Skip to main content
Top

04-09-2024 | Review

A Comprehensive Survey on Generative AI for Metaverse: Enabling Immersive Experience

Authors: Vinay Chamola, Siva Sai, Animesh Bhargava, Ashis Sahu, Wenchao Jiang, Zehui Xiong, Dusit Niyato, Amir Hussain

Published in: Cognitive Computation

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Generative Artificial Intelligence models are Artificial Intelligence models that generate new content based on a prompt or input. The output content can be in various forms, including text, images, and video. Metaverse refers to a virtual world where users can interact with each other, objects and events in an immersive, realistic, and dynamic manner. A critical and foremost step in realizing the Metaverse is content creation for its different realms. Given Metaverse’s need for enormous content, Generative AI is a perfect technology for content creation. This paper explores how Generative AI models can help fulfil the potential of the Metaverse by assisting in the design and production of various aspects of the Metaverse and attracting users not just by creating dynamic, interactive, and personalised content at scale but also by producing various revenue-generating opportunities for users and organisations in the Metaverse. The paper analyses the Generative AI models by grouping them according to the type of content they generate, namely text, image, video, 3D visual, audio, and gaming. Various use cases in the Metaverse are explored and listed according to each type of AI Generated Content (AIGC). This paper also presents several applications and scenarios where the mixture of different Generative AI (GAI) models benefits the Metaverse. Further, this paper also enumerates the limitations and challenges of Generative AI models and the areas of future work. Despite the obstacles, Generative AI can realise the potential of the Metaverse by making it much more functional and interactive owing to the vast use cases of different types of AIGC in the Metaverse, and the age of virtual reality may not be too distant.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Cao Y, Li S, Liu Y, Yan Z, Dai Y, Yu PS, Sun L. A comprehensive survey of AI-generated content (AIGC): a history of generative AI from GAN to ChatGPT. 2023. arXiv preprint arXiv:2303.04226 Cao Y, Li S, Liu Y, Yan Z, Dai Y, Yu PS, Sun L. A comprehensive survey of AI-generated content (AIGC): a history of generative AI from GAN to ChatGPT. 2023. arXiv preprint arXiv:​2303.​04226
2.
go back to reference Buchanan BG. A (very) brief history of artificial intelligence. Ai Magazine. 2005;26(4):53–53. Buchanan BG. A (very) brief history of artificial intelligence. Ai Magazine. 2005;26(4):53–53.
3.
go back to reference Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. Generative adversarial networks. Communications of the ACM. 2020;63(11):139–44.MathSciNetCrossRef Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. Generative adversarial networks. Communications of the ACM. 2020;63(11):139–44.MathSciNetCrossRef
4.
go back to reference Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I. Attention is all you need. Adv Neural Inf Process Syst. 2017;30. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I. Attention is all you need. Adv Neural Inf Process Syst. 2017;30.
5.
go back to reference OpenAI R. GPT-4 technical report. arXiv; 2023. pp. 2303–08 774. OpenAI R. GPT-4 technical report. arXiv; 2023. pp. 2303–08 774.
6.
go back to reference Ramesh A, Pavlov M, Goh G, Gray S, Voss C, Radford A, Chen M, Sutskever I. Zero-shot text-to-image generation. In: International Conference on Machine Learning. PMLR; 2021. pp. 8821–31. Ramesh A, Pavlov M, Goh G, Gray S, Voss C, Radford A, Chen M, Sutskever I. Zero-shot text-to-image generation. In: International Conference on Machine Learning. PMLR; 2021. pp. 8821–31.
7.
go back to reference Pichai S. An important next step on our AI journey. The keyword: Google; 2023. Pichai S. An important next step on our AI journey. The keyword: Google; 2023.
8.
go back to reference Hanna DM. The use of artificial intelligence art generator “midjourney’’ in artistic and advertising creativity. J Design Sci Appl Arts. 2023;4(2):42–58. Hanna DM. The use of artificial intelligence art generator “midjourney’’ in artistic and advertising creativity. J Design Sci Appl Arts. 2023;4(2):42–58.
10.
go back to reference Nichol A, Jun H, Dhariwal P, Mishkin P, Chen M. Point-E: a system for generating 3D point clouds from complex prompts. 2022. arXiv preprint arXiv:2212.08751 Nichol A, Jun H, Dhariwal P, Mishkin P, Chen M. Point-E: a system for generating 3D point clouds from complex prompts. 2022. arXiv preprint arXiv:​2212.​08751
11.
go back to reference Podell D, English Z, Lacey K, Blattmann A, Dockhorn T, Müller J, Penna J, Rombach R. SDXL: improving latent diffusion models for high-resolution image synthesis. 2023. arXiv preprint arXiv:2307.01952 Podell D, English Z, Lacey K, Blattmann A, Dockhorn T, Müller J, Penna J, Rombach R. SDXL: improving latent diffusion models for high-resolution image synthesis. 2023. arXiv preprint arXiv:​2307.​01952
12.
go back to reference Touvron H, Martin L, Stone K, Albert P, Almahairi A, Babaei Y, Bashlykov N, Batra S, Bhargava P, Bhosale S et al. Llama 2: open foundation and fine-tuned chat models. 2023. arXiv preprint arXiv:2307.09288 Touvron H, Martin L, Stone K, Albert P, Almahairi A, Babaei Y, Bashlykov N, Batra S, Bhargava P, Bhosale S et al. Llama 2: open foundation and fine-tuned chat models. 2023. arXiv preprint arXiv:​2307.​09288
14.
go back to reference Park S-M, Kim Y-G. A metaverse: taxonomy, components, applications, and open challenges. IEEE access. 2022;10:4209–51.CrossRef Park S-M, Kim Y-G. A metaverse: taxonomy, components, applications, and open challenges. IEEE access. 2022;10:4209–51.CrossRef
15.
go back to reference Azuma RT. A survey of augmented reality. Presence: teleoperators & virtual environments. 1997;6(4):355–85. Azuma RT. A survey of augmented reality. Presence: teleoperators & virtual environments. 1997;6(4):355–85.
16.
go back to reference Rokhsaritalemi S, Sadeghi-Niaraki A, Choi S-M. A review on mixed reality: current trends, challenges and prospects. Appl Sci. 2020;10(2):636.CrossRef Rokhsaritalemi S, Sadeghi-Niaraki A, Choi S-M. A review on mixed reality: current trends, challenges and prospects. Appl Sci. 2020;10(2):636.CrossRef
17.
go back to reference Zheng J, Chan K, Gibson I. Virtual reality. Ieee Potentials. 1998;17(2):20–3.CrossRef Zheng J, Chan K, Gibson I. Virtual reality. Ieee Potentials. 1998;17(2):20–3.CrossRef
18.
go back to reference Davis A, Murphy J, Owens D, Khazanchi D, Zigurs I. Avatars, people, and virtual worlds: foundations for research in metaverses. J Assoc Inf Syst. 2009;10(2):1. Davis A, Murphy J, Owens D, Khazanchi D, Zigurs I. Avatars, people, and virtual worlds: foundations for research in metaverses. J Assoc Inf Syst. 2009;10(2):1.
19.
go back to reference Abbate S, Centobelli P, Cerchione R, Oropallo E, Riccio EA. first bibliometric literature review on metaverse. In: IEEE Technology and Engineering Management Conference (TEMSCON EUROPE). IEEE. 2022;2022:254–60. Abbate S, Centobelli P, Cerchione R, Oropallo E, Riccio EA. first bibliometric literature review on metaverse. In: IEEE Technology and Engineering Management Conference (TEMSCON EUROPE). IEEE. 2022;2022:254–60.
23.
go back to reference Greenwold S. Spatial computing. Master: Massachusetts Institute of Technology; 2003. Greenwold S. Spatial computing. Master: Massachusetts Institute of Technology; 2003.
