (2012) Economics of additive manufacturing for end-usable metal parts. Int J Adv Manuf Technol 62(9–12):1147–1155CrossRef Atzeni E, Salmi A (2012) Economics of additive manufacturing for end-usable metal parts. Int J Adv Manuf Technol 62(9–12):1147–1155CrossRef
23.
go back to reference German RM (2008) PIM breaks the $1 bn barrier. Metal Powder Rep 63(3):8–10CrossRef German RM (2008) PIM breaks the $1 bn barrier. Metal Powder Rep 63(3):8–10CrossRef
24.
go back to reference Gonçalves A (2001) Metallic powder injection molding using low pressure. J Mater Process Technol 118(1–3):193–198CrossRef Gonçalves A (2001) Metallic powder injection molding using low pressure. J Mater Process Technol 118(1–3):193–198CrossRef
25.
go back to reference German RM, Bose A (1997) Injection molding of metals and ceramics. Princeton, Metals Powder Industries Federation German RM, Bose A (1997) Injection molding of metals and ceramics. Princeton, Metals Powder Industries Federation
26.
go back to reference Jabbari A, Abrinia K (2018) Developing thixo-extrusion process for additive manufacturing of metals in semi-solid state. J Manuf Process 35:664–671CrossRef Jabbari A, Abrinia K (2018) Developing thixo-extrusion process for additive manufacturing of metals in semi-solid state. J Manuf Process 35:664–671CrossRef
27.
go back to reference Tseng JW, Hsu CK (1999) Cracking defect and porosity evolution during thermal debinding in ceramic injection molding. Ceram Int 25(5):461–466CrossRef Tseng JW, Hsu CK (1999) Cracking defect and porosity evolution during thermal debinding in ceramic injection molding. Ceram Int 25(5):461–466CrossRef
28.
go back to reference Finke S, Feenstra FK (2002) Solid freeform fabrication by extrusion and deposition of semi-solid alloys. J Mater Sci 37(15):3101–3106CrossRef Finke S, Feenstra FK (2002) Solid freeform fabrication by extrusion and deposition of semi-solid alloys. J Mater Sci 37(15):3101–3106CrossRef
29.
go back to reference Luo J, Qi LH, Zhong SY et al (2012) Printing solder droplets for micro devices packages using pneumatic drop-on-demand (DoD) technique. J Mater Process Technol 212(10):2066–2073CrossRef Luo J, Qi LH, Zhong SY et al (2012) Printing solder droplets for micro devices packages using pneumatic drop-on-demand (DoD) technique. J Mater Process Technol 212(10):2066–2073CrossRef
30.
go back to reference Zhong SY, Qi LH, Luo J et al (2014) Effect of process parameters on copper droplet ejecting by pneumatic drop-on-demand technology. J Mater Process Technol 214(12):3089–3097CrossRef Zhong SY, Qi LH, Luo J et al (2014) Effect of process parameters on copper droplet ejecting by pneumatic drop-on-demand technology. J Mater Process Technol 214(12):3089–3097CrossRef
31.
go back to reference Zhang D, Qi L, Luo J et al (2017) Direct fabrication of unsupported inclined aluminum pillars based on uniform micro droplets deposition. Int J Mach Tools Manuf 116:18–24CrossRef Zhang D, Qi L, Luo J et al (2017) Direct fabrication of unsupported inclined aluminum pillars based on uniform micro droplets deposition. Int J Mach Tools Manuf 116:18–24CrossRef
33.
go back to reference Slots C, Jensen MB, Ditzel N et al (2017) Simple additive manufacturing of an osteoconductive ceramic using suspension melt extrusion. Dental Mater 43(9):198–208CrossRef Slots C, Jensen MB, Ditzel N et al (2017) Simple additive manufacturing of an osteoconductive ceramic using suspension melt extrusion. Dental Mater 43(9):198–208CrossRef
34.