24.
go back to reference Qian L, Luo Z, Du Y, Guo L. Cloud computing: an overview. In: Cloud Computing: First International Conference, CloudCom 2009, Beijing, China, December 1–4, 2009. Proceedings 1. Springer; 2009. pp. 626–31. Qian L, Luo Z, Du Y, Guo L. Cloud computing: an overview. In: Cloud Computing: First International Conference, CloudCom 2009, Beijing, China, December 1–4, 2009. Proceedings 1. Springer; 2009. pp. 626–31.
25.
go back to reference Madakam S, Lake V, Lake V, Lake V, et al. Internet of things (IoT): a literature review. J Comput Commun. 2015;3(05):164.CrossRef Madakam S, Lake V, Lake V, Lake V, et al. Internet of things (IoT): a literature review. J Comput Commun. 2015;3(05):164.CrossRef
26.
go back to reference Shi W, Cao J, Zhang Q, Li Y, Xu L. Edge computing: vision and challenges. IEEE Internet Things J. 2016;3(5):637–46.CrossRef Shi W, Cao J, Zhang Q, Li Y, Xu L. Edge computing: vision and challenges. IEEE Internet Things J. 2016;3(5):637–46.CrossRef
27.
go back to reference Evans A, Romeo M, Bahrehmand A, Agenjo J, Blat J. 3D graphics on the web: a survey. Comput Graph. 2014;41:43–61.CrossRef Evans A, Romeo M, Bahrehmand A, Agenjo J, Blat J. 3D graphics on the web: a survey. Comput Graph. 2014;41:43–61.CrossRef
28.
go back to reference Xu M, Ng WC, Lim WYB, Kang J, Xiong Z, Niyato D, Yang Q, Shen XS, Miao C. A full dive into realizing the edge-enabled metaverse: visions, enabling technologies, and challenges. IEEE Commun Surv Tutorials. 2022. Xu M, Ng WC, Lim WYB, Kang J, Xiong Z, Niyato D, Yang Q, Shen XS, Miao C. A full dive into realizing the edge-enabled metaverse: visions, enabling technologies, and challenges. IEEE Commun Surv Tutorials. 2022.
29.
go back to reference Bale AS, Ghorpade N, Hashim MF, Vaishnav J, Almaspoor Z. A comprehensive study on metaverse and its impacts on humans. Adv Hum Comput Interact. 2022;2022. Bale AS, Ghorpade N, Hashim MF, Vaishnav J, Almaspoor Z. A comprehensive study on metaverse and its impacts on humans. Adv Hum Comput Interact. 2022;2022.
30.
go back to reference Pallavicini F, Pepe A, Minissi ME. Gaming in virtual reality: what changes in terms of usability, emotional response and sense of presence compared to non-immersive video games? Simulation & Gaming. 2019;50(2):136–59.CrossRef Pallavicini F, Pepe A, Minissi ME. Gaming in virtual reality: what changes in terms of usability, emotional response and sense of presence compared to non-immersive video games? Simulation & Gaming. 2019;50(2):136–59.CrossRef
31.
go back to reference Bourlakis M, Papagiannidis S, Li F. Retail spatial evolution: paving the way from traditional to metaverse retailing. Electron Commer Res. 2009;9:135–48.CrossRef Bourlakis M, Papagiannidis S, Li F. Retail spatial evolution: paving the way from traditional to metaverse retailing. Electron Commer Res. 2009;9:135–48.CrossRef
32.
go back to reference Wang G, Badal A, Jia X, Maltz JS, Mueller K, Myers KJ, Niu C, Vannier M, Yan P, Yu Z, et al. Development of metaverse for intelligent healthcare. Nat Mach Intell. 2022;4(11):922–9.CrossRef Wang G, Badal A, Jia X, Maltz JS, Mueller K, Myers KJ, Niu C, Vannier M, Yan P, Yu Z, et al. Development of metaverse for intelligent healthcare. Nat Mach Intell. 2022;4(11):922–9.CrossRef
33.
go back to reference Tasa UB, Görgülü T. Meta-art: art of the 3-d user-created virtual worlds. Digital creativity. 2010;21(2):100–11.CrossRef Tasa UB, Görgülü T. Meta-art: art of the 3-d user-created virtual worlds. Digital creativity. 2010;21(2):100–11.CrossRef
34.
go back to reference Asara C. Real estate in the metaverse. 2022. Asara C. Real estate in the metaverse. 2022.
35.
go back to reference Moneta A. Architecture, heritage, and the metaverse. Tradit Dwellings Settlements Rev. 2020;32(1):37–49. Moneta A. Architecture, heritage, and the metaverse. Tradit Dwellings Settlements Rev. 2020;32(1):37–49.
36.
go back to reference Gursoy D, Malodia S, Dhir A. The metaverse in the hospitality and tourism industry: an overview of current trends and future research directions. J Hosp Mark Manag. 2022;31(5):527–34. Gursoy D, Malodia S, Dhir A. The metaverse in the hospitality and tourism industry: an overview of current trends and future research directions. J Hosp Mark Manag. 2022;31(5):527–34.
37.
go back to reference Bibri SE, Allam Z. The metaverse as a virtual form of data-driven smart urbanism: on post-pandemic governance through the prism of the logic of surveillance capitalism. Smart Cities. 2022;5(2). Bibri SE, Allam Z. The metaverse as a virtual form of data-driven smart urbanism: on post-pandemic governance through the prism of the logic of surveillance capitalism. Smart Cities. 2022;5(2).
38.
go back to reference Hwang G-J, Chien S-Y. Definition, roles, and potential research issues of the metaverse in education: an artificial intelligence perspective. Comput Educ Artif Intell. 2022;3:100082.CrossRef Hwang G-J, Chien S-Y. Definition, roles, and potential research issues of the metaverse in education: an artificial intelligence perspective. Comput Educ Artif Intell. 2022;3:100082.CrossRef
39.
go back to reference Popescu GH, Ciurlău CF, Stan CI, Băcănoiu C, Tănase A. Virtual workplaces in the metaverse: immersive remote collaboration tools, behavioral predictive analytics, and extended reality technologies. Psychosociological Issues Hum Resour Manag. 2022;10(1):21–34.CrossRef Popescu GH, Ciurlău CF, Stan CI, Băcănoiu C, Tănase A. Virtual workplaces in the metaverse: immersive remote collaboration tools, behavioral predictive analytics, and extended reality technologies. Psychosociological Issues Hum Resour Manag. 2022;10(1):21–34.CrossRef
40.
go back to reference Ning H, Wang H, Lin Y, Wang W, Dhelim S, Farha F, Ding J, Daneshmand M. A survey on the metaverse: the state-of-the-art, technologies, applications, and challenges. IEEE Internet Things J. 2023. Ning H, Wang H, Lin Y, Wang W, Dhelim S, Farha F, Ding J, Daneshmand M. A survey on the metaverse: the state-of-the-art, technologies, applications, and challenges. IEEE Internet Things J. 2023.
41.
go back to reference Chamola V, Bansal G, Das TK, Hassija V, Reddy NSS, Wang J, Zeadally S, Hussain A, Yu FR, Guizani M et al. Beyond reality: the pivotal role of generative AI in the metaverse. 2023. arXiv preprint arXiv:2308.06272 Chamola V, Bansal G, Das TK, Hassija V, Reddy NSS, Wang J, Zeadally S, Hussain A, Yu FR, Guizani M et al. Beyond reality: the pivotal role of generative AI in the metaverse. 2023. arXiv preprint arXiv:​2308.​06272
42.
go back to reference Qin HX, Hui P. Empowering the metaverse with generative AI: survey and future directions. In: 2023 IEEE 43rd International Conference on Distributed Computing Systems Workshops (ICDCSW). IEEE; 2023. pp. 85–90. Qin HX, Hui P. Empowering the metaverse with generative AI: survey and future directions. In: 2023 IEEE 43rd International Conference on Distributed Computing Systems Workshops (ICDCSW). IEEE; 2023. pp. 85–90.