go back to reference Travitzky N, Bonet A, Dermeik B et al (2014) Additive manufacturing of ceramic-based materials. Adv Eng Mater 16:729–754CrossRef Travitzky N, Bonet A, Dermeik B et al (2014) Additive manufacturing of ceramic-based materials. Adv Eng Mater 16:729–754CrossRef
35.
go back to reference Houmard M, Fu Q, Genet M et al (2013) On the structural, mechanical, and biodegradation properties of HA/β-TCP robocast scaffolds. J Biomed Mater Res B Appl Biomater 101:1233–1242CrossRef Houmard M, Fu Q, Genet M et al (2013) On the structural, mechanical, and biodegradation properties of HA/β-TCP robocast scaffolds. J Biomed Mater Res B Appl Biomater 101:1233–1242CrossRef
36.
go back to reference Thomas A, Kolan KC, Leu MC et al (2017) Freeform extrusion fabrication of titanium fiber reinforced 13–93 bioactive glass scaffolds. J Mech Behav Biomed Mater 69:153–162CrossRef Thomas A, Kolan KC, Leu MC et al (2017) Freeform extrusion fabrication of titanium fiber reinforced 13–93 bioactive glass scaffolds. J Mech Behav Biomed Mater 69:153–162CrossRef
37.
go back to reference Wang J, Shaw LL, Cameron TB (2006) Solid freeform fabrication of permanent dental restorations via slurry micro-extrusion. J Am Ceram Soc 89(1):346–349CrossRef Wang J, Shaw LL, Cameron TB (2006) Solid freeform fabrication of permanent dental restorations via slurry micro-extrusion. J Am Ceram Soc 89(1):346–349CrossRef
38.
39.
go back to reference Li JP, De Wijn JR, Van Blitterswijk CA et al (2006) Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: preparation and in vitro experiment. Biomaterials 27(8):1223–1235CrossRef Li JP, De Wijn JR, Van Blitterswijk CA et al (2006) Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: preparation and in vitro experiment. Biomaterials 27(8):1223–1235CrossRef
40.
go back to reference Sercombe TB, Schaffer GB, Lucia (1999) Freeform fabrication of functional aluminium prototypes using powder metallurgy. J Mater Sci 34(17):4245–4251CrossRef Sercombe TB, Schaffer GB, Lucia (1999) Freeform fabrication of functional aluminium prototypes using powder metallurgy. J Mater Sci 34(17):4245–4251CrossRef
41.
go back to reference Grida I, Evans JRG (2003) Extrusion freeforming of ceramics through fine nozzles. J Eur Ceram Soc 23(5):629–635CrossRef Grida I, Evans JRG (2003) Extrusion freeforming of ceramics through fine nozzles. J Eur Ceram Soc 23(5):629–635CrossRef
42.
go back to reference Bellini A, Shor L, Guceri SI (2005) New developments in fused deposition modeling of ceramics. Rapid Prototyp J 11(4):214–220CrossRef Bellini A, Shor L, Guceri SI (2005) New developments in fused deposition modeling of ceramics. Rapid Prototyp J 11(4):214–220CrossRef
43.
go back to reference Lu X, Lee Y, Yang S et al (2008) Fabrication of electromagnetic crystals by extrusion freeforming. Metamaterials 2(1):36–44CrossRef Lu X, Lee Y, Yang S et al (2008) Fabrication of electromagnetic crystals by extrusion freeforming. Metamaterials 2(1):36–44CrossRef
44.
go back to reference Lu X, Lee Y, Yang S et al (2009) Fine lattice structures fabricated by extrusion freeforming: process variables. J Mater Process Technol 209(10):4654–4661CrossRef Lu X, Lee Y, Yang S et al (2009) Fine lattice structures fabricated by extrusion freeforming: process variables. J Mater Process Technol 209(10):4654–4661CrossRef
45.
go back to reference Lu X, Lee Y, Yang S et al (2010) Solvent-based paste extrusion solid freeforming. J Eur Ceram Soc 30(1):1–10CrossRef Lu X, Lee Y, Yang S et al (2010) Solvent-based paste extrusion solid freeforming. J Eur Ceram Soc 30(1):1–10CrossRef
46.
go back to reference Jafari MA, Han W, Mohammadi F et al (2000) A novel system for fused deposition of advanced multiple ceramics. Rapid Prototyp J 6(3):161–175CrossRef Jafari MA, Han W, Mohammadi F et al (2000) A novel system for fused deposition of advanced multiple ceramics. Rapid Prototyp J 6(3):161–175CrossRef
47.
go back to reference Wu G, Langrana NA, Sadanji R et al (2002) Solid freeform fabrication of metal components using fused deposition of metals. Mater Des 23(1):97–105CrossRef Wu G, Langrana NA, Sadanji R et al (2002) Solid freeform fabrication of metal components using fused deposition of metals. Mater Des 23(1):97–105CrossRef
48.
go back to reference Vaidyanathan R, Walish J, Lombardi JL et al (2000) The extrusion freeforming of functional ceramic prototypes. JOM 52(12):34–37CrossRef Vaidyanathan R, Walish J, Lombardi JL et al (2000) The extrusion freeforming of functional ceramic prototypes. JOM 52(12):34–37CrossRef
49.
go back to reference Kalita SJ, Bose S, Hosick HL et al (2003) Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modeling. Mater Sci Eng C 23(5):611–620CrossRef Kalita SJ, Bose S, Hosick HL et al (2003) Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modeling. Mater Sci Eng C 23(5):611–620CrossRef
50.
go back to reference 3devo.com, 3devo.com/next-filament-extruder/. Accessed on 13 Oct 2017 3devo.com, 3devo.com/next-filament-extruder/. Accessed on 13 Oct 2017
52.
go back to reference Li JB, Xie ZG, Zhang XH et al (2010) Study of metal powder extrusion and accumulating rapid prototyping. Key Eng Mater 443:81–86CrossRef Li JB, Xie ZG, Zhang XH et al (2010) Study of metal powder extrusion and accumulating rapid prototyping. Key Eng Mater 443:81–86CrossRef
53.
go back to reference Holshouser C, Newell C, Palas S et al (2013) Out of bounds additive manufacturing. Adv Mater Process 171(3):15–27 Holshouser C, Newell C, Palas S et al (2013) Out of bounds additive manufacturing. Adv Mater Process 171(3):15–27
54.
go back to reference Annoni M, Giberti H, Strano M (2016) Feasibility study of an extrusion-based direct metal additive manufacturing technique. Proc Manuf 5:916–927 Annoni M, Giberti H, Strano M (2016) Feasibility study of an extrusion-based direct metal additive manufacturing technique. Proc Manuf 5:916–927
58.
go back to reference Tay BY, Loh NH, Tor SB et al (2009) Characterisation of micro gears produced by micro powder injection moulding. Powder Technol 188(3):179–182CrossRef Tay BY, Loh NH, Tor SB et al (2009) Characterisation of micro gears produced by micro powder injection moulding. Powder Technol 188(3):179–182CrossRef
59.
go back to reference Rane KK, Date PP (2014) Rheological investigation of MIM feedstocks for reducing frictional effects during injection moulding. Adv Mater Res 966–967:196–205CrossRef Rane KK, Date PP (2014) Rheological investigation of MIM feedstocks for reducing frictional effects during injection moulding. Adv Mater Res 966–967:196–205CrossRef
60.
go back to reference A. F3049-14 (2014) Standard guide for characterizing properties of metal powders used for additive manufacturing processes. ASTM International, West Conshohocken, PA A. F3049-14 (2014) Standard guide for characterizing properties of metal powders used for additive manufacturing processes. ASTM International, West Conshohocken, PA
61.
go back to reference Thomas-Vielma P, Cervera A, Levenfeld B et al (2008) Production of alumina parts by powder injection molding with a binder system based on high density polyethylene. J Eur Ceram Soc 28(4):763–771CrossRef Thomas-Vielma P, Cervera A, Levenfeld B et al (2008) Production of alumina parts by powder injection molding with a binder system based on high density polyethylene. J Eur Ceram Soc 28(4):763–771CrossRef
62.