43.
go back to reference Huynh-The T, Pham Q-V, Pham X-Q, Nguyen TT, Han Z, Kim D-S. Artificial intelligence for the metaverse: a survey. Eng Appl Artif Intell. 2023;117:105581.CrossRef Huynh-The T, Pham Q-V, Pham X-Q, Nguyen TT, Han Z, Kim D-S. Artificial intelligence for the metaverse: a survey. Eng Appl Artif Intell. 2023;117:105581.CrossRef
44.
go back to reference Zhao WX, Zhou K, Li J, Tang T, Wang X, Hou Y, Min Y, Zhang B, Zhang J, Dong Z et al. A survey of large language models. 2023. arXiv preprint arXiv:2303.18223 Zhao WX, Zhou K, Li J, Tang T, Wang X, Hou Y, Min Y, Zhang B, Zhang J, Dong Z et al. A survey of large language models. 2023. arXiv preprint arXiv:​2303.​18223
45.
go back to reference Bubeck S, Chandrasekaran V, Eldan R, Gehrke J, Horvitz E, Kamar E, Lee P, Lee YT, Li Y, Lundberg S et al. Sparks of artificial general intelligence: early experiments with GPT-4. 2023. arXiv preprint arXiv:2303.12712 Bubeck S, Chandrasekaran V, Eldan R, Gehrke J, Horvitz E, Kamar E, Lee P, Lee YT, Li Y, Lundberg S et al. Sparks of artificial general intelligence: early experiments with GPT-4. 2023. arXiv preprint arXiv:​2303.​12712
46.
go back to reference Hoffmann J, Borgeaud S, Mensch A, Buchatskaya E, Cai T, Rutherford E, de Las Casas D, Hendricks LA, Welbl J, Clark A, et al. An empirical analysis of compute-optimal large language model training. Adv Neural Inf Process Syst. 2022;35(30):016–30. Hoffmann J, Borgeaud S, Mensch A, Buchatskaya E, Cai T, Rutherford E, de Las Casas D, Hendricks LA, Welbl J, Clark A, et al. An empirical analysis of compute-optimal large language model training. Adv Neural Inf Process Syst. 2022;35(30):016–30.
47.
go back to reference Ramesh A, Pavlov M, Goh G, Gray S, Voss C, Radford A, Chen M, Sutskever I. Zero-shot text-to-image generation. In: International Conference on Machine Learning. PMLR; 2021. pp. 8821–31. Ramesh A, Pavlov M, Goh G, Gray S, Voss C, Radford A, Chen M, Sutskever I. Zero-shot text-to-image generation. In: International Conference on Machine Learning. PMLR; 2021. pp. 8821–31.
49.
go back to reference Rombach R, Blattmann A, Lorenz D, Esser P, Ommer B. High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022. pp. 10 684–695. Rombach R, Blattmann A, Lorenz D, Esser P, Ommer B. High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022. pp. 10 684–695.
51.
go back to reference Liu M, Shi J, Cao K, Zhu J, Liu S. Analyzing the training processes of deep generative models. IEEE transactions on visualization and computer graphics. 2017;24(1):77–87.CrossRef Liu M, Shi J, Cao K, Zhu J, Liu S. Analyzing the training processes of deep generative models. IEEE transactions on visualization and computer graphics. 2017;24(1):77–87.CrossRef
59.
go back to reference Borsos Z, Marinier R, Vincent D, Kharitonov E, Pietquin O, Sharifi M, Roblek D, Teboul O, Grangier D, Tagliasacchi M, et al. Audiolm: a language modeling approach to audio generation. IEEE/ACM Transactions on Audio: Speech, and Language Processing; 2023. Borsos Z, Marinier R, Vincent D, Kharitonov E, Pietquin O, Sharifi M, Roblek D, Teboul O, Grangier D, Tagliasacchi M, et al. Audiolm: a language modeling approach to audio generation. IEEE/ACM Transactions on Audio: Speech, and Language Processing; 2023.
60.
go back to reference Wang T, Zhang B, Zhang T, Gu S, Bao J, Baltrusaitis T, Shen J, Chen D, Wen F, Chen Q et al. Rodin: a generative model for sculpting 3D digital avatars using diffusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023. pp. 4563–73. Wang T, Zhang B, Zhang T, Gu S, Bao J, Baltrusaitis T, Shen J, Chen D, Wen F, Chen Q et al. Rodin: a generative model for sculpting 3D digital avatars using diffusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023. pp. 4563–73.
61.
62.
go back to reference Li C, Zhang C, Waghwase A, Lee L-H, Rameau F, Yang Y, Bae S-H, Hong CS. Generative AI meets 3D: a survey on text-to-3D in AIGC era. 2023. arXiv preprint arXiv:2305.06131 Li C, Zhang C, Waghwase A, Lee L-H, Rameau F, Yang Y, Bae S-H, Hong CS. Generative AI meets 3D: a survey on text-to-3D in AIGC era. 2023. arXiv preprint arXiv:​2305.​06131
67.
go back to reference Nash C, Ganin Y, Eslami SA, Battaglia P. Polygen: an autoregressive generative model of 3D meshes. In: International conference on machine learning. PMLR; 2020, pp. 7220–7229. Nash C, Ganin Y, Eslami SA, Battaglia P. Polygen: an autoregressive generative model of 3D meshes. In: International conference on machine learning. PMLR; 2020, pp. 7220–7229.
70.
go back to reference Plut C, Pasquier P. Generative music in video games: state of the art, challenges, and prospects. Entertainment Computing. 2020;33:100337.CrossRef Plut C, Pasquier P. Generative music in video games: state of the art, challenges, and prospects. Entertainment Computing. 2020;33:100337.CrossRef
71.
go back to reference Salge C, Green MC, Canaan R, Togelius J. Generative design in minecraft (GDMC) settlement generation competition. In: Proceedings of the 13th International Conference on the Foundations of Digital Games. 2018. pp. 1–10. Salge C, Green MC, Canaan R, Togelius J. Generative design in minecraft (GDMC) settlement generation competition. In: Proceedings of the 13th International Conference on the Foundations of Digital Games. 2018. pp. 1–10.
72.
go back to reference Jones D, Snider C, Nassehi A, Yon J, Hicks B. Characterising the digital twin: a systematic literature review. CIRP journal of manufacturing science and technology. 2020;29:36–52.CrossRef Jones D, Snider C, Nassehi A, Yon J, Hicks B. Characterising the digital twin: a systematic literature review. CIRP journal of manufacturing science and technology. 2020;29:36–52.CrossRef
73.
go back to reference Hoffmann J, Borgeaud S, Mensch A, Buchatskaya E, Cai T, Rutherford E, Casas DdL, Hendricks LA, Welbl J, Clark A et al. Training compute-optimal large language models. 2022. arXiv preprint arXiv:2203.15556 Hoffmann J, Borgeaud S, Mensch A, Buchatskaya E, Cai T, Rutherford E, Casas DdL, Hendricks LA, Welbl J, Clark A et al. Training compute-optimal large language models. 2022. arXiv preprint arXiv:​2203.​15556
74.
go back to reference Thoppilan R, De Freitas D, Hall J, Shazeer N, Kulshreshtha A, Cheng H-T, Jin A, Bos T, Baker L, Du Y et al. LAMDA: language models for dialog applications. 2022. arXiv preprint arXiv:2201.08239 Thoppilan R, De Freitas D, Hall J, Shazeer N, Kulshreshtha A, Cheng H-T, Jin A, Bos T, Baker L, Du Y et al. LAMDA: language models for dialog applications. 2022. arXiv preprint arXiv:​2201.​08239
75.
go back to reference Beattie C, Leibo JZ, Teplyashin D, Ward T, Wainwright M, Küttler H, Lefrancq A, Green S, Valdés V, Sadik A et al. Deepmind lab. 2016. arXiv preprint arXiv:1612.03801 Beattie C, Leibo JZ, Teplyashin D, Ward T, Wainwright M, Küttler H, Lefrancq A, Green S, Valdés V, Sadik A et al. Deepmind lab. 2016. arXiv preprint arXiv:​1612.​03801
76.
go back to reference Gong J, Foo LG, He Y, Rahmani H, Liu J. LLMS are good sign language translators. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024. pp. 18 362–72. Gong J, Foo LG, He Y, Rahmani H, Liu J. LLMS are good sign language translators. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024. pp. 18 362–72.
77.
go back to reference Brown PF, Cocke J, Della Pietra SA, Della Pietra VJ, Jelinek F, Mercer RL, Roossin P. A statistical approach to language translation. In: Coling Budapest 1988 Volume 1: International Conference on Computational Linguistics. 1988. Brown PF, Cocke J, Della Pietra SA, Della Pietra VJ, Jelinek F, Mercer RL, Roossin P. A statistical approach to language translation. In: Coling Budapest 1988 Volume 1: International Conference on Computational Linguistics. 1988.
78.
go back to reference Razavi AH, Inkpen D, Uritsky S, Matwin S. Offensive language detection using multi-level classification. In: Advances in Artificial Intelligence: 23rd Canadian Conference on Artificial Intelligence, Canadian AI 2010, Ottawa, Canada, May 31–June 2, 2010. Proceedings 23. Springer; 2010. pp. 16–27. Razavi AH, Inkpen D, Uritsky S, Matwin S. Offensive language detection using multi-level classification. In: Advances in Artificial Intelligence: 23rd Canadian Conference on Artificial Intelligence, Canadian AI 2010, Ottawa, Canada, May 31–June 2, 2010. Proceedings 23. Springer; 2010. pp. 16–27.
79.
go back to reference López-Gil J-M, Pereira J. Turning manual web accessibility success criteria into automatic: an LLM-based approach. Universal Access in the Information Society. 2024. pp. 1–16. López-Gil J-M, Pereira J. Turning manual web accessibility success criteria into automatic: an LLM-based approach. Universal Access in the Information Society. 2024. pp. 1–16.
81.
go back to reference Sitaram S, Choudhury M, Patra B, Chaudhary V, Ahuja K, Bali K. Everything you need to know about multilingual LLMS: towards fair, performant and reliable models for languages of the world. In: Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 6: Tutorial Abstracts). 2023. pp. 21–6. Sitaram S, Choudhury M, Patra B, Chaudhary V, Ahuja K, Bali K. Everything you need to know about multilingual LLMS: towards fair, performant and reliable models for languages of the world. In: Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 6: Tutorial Abstracts). 2023. pp. 21–6.
83.
go back to reference Sun Y, Xu Y, Cheng C, Li Y, Lee CH, Asadipour A. Travel with wander in the metaverse: An ai chatbot to visit the future earth. In: IEEE 24th International Workshop on Multimedia Signal Processing (MMSP). IEEE. 2022;2022:1–6. Sun Y, Xu Y, Cheng C, Li Y, Lee CH, Asadipour A. Travel with wander in the metaverse: An ai chatbot to visit the future earth. In: IEEE 24th International Workshop on Multimedia Signal Processing (MMSP). IEEE. 2022;2022:1–6.
84.
go back to reference Vu MD, Wang H, Li Z, Chen J, Zhao S, Xing Z, Chen C. GPTVoicetasker: LLM-powered virtual assistant for smartphone. 2024. arXiv preprint arXiv:2401.14268 Vu MD, Wang H, Li Z, Chen J, Zhao S, Xing Z, Chen C. GPTVoicetasker: LLM-powered virtual assistant for smartphone. 2024. arXiv preprint arXiv:​2401.​14268
86.
go back to reference Krauss C, Bassbouss L, Upravitelev M, An T-S, Altun D, Reray L, Balitzki E, El Tamimi T, Karagülle M. Opportunities and challenges in developing educational AI-assistants for the metaverse,” in International Conference on Human-Computer Interaction. Springer; 2024. pp. 219–238. Krauss C, Bassbouss L, Upravitelev M, An T-S, Altun D, Reray L, Balitzki E, El Tamimi T, Karagülle M. Opportunities and challenges in developing educational AI-assistants for the metaverse,” in International Conference on Human-Computer Interaction. Springer; 2024. pp. 219–238.
88.
go back to reference Alhawiti KM. Natural language processing and its use in education. Int J Adv Comput Sci Appl. 2014;5(12). Alhawiti KM. Natural language processing and its use in education. Int J Adv Comput Sci Appl. 2014;5(12).
90.
go back to reference King DR, Nanda G, Stoddard J, Dempsey A, Hergert S, Shore JH, Torous J. An introduction to generative artificial intelligence in mental health care: considerations and guidance. Current psychiatry reports. 2023;25(12):839–46.CrossRef King DR, Nanda G, Stoddard J, Dempsey A, Hergert S, Shore JH, Torous J. An introduction to generative artificial intelligence in mental health care: considerations and guidance. Current psychiatry reports. 2023;25(12):839–46.CrossRef
91.
go back to reference Kholmogorova A, Tarhanova P, Shalygina O. Standards of physical beauty and mental health in children and young people in the era of the information revolution. Int J Cult Ment Health. 2018;11(1):87–98.CrossRef Kholmogorova A, Tarhanova P, Shalygina O. Standards of physical beauty and mental health in children and young people in the era of the information revolution. Int J Cult Ment Health. 2018;11(1):87–98.CrossRef
93.
go back to reference Soviero B, Kuhn D, Salle A, Moreira VP. ChatGPT goes shopping: LLMS can predict relevance in ecommerce search. In: European Conference on Information Retrieval. Springer; 2024. pp. 3–11. Soviero B, Kuhn D, Salle A, Moreira VP. ChatGPT goes shopping: LLMS can predict relevance in ecommerce search. In: European Conference on Information Retrieval. Springer; 2024. pp. 3–11.
94.
go back to reference Hudson J. Virtual immersive shopping experiences in metaverse environments: predictive customer analytics, data visualization algorithms, and smart retailing technologies. Linguistic and Philosophical Investigations. 2022;21:236–51.CrossRef Hudson J. Virtual immersive shopping experiences in metaverse environments: predictive customer analytics, data visualization algorithms, and smart retailing technologies. Linguistic and Philosophical Investigations. 2022;21:236–51.CrossRef
95.
go back to reference Liu Y, Shi D, Skaar SB, Tan J. Development and experiment of CSM-based industrial robot servoing control system. In: 2013 IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems. IEEE; 2013. pp. 108–113. Liu Y, Shi D, Skaar SB, Tan J. Development and experiment of CSM-based industrial robot servoing control system. In: 2013 IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems. IEEE; 2013. pp. 108–113.
97.
go back to reference Wu J, Zhang C, Xue T, Freeman B, Tenenbaum J. Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling. Adv Neural Inf Process Syst. 2016;29. Wu J, Zhang C, Xue T, Freeman B, Tenenbaum J. Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling. Adv Neural Inf Process Syst. 2016;29.
102.
go back to reference Yang Z, Dai Z, Yang Y, Carbonell J, Salakhutdinov RR. Le QV. Xlnet: Generalized autoregressive pretraining for language understanding. Adv Neural Inf Process Syst; 2019. p. 32. Yang Z, Dai Z, Yang Y, Carbonell J, Salakhutdinov RR. Le QV. Xlnet: Generalized autoregressive pretraining for language understanding. Adv Neural Inf Process Syst; 2019. p. 32.
103.
go back to reference Chowdhery A, Narang S, Devlin J, Bosma M, Mishra G, Roberts A, Barham P, Chung HW, Sutton C, Gehrmann S et al. Palm: scaling language modeling with pathways. 2022. arXiv preprint arXiv:2204.02311 Chowdhery A, Narang S, Devlin J, Bosma M, Mishra G, Roberts A, Barham P, Chung HW, Sutton C, Gehrmann S et al. Palm: scaling language modeling with pathways. 2022. arXiv preprint arXiv:​2204.​02311
112.
go back to reference Civit M, Civit-Masot J, Cuadrado F, Escalona MJ. A systematic review of artificial intelligence-based music generation: scope, applications, and future trends. Expert Syst Appl. 2022;118190. Civit M, Civit-Masot J, Cuadrado F, Escalona MJ. A systematic review of artificial intelligence-based music generation: scope, applications, and future trends. Expert Syst Appl. 2022;118190.