63.
go back to reference Kang H, Kitsomboonloha R, Jang J et al (2012) High-performance printed transistors realized using femtoliter gravure-printed sub-10 μm metallic nanoparticle patterns and highly uniform polymer dielectric and semiconductor layers. Adv Mater 24(22):3065–3069CrossRef Kang H, Kitsomboonloha R, Jang J et al (2012) High-performance printed transistors realized using femtoliter gravure-printed sub-10 μm metallic nanoparticle patterns and highly uniform polymer dielectric and semiconductor layers. Adv Mater 24(22):3065–3069CrossRef
64.
go back to reference Maleksaeedi S, Eng H, Wiria FE et al (2014) Property enhancement of 3D-printed alumina ceramics using vacuum infiltration. J Mater Process Technol 214(7):1301–1306CrossRef Maleksaeedi S, Eng H, Wiria FE et al (2014) Property enhancement of 3D-printed alumina ceramics using vacuum infiltration. J Mater Process Technol 214(7):1301–1306CrossRef
65.
go back to reference Asadi-Eydivand M, Solati-Hashjin M, Farzad A et al (2016) Effect of technical parameters on porous structure and strength of 3D printed calcium sulfate prototypes. Robot Comput Integr Manuf 37:57–67CrossRef Asadi-Eydivand M, Solati-Hashjin M, Farzad A et al (2016) Effect of technical parameters on porous structure and strength of 3D printed calcium sulfate prototypes. Robot Comput Integr Manuf 37:57–67CrossRef
66.
go back to reference Gaytan SM, Cadena MA, Karim H et al (2015) Fabrication of barium titanate by binder jetting additive manufacturing technology. Ceram Int 41(5):6610–6619CrossRef Gaytan SM, Cadena MA, Karim H et al (2015) Fabrication of barium titanate by binder jetting additive manufacturing technology. Ceram Int 41(5):6610–6619CrossRef
67.
go back to reference Farzadi A, Waran V, Solati-Hashjin M et al (2015) Effect of layer printing delay on mechanical properties and dimensional accuracy of 3D printed porous prototypes in bone tissue engineering. Ceram Int 41(7):8320–8330CrossRef Farzadi A, Waran V, Solati-Hashjin M et al (2015) Effect of layer printing delay on mechanical properties and dimensional accuracy of 3D printed porous prototypes in bone tissue engineering. Ceram Int 41(7):8320–8330CrossRef
68.
go back to reference Vitorino N, Freitas C, Ribeiro MJ et al (2014) Extrusion of ceramic emulsions: plastic behavior. Appl Clay Sci 101:315–319CrossRef Vitorino N, Freitas C, Ribeiro MJ et al (2014) Extrusion of ceramic emulsions: plastic behavior. Appl Clay Sci 101:315–319CrossRef
69.
go back to reference Kono T, Horata A, Kondo T (1997) Development of titanium and titanium alloy by metal injection molding process. J Jpn Soc Powder Metall 44:985–992CrossRef Kono T, Horata A, Kondo T (1997) Development of titanium and titanium alloy by metal injection molding process. J Jpn Soc Powder Metall 44:985–992CrossRef
70.
go back to reference Wen G, Cao P, Gabbitas B et al (2013) Development and design of binder systems for titanium metal injection molding: an overview. Metall Mater Trans A 44(3):1530–1547CrossRef Wen G, Cao P, Gabbitas B et al (2013) Development and design of binder systems for titanium metal injection molding: an overview. Metall Mater Trans A 44(3):1530–1547CrossRef
71.