113.
go back to reference Cheong I, Xia K, Feng KK, Chen QZ, Zhang AX. (a) I am not a lawyer, but...: engaging legal experts towards responsible LLM policies for legal advice. In: The 2024 ACM Conference on Fairness, Accountability, and Transparency. 2024. pp. 2454–2469. Cheong I, Xia K, Feng KK, Chen QZ, Zhang AX. (a) I am not a lawyer, but...: engaging legal experts towards responsible LLM policies for legal advice. In: The 2024 ACM Conference on Fairness, Accountability, and Transparency. 2024. pp. 2454–2469.
114.
go back to reference Kostenko O, Furashev V, Zhuravlov D, Dniprov O. Genesis of legal regulation web and the model of the electronic jurisdiction of the metaverse. Bratislava Law Review. 2022;6(2):21–36.CrossRef Kostenko O, Furashev V, Zhuravlov D, Dniprov O. Genesis of legal regulation web and the model of the electronic jurisdiction of the metaverse. Bratislava Law Review. 2022;6(2):21–36.CrossRef
115.
go back to reference Kalyvaki M. Navigating the metaverse business and legal challenges: intellectual property, privacy, and jurisdiction. Journal of Metaverse. 2023;3(1):87–92.CrossRef Kalyvaki M. Navigating the metaverse business and legal challenges: intellectual property, privacy, and jurisdiction. Journal of Metaverse. 2023;3(1):87–92.CrossRef
116.
go back to reference Dubourg E, Thouzeau V, Baumard N. A step-by-step method for cultural annotation by LLMS. Frontiers in Artificial Intelligence. 2024;7:1365508.CrossRef Dubourg E, Thouzeau V, Baumard N. A step-by-step method for cultural annotation by LLMS. Frontiers in Artificial Intelligence. 2024;7:1365508.CrossRef
117.
go back to reference Gaafar AA. Metaverse in architectural heritage documentation & education. Advances in Ecological and Environmental Research. 2021;6(10):66–86. Gaafar AA. Metaverse in architectural heritage documentation & education. Advances in Ecological and Environmental Research. 2021;6(10):66–86.
118.
go back to reference Huggett J. Virtually real or really virtual: towards a heritage metaverse. Studies in digital heritage. 2020;4(1):1–15.CrossRef Huggett J. Virtually real or really virtual: towards a heritage metaverse. Studies in digital heritage. 2020;4(1):1–15.CrossRef
119.
go back to reference Ren Z, Zhan Y, Yu B, Ding L, Tao D. Healthcare copilot: eliciting the power of general LLMS for medical consultation. 2024. arXiv preprint. arXiv:2402.13408 Ren Z, Zhan Y, Yu B, Ding L, Tao D. Healthcare copilot: eliciting the power of general LLMS for medical consultation. 2024. arXiv preprint. arXiv:​2402.​13408
120.
go back to reference Bulla C, Parushetti C, Teli A, Aski S, Koppad S. A review of AI based medical assistant chatbot. Research and Applications of Web Development and Design. 2020;3(2):1–14. Bulla C, Parushetti C, Teli A, Aski S, Koppad S. A review of AI based medical assistant chatbot. Research and Applications of Web Development and Design. 2020;3(2):1–14.
121.
go back to reference Yotam S, Penarska Gabriela A, Randsalu Isa A, Christian AC, Takeo I. Mystoryknight: a character-drawing driven storytelling system using LLM hallucinations. 2024. Yotam S, Penarska Gabriela A, Randsalu Isa A, Christian AC, Takeo I. Mystoryknight: a character-drawing driven storytelling system using LLM hallucinations. 2024.
122.
go back to reference Cavazza M, Charles F, Mead SJ. Characters in search of an author: AI-based virtual storytelling. In: International Conference on Virtual Storytelling. Springer; 2001. pp. 145–154. Cavazza M, Charles F, Mead SJ. Characters in search of an author: AI-based virtual storytelling. In: International Conference on Virtual Storytelling. Springer; 2001. pp. 145–154.
123.
go back to reference Sun Y, Wang H, Chan PM, Tabibi M, Zhang Y, Lu H, Chen Y, Lee CH, Asadipour A. Fictional worlds, real connections: developing community storytelling social chatbots through LLMS. 2023. arXiv preprint arXiv:2309.11478 Sun Y, Wang H, Chan PM, Tabibi M, Zhang Y, Lu H, Chen Y, Lee CH, Asadipour A. Fictional worlds, real connections: developing community storytelling social chatbots through LLMS. 2023. arXiv preprint arXiv:​2309.​11478
124.
go back to reference Shaker N, Yannakakis G, Togelius J. Towards automatic personalized content generation for platform games. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment. 2010. vol. 6, no. 1, pp. 63–8. Shaker N, Yannakakis G, Togelius J. Towards automatic personalized content generation for platform games. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment. 2010. vol. 6, no. 1, pp. 63–8.
125.
go back to reference Cox SR, Ooi WT. Check for conversational interactions with NPCS in LLM-driven gaming: guidelines from a content analysis of player feedback. In: Chatbot Research and Design: 7th International Workshop, CONVERSATIONS 2023, Oslo, Norway, November 22-23, 2023, Revised Selected Papers, vol. 14524. Springer Nature; 2024. p. 167. Cox SR, Ooi WT. Check for conversational interactions with NPCS in LLM-driven gaming: guidelines from a content analysis of player feedback. In: Chatbot Research and Design: 7th International Workshop, CONVERSATIONS 2023, Oslo, Norway, November 22-23, 2023, Revised Selected Papers, vol. 14524. Springer Nature; 2024. p. 167.
126.
go back to reference Huang J-t, Li EJ, Lam MH, Liang T, Wang W, Yuan Y, Jiao W, Wang X, Tu Z, Lyu MR. How far are we on the decision-making of LLMS? Evaluating LLMS’ gaming ability in multi-agent environments. 2024. arXiv preprint arXiv:2403.11807 Huang J-t, Li EJ, Lam MH, Liang T, Wang W, Yuan Y, Jiao W, Wang X, Tu Z, Lyu MR. How far are we on the decision-making of LLMS? Evaluating LLMS’ gaming ability in multi-agent environments. 2024. arXiv preprint arXiv:​2403.​11807
127.
go back to reference Colton S, Goodwin J, Veale T. Full-face poetry generation. In: ICCC. 2012. pp. 95–102. Colton S, Goodwin J, Veale T. Full-face poetry generation. In: ICCC. 2012. pp. 95–102.
128.
129.
go back to reference Ding Z, Smith-Renner A, Zhang W, Tetreault JR, Jaimes A. Harnessing the power of LLMS: evaluating human-AI text co-creation through the lens of news headline generation. 2023. arXiv preprint arXiv:2310.10706 Ding Z, Smith-Renner A, Zhang W, Tetreault JR, Jaimes A. Harnessing the power of LLMS: evaluating human-AI text co-creation through the lens of news headline generation. 2023. arXiv preprint arXiv:​2310.​10706
130.
go back to reference Tsourma M, Zamichos A, Efthymiadis E, Drosou A, Tzovaras D. An AI-enabled framework for real-time generation of news articles based on big EO data for disaster reporting. Future Internet. 2021;13(6):161.CrossRef Tsourma M, Zamichos A, Efthymiadis E, Drosou A, Tzovaras D. An AI-enabled framework for real-time generation of news articles based on big EO data for disaster reporting. Future Internet. 2021;13(6):161.CrossRef
131.
go back to reference Dang W, Cai L, Liu M, Li X, Yin Z, Liu X, Yin L, Zheng W. Increasing text filtering accuracy with improved LSTM. Computing and Informatics. 2023;42(6):1491–517.CrossRef Dang W, Cai L, Liu M, Li X, Yin Z, Liu X, Yin L, Zheng W. Increasing text filtering accuracy with improved LSTM. Computing and Informatics. 2023;42(6):1491–517.CrossRef
132.
go back to reference Feizi S, Hajiaghayi M, Rezaei K, Shin S. Online advertisements with LLMS: opportunities and challenges. 2023. arXiv preprint arXiv:2311.07601 Feizi S, Hajiaghayi M, Rezaei K, Shin S. Online advertisements with LLMS: opportunities and challenges. 2023. arXiv preprint arXiv:​2311.​07601
133.
go back to reference Meguellati E, Han L, Bernstein A, Sadiq S, Demartini G. How good are LLMS in generating personalized advertisements? Companion Proceedings of the ACM on Web Conference. 2024;2024:826–9. Meguellati E, Han L, Bernstein A, Sadiq S, Demartini G. How good are LLMS in generating personalized advertisements? Companion Proceedings of the ACM on Web Conference. 2024;2024:826–9.
134.
go back to reference Kim J. Advertising in the metaverse: research agenda. Journal of Interactive Advertising. 2021;21(3):141–4.CrossRef Kim J. Advertising in the metaverse: research agenda. Journal of Interactive Advertising. 2021;21(3):141–4.CrossRef
135.
go back to reference Rombach R, Blattmann A, Lorenz D, Esser P, Ommer B. High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022. pp. 10 684–95. Rombach R, Blattmann A, Lorenz D, Esser P, Ommer B. High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022. pp. 10 684–95.
136.
go back to reference Li Y, Liu H, Wu Q, Mu F, Yang J, Gao J, Li C, Lee YJ. Gligen: open-set grounded text-to-image generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023. pp. 22 511–21. Li Y, Liu H, Wu Q, Mu F, Yang J, Gao J, Li C, Lee YJ. Gligen: open-set grounded text-to-image generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023. pp. 22 511–21.
137.
go back to reference Ramesh A, Dhariwal P, Nichol A, Chu C, Chen M. Hierarchical text-conditional image generation with clip latents. 2022;1(2):3. arXiv preprint arXiv:2204.06125 Ramesh A, Dhariwal P, Nichol A, Chu C, Chen M. Hierarchical text-conditional image generation with clip latents. 2022;1(2):3. arXiv preprint arXiv:​2204.​06125
138.
go back to reference Qin HX, Hui P. Empowering the metaverse with generative AI: survey and future directions. In: 2023 IEEE 43rd International Conference on Distributed Computing Systems Workshops (ICDCSW). 2023. pp. 85–90. Qin HX, Hui P. Empowering the metaverse with generative AI: survey and future directions. In: 2023 IEEE 43rd International Conference on Distributed Computing Systems Workshops (ICDCSW). 2023. pp. 85–90.
140.
go back to reference Park M, Cho Y, Na G, Kim J. Application of virtual avatar using motion capture in immersive virtual environment. Int J Human–Comp Interact. 2023;1–15. Park M, Cho Y, Na G, Kim J. Application of virtual avatar using motion capture in immersive virtual environment. Int J Human–Comp Interact. 2023;1–15.
142.
go back to reference Liu Y, Siau KL. Generative artificial intelligence and metaverse: future of work, future of society, and future of humanity. In: International Conference on AI-generated Content. Springer. 2023. pp. 118–27. Liu Y, Siau KL. Generative artificial intelligence and metaverse: future of work, future of society, and future of humanity. In: International Conference on AI-generated Content. Springer. 2023. pp. 118–27.
146.
go back to reference Roberts A, Engel J, Mann Y, Gillick J, Kayacik C, Nørly S, Dinculescu M, Radebaugh C, Hawthorne C, Eck D. Magenta studio: augmenting creativity with deep learning in ableton live. 2019. Roberts A, Engel J, Mann Y, Gillick J, Kayacik C, Nørly S, Dinculescu M, Radebaugh C, Hawthorne C, Eck D. Magenta studio: augmenting creativity with deep learning in ableton live. 2019.
147.
go back to reference Guo C, Dou Y, Bai T, Dai X, Wang C, Wen Y. Artverse: a paradigm for parallel human-machine collaborative painting creation in metaverses. IEEE Transactions on Systems, Man, and Cybernetics: Systems. 2023;53(4):2200–8.CrossRef Guo C, Dou Y, Bai T, Dai X, Wang C, Wen Y. Artverse: a paradigm for parallel human-machine collaborative painting creation in metaverses. IEEE Transactions on Systems, Man, and Cybernetics: Systems. 2023;53(4):2200–8.CrossRef
148.
go back to reference Karras T, Laine S, Aila T. A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019. pp. 4401–10. Karras T, Laine S, Aila T. A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019. pp. 4401–10.
150.
go back to reference Henry J, Natalie T, Madsen D. Pix2pix GAN for image-to-image translation. Research Gate Publication. 2021;1–5. Henry J, Natalie T, Madsen D. Pix2pix GAN for image-to-image translation. Research Gate Publication. 2021;1–5.
151.
go back to reference Alasadi EA, Baiz CR. Generative AI in education and research: opportunities, concerns, and solutions. J Chem Educ. 2023;100(8):2965–71.CrossRef Alasadi EA, Baiz CR. Generative AI in education and research: opportunities, concerns, and solutions. J Chem Educ. 2023;100(8):2965–71.CrossRef
152.
go back to reference Rahman KR, Shitol SK, Islam MS, Iftekhar KT, Pranto S. Use of metaverse technology in education domain. J Metaverse. 2023;3(1):79–86. Rahman KR, Shitol SK, Islam MS, Iftekhar KT, Pranto S. Use of metaverse technology in education domain. J Metaverse. 2023;3(1):79–86.
153.
go back to reference Zhu J, Dang P, Zhang J, Cao Y, Wu J, Li W, Hu Y, You J. The impact of spatial scale on layout learning and individual evacuation behavior in indoor fires: single-scale learning perspectives. Int J Geogr Inf Sci. 2024;38(1):77–99.CrossRef Zhu J, Dang P, Zhang J, Cao Y, Wu J, Li W, Hu Y, You J. The impact of spatial scale on layout learning and individual evacuation behavior in indoor fires: single-scale learning perspectives. Int J Geogr Inf Sci. 2024;38(1):77–99.CrossRef
154.
go back to reference Nasyrov RR, Excell PS. Creation of interactive virtual reality scenarios as a training and education tool. Technol Des Arts-Oppor Challenges. 2020;353–69. Nasyrov RR, Excell PS. Creation of interactive virtual reality scenarios as a training and education tool. Technol Des Arts-Oppor Challenges. 2020;353–69.
155.
go back to reference Barráez-Herrera DP. Metaverse in a virtual education context. Metaverse. 2022;3(1):10.CrossRef Barráez-Herrera DP. Metaverse in a virtual education context. Metaverse. 2022;3(1):10.CrossRef
156.
go back to reference Yang S. Storytelling and user experience in the cultural metaverse. Heliyon. 2023;9(4). Yang S. Storytelling and user experience in the cultural metaverse. Heliyon. 2023;9(4).
157.
go back to reference Jang S-Y, Kim S-A. Automatic generation of virtual architecture using user activities in metaverse. Int J Human-Comput Studies. 2024;182: 103163.CrossRef Jang S-Y, Kim S-A. Automatic generation of virtual architecture using user activities in metaverse. Int J Human-Comput Studies. 2024;182: 103163.CrossRef
159.
go back to reference Zhang J, Liu X, Ye X, Zhao F, Zhang Y, Wu M, Zhang Y, Xu L, Yu J. Editable free-viewpoint video using a layered neural representation. ACM Trans Graph (TOG). 2021;40(4):1–18. Zhang J, Liu X, Ye X, Zhao F, Zhang Y, Wu M, Zhang Y, Xu L, Yu J. Editable free-viewpoint video using a layered neural representation. ACM Trans Graph (TOG). 2021;40(4):1–18.