go back to reference Ahn S, Park SJ, Lee S et al (2009) Effect of powders and binders on material properties and molding parameters in iron and stainless steel powder injection molding process. Powder Technol 193(2):162–169CrossRef Ahn S, Park SJ, Lee S et al (2009) Effect of powders and binders on material properties and molding parameters in iron and stainless steel powder injection molding process. Powder Technol 193(2):162–169CrossRef
72.
go back to reference Levenfeld B, Varez A, Torralba JM (2002) Effect of residual carbon on the sintering process of M2 high speed steel parts obtained by a modified metal injection molding process. Metall Mater Trans A 33(6):1843–1851CrossRef Levenfeld B, Varez A, Torralba JM (2002) Effect of residual carbon on the sintering process of M2 high speed steel parts obtained by a modified metal injection molding process. Metall Mater Trans A 33(6):1843–1851CrossRef
73.
go back to reference Moballegh L, Morshedian J, Esfandeh M (2005) Copper injection molding using a thermoplastic binder based on paraffin wax. Mater Lett 59(22):2832–2837CrossRef Moballegh L, Morshedian J, Esfandeh M (2005) Copper injection molding using a thermoplastic binder based on paraffin wax. Mater Lett 59(22):2832–2837CrossRef
74.
go back to reference Suri P, Atre SV, German RM et al (2003) Effect of mixing on the rheology and particle characteristics of tungsten-based powder injection molding feedstock. Mater Sci Eng A 356(1):337–344CrossRef Suri P, Atre SV, German RM et al (2003) Effect of mixing on the rheology and particle characteristics of tungsten-based powder injection molding feedstock. Mater Sci Eng A 356(1):337–344CrossRef
75.
go back to reference Bose A, Schuh CA, Tobia JC et al (2018) Traditional and additive manufacturing of a new tungsten heavy alloy alternative. Int J Refract Metals Hard Mater 73:22–28CrossRef Bose A, Schuh CA, Tobia JC et al (2018) Traditional and additive manufacturing of a new tungsten heavy alloy alternative. Int J Refract Metals Hard Mater 73:22–28CrossRef
76.
go back to reference Merz L, Rath S, Piotter V et al (2002) Feedstock development for micro powder injection molding. Microsyst Technol 8(2–3):129–132CrossRef Merz L, Rath S, Piotter V et al (2002) Feedstock development for micro powder injection molding. Microsyst Technol 8(2–3):129–132CrossRef
77.
go back to reference Samuel I, Lin E (2001) Near-net-shape forming of zirconia optical sleeves by ceramics injection molding. Ceram Int 27(2):205–214CrossRef Samuel I, Lin E (2001) Near-net-shape forming of zirconia optical sleeves by ceramics injection molding. Ceram Int 27(2):205–214CrossRef
78.
go back to reference Yang WW, Yang KY, Hon MH (2003) Effects of PEG molecular weights on rheological behavior of alumina injection molding feedstocks. Mater Chem Phys 78(2):416–424CrossRef Yang WW, Yang KY, Hon MH (2003) Effects of PEG molecular weights on rheological behavior of alumina injection molding feedstocks. Mater Chem Phys 78(2):416–424CrossRef
79.
go back to reference Ani S, Muchtar SM, Muhamad A et al (2014) Binder removal via a two-stage debinding process for ceramic injection molding parts. Ceram Int 40(2):2819–2824CrossRef Ani S, Muchtar SM, Muhamad A et al (2014) Binder removal via a two-stage debinding process for ceramic injection molding parts. Ceram Int 40(2):2819–2824CrossRef
80.
go back to reference Burkhardt C, Freigassner P, Weber O et al (2016) Fused filament fabrication (FFF) of 316L green parts for the MIM process. In: Proceedings of the world PM2016 congress and exhibition, Hamburg, Germany, 9–13 Oct 2016 Burkhardt C, Freigassner P, Weber O et al (2016) Fused filament fabrication (FFF) of 316L green parts for the MIM process. In: Proceedings of the world PM2016 congress and exhibition, Hamburg, Germany, 9–13 Oct 2016
82.
go back to reference Hausnerová B (2011) Powder injection moulding—an alternative processing method for automotive items. In: new trends and development in automotive system engineering. InTech, pp 129–146 Hausnerová B (2011) Powder injection moulding—an alternative processing method for automotive items. In: new trends and development in automotive system engineering. InTech, pp 129–146
83.
go back to reference Peng F, Vogt BD, Cakmak M (2018) Complex flow and temperature history during melt extrusion in material extrusion additive manufacturing. Addit Manuf 22:197–206CrossRef Peng F, Vogt BD, Cakmak M (2018) Complex flow and temperature history during melt extrusion in material extrusion additive manufacturing. Addit Manuf 22:197–206CrossRef
84.
go back to reference Northcutt LA, Orski SV, Migler KB et al (2018) Effect of processing conditions on crystallization kinetics during materials extrusion additive manufacturing. Polymer 154:182–187CrossRef Northcutt LA, Orski SV, Migler KB et al (2018) Effect of processing conditions on crystallization kinetics during materials extrusion additive manufacturing. Polymer 154:182–187CrossRef
85.
go back to reference Valkenaers H, Vogeler F, Voet A et al (2013) Screw extrusion based 3D printing, a novel additive manufacturing technology. In: International conference on competitive manufacturing (COMA) Valkenaers H, Vogeler F, Voet A et al (2013) Screw extrusion based 3D printing, a novel additive manufacturing technology. In: International conference on competitive manufacturing (COMA)
86.
go back to reference Tseng JW, Liu CY, Yen YK et al (2018) Screw extrusion-based additive manufacturing of PEEK. Mater Des 140:209–221CrossRef Tseng JW, Liu CY, Yen YK et al (2018) Screw extrusion-based additive manufacturing of PEEK. Mater Des 140:209–221CrossRef
87.
go back to reference Pachauri P, Hamiuddin M (2015) Optimization of injection moulding process parameters in MIM for impact toughness of sintered parts. Int J Adv Mater Metall Eng 1:1–11 Pachauri P, Hamiuddin M (2015) Optimization of injection moulding process parameters in MIM for impact toughness of sintered parts. Int J Adv Mater Metall Eng 1:1–11
89.
go back to reference Rishi O (2013) Feed rate effects in freeform filament extrusion. Dissertation, Rochester Institute of Technology Rishi O (2013) Feed rate effects in freeform filament extrusion. Dissertation, Rochester Institute of Technology
90.
go back to reference Fiore E, Giberti H, Sbaglia L (2015) Dimensional synthesis of a 5-DoF parallel kinematic manipulator for a 3D printer. In: 16th international conference on research and education in mechatronics (REM), Bochun Germany, 18–20 Nov 2015 Fiore E, Giberti H, Sbaglia L (2015) Dimensional synthesis of a 5-DoF parallel kinematic manipulator for a 3D printer. In: 16th international conference on research and education in mechatronics (REM), Bochun Germany, 18–20 Nov 2015
91.
go back to reference Giberti H, Fiore E, Sbaglia L (2016) Kinematic synthesis of a new 3D printing solution. In: MATEC Web of conferences Giberti H, Fiore E, Sbaglia L (2016) Kinematic synthesis of a new 3D printing solution. In: MATEC Web of conferences
92.
go back to reference Anzalone GC, Zhang CL, Wijnen B et al (2013) A low-cost open-source metal 3-D printer. IEEE Access 1:803–810CrossRef Anzalone GC, Zhang CL, Wijnen B et al (2013) A low-cost open-source metal 3-D printer. IEEE Access 1:803–810CrossRef
93.