161.
go back to reference de Ocáriz Borde HS. Presentations and fast content creation for video conferencing platforms and the metaverse using AI. 2022. de Ocáriz Borde HS. Presentations and fast content creation for video conferencing platforms and the metaverse using AI. 2022.
162.
go back to reference Jiang Y, Yang S, Koh TL, Wu W, Loy CC, Liu Z. Text2performer: text-driven human video generation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). 2023. pp. 22 747–57. Jiang Y, Yang S, Koh TL, Wu W, Loy CC, Liu Z. Text2performer: text-driven human video generation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). 2023. pp. 22 747–57.
163.
go back to reference Baía Reis A, Ashmore M. From video streaming to virtual reality worlds: an academic, reflective, and creative study on live theatre and performance in the metaverse. Int J Perform Arts Digit Media. 2022;18(1):7–28.CrossRef Baía Reis A, Ashmore M. From video streaming to virtual reality worlds: an academic, reflective, and creative study on live theatre and performance in the metaverse. Int J Perform Arts Digit Media. 2022;18(1):7–28.CrossRef
165.
go back to reference Oja M, Karhu H. Enhanced sport event. 2023. Oja M, Karhu H. Enhanced sport event. 2023.
170.
go back to reference Burri-Nenova M. User created content in virtual worlds and cultural diversity. In: Governance of Digital Game Environments and Cultural Diversity. Edward Elgar Publishing. 2010. Burri-Nenova M. User created content in virtual worlds and cultural diversity. In: Governance of Digital Game Environments and Cultural Diversity. Edward Elgar Publishing. 2010.
171.
go back to reference Li H, Cui C, Jiang S. Strategy for improving the football teaching quality by AI and metaverse-empowered in mobile internet environment. Wireless Networks. 2022. pp. 1–10. Li H, Cui C, Jiang S. Strategy for improving the football teaching quality by AI and metaverse-empowered in mobile internet environment. Wireless Networks. 2022. pp. 1–10.
173.
go back to reference Lam KY, Yang L, Alhilal A, Lee L-H, Tyson G, Hui P. Human-avatar interaction in metaverse: framework for full-body interaction. In: Proceedings of the 4th ACM International Conference on Multimedia in Asia. 2022. pp. 1–7. Lam KY, Yang L, Alhilal A, Lee L-H, Tyson G, Hui P. Human-avatar interaction in metaverse: framework for full-body interaction. In: Proceedings of the 4th ACM International Conference on Multimedia in Asia. 2022. pp. 1–7.
174.
go back to reference Chen S-C. Multimedia research toward the metaverse. IEEE MultiMedia. 2022;29(1):125–7.CrossRef Chen S-C. Multimedia research toward the metaverse. IEEE MultiMedia. 2022;29(1):125–7.CrossRef
175.
go back to reference Lee H, Woo D, Yu S. Virtual reality metaverse system supplementing remote education methods: based on aircraft maintenance simulation. Applied Sciences. 2022;12(5):2667.CrossRef Lee H, Woo D, Yu S. Virtual reality metaverse system supplementing remote education methods: based on aircraft maintenance simulation. Applied Sciences. 2022;12(5):2667.CrossRef
176.
179.
go back to reference Fan H, Su H, Guibas LJ. A point set generation network for 3D object reconstruction from a single image. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. pp. 605–613. Fan H, Su H, Guibas LJ. A point set generation network for 3D object reconstruction from a single image. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. pp. 605–613.
180.
go back to reference So C, Baciu G, Sun H. Reconstruction of 3D virtual buildings from 2D architectural floor plans. In: Proceedings of the ACM symposium on Virtual reality software and technology. 1998. pp. 17–23. So C, Baciu G, Sun H. Reconstruction of 3D virtual buildings from 2D architectural floor plans. In: Proceedings of the ACM symposium on Virtual reality software and technology. 1998. pp. 17–23.
181.
go back to reference Zhou P, Peng R, Xu M, Wu V, Navarro-Alarcon D. Path planning with automatic seam extraction over point cloud models for robotic arc welding. IEEE robotics and automation letters. 2021;6(3):5002–9.CrossRef Zhou P, Peng R, Xu M, Wu V, Navarro-Alarcon D. Path planning with automatic seam extraction over point cloud models for robotic arc welding. IEEE robotics and automation letters. 2021;6(3):5002–9.CrossRef
182.
go back to reference Ducheneaut N, Wen M-H, Yee N, Wadley G. Body and mind: a study of avatar personalization in three virtual worlds. In: Proceedings of the SIGCHI conference on human factors in computing systems. 2009. pp. 1151–1160. Ducheneaut N, Wen M-H, Yee N, Wadley G. Body and mind: a study of avatar personalization in three virtual worlds. In: Proceedings of the SIGCHI conference on human factors in computing systems. 2009. pp. 1151–1160.
183.
go back to reference Chao F, Kantorová V, Gonnella G, Bassarsky L, Zeifman L, Gerland P. Estimating age-specific fertility rate in the world population prospects: a Bayesian modelling approach. 2023. Chao F, Kantorová V, Gonnella G, Bassarsky L, Zeifman L, Gerland P. Estimating age-specific fertility rate in the world population prospects: a Bayesian modelling approach. 2023.
184.
go back to reference Lin H, Wang H. Avatar creation in virtual worlds: behaviors and motivations. Computers in Human Behavior. 2014;34:213–8.CrossRef Lin H, Wang H. Avatar creation in virtual worlds: behaviors and motivations. Computers in Human Behavior. 2014;34:213–8.CrossRef
185.
go back to reference Kim DY, Lee HK, Chung K. Avatar-mediated experience in the metaverse: the impact of avatar realism on user-avatar relationship. Journal of Retailing and Consumer Services. 2023;73:103382.CrossRef Kim DY, Lee HK, Chung K. Avatar-mediated experience in the metaverse: the impact of avatar realism on user-avatar relationship. Journal of Retailing and Consumer Services. 2023;73:103382.CrossRef
186.
go back to reference Ho J, Chan W, Saharia C, Whang J, Gao R, Gritsenko A, Kingma DP, Poole B, Norouzi M, Fleet DJ, et al. Imagen video: high definition video generation with diffusion models. 2022. arXiv preprint arXiv:2210.02303 Ho J, Chan W, Saharia C, Whang J, Gao R, Gritsenko A, Kingma DP, Poole B, Norouzi M, Fleet DJ, et al. Imagen video: high definition video generation with diffusion models. 2022. arXiv preprint arXiv:​2210.​02303
187.
go back to reference Kim J. Modeling and optimization of a tree based on virtual reality for immersive virtual landscape generation. Symmetry. 2016;8(9):93.MathSciNetCrossRef Kim J. Modeling and optimization of a tree based on virtual reality for immersive virtual landscape generation. Symmetry. 2016;8(9):93.MathSciNetCrossRef
188.
go back to reference Fan X, Jiang X, Deng N. Immersive technology: a meta-analysis of augmented/virtual reality applications and their impact on tourism experience. Tourism Management. 2022;91:104534.CrossRef Fan X, Jiang X, Deng N. Immersive technology: a meta-analysis of augmented/virtual reality applications and their impact on tourism experience. Tourism Management. 2022;91:104534.CrossRef
189.
go back to reference Wei W, Baker MA, Onder I. All without leaving home: building a conceptual model of virtual tourism experiences. International Journal of Contemporary Hospitality Management. 2023;35(4):1284–303.CrossRef Wei W, Baker MA, Onder I. All without leaving home: building a conceptual model of virtual tourism experiences. International Journal of Contemporary Hospitality Management. 2023;35(4):1284–303.CrossRef
190.
go back to reference Wu J, Zhu J, Zhang J, Dang P, Li W, Guo Y, Fu L, Lai J, You J, Xie Y, et al. A dynamic holographic modelling method of digital twin scenes for bridge construction. International Journal of Digital Earth. 2023;16(1):2404–25.CrossRef Wu J, Zhu J, Zhang J, Dang P, Li W, Guo Y, Fu L, Lai J, You J, Xie Y, et al. A dynamic holographic modelling method of digital twin scenes for bridge construction. International Journal of Digital Earth. 2023;16(1):2404–25.CrossRef
191.
go back to reference Rauch U. Who owns this space anyway? The arts 3D VL metaverse as a network of imagination. In: EdMedia+ Innovate Learning. Association for the Advancement of Computing in Education (AACE). 2007. pp. 4249–53. Rauch U. Who owns this space anyway? The arts 3D VL metaverse as a network of imagination. In: EdMedia+ Innovate Learning. Association for the Advancement of Computing in Education (AACE). 2007. pp. 4249–53.