go back to reference Giberti H, Sbaglia L, Urgo M (2017) A path planning algorithm for industrial processes under velocity constraints with an application to additive manufacturing. J Manuf Syst 43:160–167CrossRef Giberti H, Sbaglia L, Urgo M (2017) A path planning algorithm for industrial processes under velocity constraints with an application to additive manufacturing. J Manuf Syst 43:160–167CrossRef
94.
go back to reference Monzón MD, Gibson I, Benítez AN et al (2013) Process and material behavior modeling for a new design of micro-additive fused deposition. Int J Adv Manuf Technol 67(9–12):2717–2726CrossRef Monzón MD, Gibson I, Benítez AN et al (2013) Process and material behavior modeling for a new design of micro-additive fused deposition. Int J Adv Manuf Technol 67(9–12):2717–2726CrossRef
95.
go back to reference Oliveira RVB, Soldi V, Fredel MC et al (2005) Ceramic injection molding: influence of specimen dimensions and temperature on solven debinding kinetics. J Mater Process Technol 160(2):213–220CrossRef Oliveira RVB, Soldi V, Fredel MC et al (2005) Ceramic injection molding: influence of specimen dimensions and temperature on solven debinding kinetics. J Mater Process Technol 160(2):213–220CrossRef
97.
go back to reference Tandon R (2008) Metal injection moulding in encyclopedia of materials science and technology. Elsevier, Amsterdam, pp 5439–5442 Tandon R (2008) Metal injection moulding in encyclopedia of materials science and technology. Elsevier, Amsterdam, pp 5439–5442
98.
go back to reference Boljanovic V (2010) Powder metallurgy, in metal shaping processes: casting and molding, particulate processing, deformation processes, metal removal. Industrial Press Inc, New York, pp 75–106 Boljanovic V (2010) Powder metallurgy, in metal shaping processes: casting and molding, particulate processing, deformation processes, metal removal. Industrial Press Inc, New York, pp 75–106
99.
go back to reference Parenti P, Kuriakose S, Mussi V et al (2017) Green-state micromilling of AISI316L feedstock. In: World congress on micro and nano manufacturing, 27–30 Mar 2017 Parenti P, Kuriakose S, Mussi V et al (2017) Green-state micromilling of AISI316L feedstock. In: World congress on micro and nano manufacturing, 27–30 Mar 2017
100.
go back to reference Parenti P, Cataldo S, Annoni M (2018) Shape deposition manufacturing of 316L parts via feedstock extrusion and green-state milling. Manuf Lett 18:6–11CrossRef Parenti P, Cataldo S, Annoni M (2018) Shape deposition manufacturing of 316L parts via feedstock extrusion and green-state milling. Manuf Lett 18:6–11CrossRef
101.
go back to reference A. F3091/F3091M-14 (2014) Standard specification for powder bed fusion of plastic materials, ASTM International, West Conshohocken, PA A. F3091/F3091M-14 (2014) Standard specification for powder bed fusion of plastic materials, ASTM International, West Conshohocken, PA
102.
go back to reference A. F3122-14 (2014) Standard guide for evaluating mechanical properties of metal materials made via additive manufacturing processes, ASTM International, West Conshohocken, PA A. F3122-14 (2014) Standard guide for evaluating mechanical properties of metal materials made via additive manufacturing processes, ASTM International, West Conshohocken, PA
103.
go back to reference Komineas G, Foteinopoulos P, Papacharalampopoulos A et al (2018) Build time estimation models in thermal extrusion additive manufacturing processes. Proc Manuf 21:647–654 Komineas G, Foteinopoulos P, Papacharalampopoulos A et al (2018) Build time estimation models in thermal extrusion additive manufacturing processes. Proc Manuf 21:647–654
104.
go back to reference Ghazanfari A, Li WB, Leu MC et al (2016) A novel extrusion-based additive manufacturing process for ceramic parts. In: 26th annual international solid freeform fabrication symposium Ghazanfari A, Li WB, Leu MC et al (2016) A novel extrusion-based additive manufacturing process for ceramic parts. In: 26th annual international solid freeform fabrication symposium
105.
go back to reference Brenken B, Barocio E, Favaloro A et al (2019) Development and validation of extrusion deposition additive manufacturing process simulations. Addit Manuf 25:218–226CrossRef Brenken B, Barocio E, Favaloro A et al (2019) Development and validation of extrusion deposition additive manufacturing process simulations. Addit Manuf 25:218–226CrossRef
106.
go back to reference Singh S, Ramakrishna S, Singh R (2017) Material issues in additive manufacturing: a review. J Manuf Process 25:185–200CrossRef Singh S, Ramakrishna S, Singh R (2017) Material issues in additive manufacturing: a review. J Manuf Process 25:185–200CrossRef
107.
go back to reference Faes M, Valkenaers H, Vogeler F et al (2015) Extrusion-based 3D printing of ceramic components. Proc CIRP 28:76–81CrossRef Faes M, Valkenaers H, Vogeler F et al (2015) Extrusion-based 3D printing of ceramic components. Proc CIRP 28:76–81CrossRef
108.
go back to reference Bletzinger KU, Ramm E (2001) Structural optimization and form finding of light weight structures. Comput Struct 79(22–25):2053–2062CrossRef Bletzinger KU, Ramm E (2001) Structural optimization and form finding of light weight structures. Comput Struct 79(22–25):2053–2062CrossRef
109.
go back to reference Gonzalez-Gutierrez J, Godec D, Guran R et al (2018) 3D printing conditions determination for feedstock used in fused filament fabrication (FFF) of 17-4PH stainless steel parts. Metalurgija 57:117–120 Gonzalez-Gutierrez J, Godec D, Guran R et al (2018) 3D printing conditions determination for feedstock used in fused filament fabrication (FFF) of 17-4PH stainless steel parts. Metalurgija 57:117–120
110.
go back to reference Moritz T, Partsch U, Ziesche S et al (2014) Additive manufacturing of ceramic components. Mater Process Annu Rep 15:28–31 Moritz T, Partsch U, Ziesche S et al (2014) Additive manufacturing of ceramic components. Mater Process Annu Rep 15:28–31
111.
go back to reference Ghazanfari A, Li W, Leu M et al (2017) Mechanical characterization of parts produced by ceramic on-demand extrusion process. Int J Appl Ceram Technol 14(3):486–494CrossRef Ghazanfari A, Li W, Leu M et al (2017) Mechanical characterization of parts produced by ceramic on-demand extrusion process. Int J Appl Ceram Technol 14(3):486–494CrossRef
112.
go back to reference Li W, Ghazanfari A, McMillen D et al (2017) Fabricating ceramic components with water dissolvable support structures by the ceramic on-demand extrusion process. CIRP Ann Manuf Technol 66:225–228CrossRef Li W, Ghazanfari A, McMillen D et al (2017) Fabricating ceramic components with water dissolvable support structures by the ceramic on-demand extrusion process. CIRP Ann Manuf Technol 66:225–228CrossRef
113.
go back to reference Lieberwirth C, Harder A, Seitz H (2017) Extrusion based additive manufacturing of metals parts. J Mech Eng Autom 7:79–83 Lieberwirth C, Harder A, Seitz H (2017) Extrusion based additive manufacturing of metals parts. J Mech Eng Autom 7:79–83
Metadata
Title
A comprehensive review of extrusion-based additive manufacturing processes for rapid production of metallic and ceramic parts
Authors
Kedarnath Rane
Matteo Strano
Publication date
22-05-2019
Publisher
Shanghai University
Published in
Advances in Manufacturing / Issue 2/2019
Print ISSN: 2095-3127
Electronic ISSN: 2195-3597
DOI
https://doi.org/10.1007/s40436-019-00253-6

Other articles of this Issue 2/2019

Advances in Manufacturing 2/2019 Go to the issue

Premium Partners