192.
go back to reference Portman ME, Natapov A, Fisher-Gewirtzman D. To go where no man has gone before: virtual reality in architecture, landscape architecture and environmental planning. Computers, Environment and Urban Systems. 2015;54:376–84.CrossRef Portman ME, Natapov A, Fisher-Gewirtzman D. To go where no man has gone before: virtual reality in architecture, landscape architecture and environmental planning. Computers, Environment and Urban Systems. 2015;54:376–84.CrossRef
194.
go back to reference Zhao Y, He R, Kersting N, Liu C, Agrawal S, Chetia C, Gu Y. ONNXExplainer: an ONNX based generic framework to explain neural networks using Shapley values. 2023. arXiv preprint arXiv:2309.16916 Zhao Y, He R, Kersting N, Liu C, Agrawal S, Chetia C, Gu Y. ONNXExplainer: an ONNX based generic framework to explain neural networks using Shapley values. 2023. arXiv preprint arXiv:​2309.​16916
195.
go back to reference Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, et al. Pytorch: an imperative style, high-performance deep learning library. Adv Neural Inf Process Syst. 2019;32. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, et al. Pytorch: an imperative style, high-performance deep learning library. Adv Neural Inf Process Syst. 2019;32.
196.
go back to reference Waisberg E, Ong J, Masalkhi M, Kamran SA, Zaman N, Sarker P, Lee AG, Tavakkoli A. GPT-4: a new era of artificial intelligence in medicine. Irish Journal of Medical Science (1971-). 2023;1–4. Waisberg E, Ong J, Masalkhi M, Kamran SA, Zaman N, Sarker P, Lee AG, Tavakkoli A. GPT-4: a new era of artificial intelligence in medicine. Irish Journal of Medical Science (1971-). 2023;1–4.
197.
go back to reference Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, et al. Tensorflow: large-scale machine learning on heterogeneous distributed systems. 2016. arXiv preprint arXiv:1603.04467 Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, et al. Tensorflow: large-scale machine learning on heterogeneous distributed systems. 2016. arXiv preprint arXiv:​1603.​04467
199.
go back to reference Wolf T, Debut L, Sanh V, Chaumond J, Delangue C, Moi A, Cistac P, Rault T, Louf R, Funtowicz M, Davison J, Shleifer S, von Platen P, Ma C, Jernite Y, Plu J, Xu C, Scao TL, Gugger S, Drame M, Lhoest Q, Rush AM. Transformers: state-of-the-art natural language processing. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations. Online: Association for Computational Linguistics. 2020. pp. 38–45. [Online]. Available: https://www.aclweb.org/anthology/2020.emnlp-demos.6 Wolf T, Debut L, Sanh V, Chaumond J, Delangue C, Moi A, Cistac P, Rault T, Louf R, Funtowicz M, Davison J, Shleifer S, von Platen P, Ma C, Jernite Y, Plu J, Xu C, Scao TL, Gugger S, Drame M, Lhoest Q, Rush AM. Transformers: state-of-the-art natural language processing. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations. Online: Association for Computational Linguistics. 2020. pp. 38–45. [Online]. Available: https://​www.​aclweb.​org/​anthology/​2020.​emnlp-demos.​6
201.
go back to reference Ayiter E. Embodied in a metaverse: anatomia and body parts. Technoetic Arts. 2010;8(2):181–8.CrossRef Ayiter E. Embodied in a metaverse: anatomia and body parts. Technoetic Arts. 2010;8(2):181–8.CrossRef
202.
go back to reference Lungu AJ, Swinkels W, Claesen L, Tu P, Egger J, Chen X. A review on the applications of virtual reality, augmented reality and mixed reality in surgical simulation: an extension to different kinds of surgery. Expert review of medical devices. 2021;18(1):47–62.CrossRef Lungu AJ, Swinkels W, Claesen L, Tu P, Egger J, Chen X. A review on the applications of virtual reality, augmented reality and mixed reality in surgical simulation: an extension to different kinds of surgery. Expert review of medical devices. 2021;18(1):47–62.CrossRef
204.
go back to reference Lee J, Eom S-Y, Lee J. Empowering game designers with generative AI. IADIS International Journal on Computer Science & Information Systems. 2023;18(2):213–30. Lee J, Eom S-Y, Lee J. Empowering game designers with generative AI. IADIS International Journal on Computer Science & Information Systems. 2023;18(2):213–30.
205.
go back to reference Ratican J, Hutson J, Wright A. A proposed meta-reality immersive development pipeline: generative AI models and extended reality (XR) content for the metaverse. J Intell Learn Syst Appl. 2023;15. Ratican J, Hutson J, Wright A. A proposed meta-reality immersive development pipeline: generative AI models and extended reality (XR) content for the metaverse. J Intell Learn Syst Appl. 2023;15.
207.
go back to reference Creswell A, White T, Dumoulin V, Arulkumaran K, Sengupta B, Bharath AA. Generative adversarial networks: an overview. IEEE Signal Proc Mag. 2018;35(1):53–65.CrossRef Creswell A, White T, Dumoulin V, Arulkumaran K, Sengupta B, Bharath AA. Generative adversarial networks: an overview. IEEE Signal Proc Mag. 2018;35(1):53–65.CrossRef
208.
go back to reference Brocchini M, Mameli M, Balloni E, Sciucca LD, Rossi L, Paolanti M, Frontoni E, Zingaretti P. Monster: a deep learning-based system for the automatic generation of gaming assets. In: International Conference on Image Analysis and Processing. Springer. 2022. pp. 280–90. Brocchini M, Mameli M, Balloni E, Sciucca LD, Rossi L, Paolanti M, Frontoni E, Zingaretti P. Monster: a deep learning-based system for the automatic generation of gaming assets. In: International Conference on Image Analysis and Processing. Springer. 2022. pp. 280–90.
209.
go back to reference Watkins R. Procedural content generation for unity game development. Packt Publishing Ltd. 2016. Watkins R. Procedural content generation for unity game development. Packt Publishing Ltd. 2016.
210.
go back to reference Croitoru F-A, Hondru V, Ionescu RT, Shah M. Diffusion models in vision: a survey. IEEE Trans Pattern Anal Mach Intell. 2023;45(9):10 850–69. Croitoru F-A, Hondru V, Ionescu RT, Shah M. Diffusion models in vision: a survey. IEEE Trans Pattern Anal Mach Intell. 2023;45(9):10 850–69.
211.
go back to reference Li H, Xia C, Wang T, Wang Z, Cui P, Li X. Grass: learning spatial–temporal properties from chainlike cascade data for microscopic diffusion prediction. IEEE Trans Neural Netw Learn Syst. 2023. Li H, Xia C, Wang T, Wang Z, Cui P, Li X. Grass: learning spatial–temporal properties from chainlike cascade data for microscopic diffusion prediction. IEEE Trans Neural Netw Learn Syst. 2023.
212.
go back to reference Xu Y, Wang E, Yang Y, Chang Y. A unified collaborative representation learning for neural-network based recommender systems. IEEE Trans Knowl Data Eng. 2021;34(11):5126–39.CrossRef Xu Y, Wang E, Yang Y, Chang Y. A unified collaborative representation learning for neural-network based recommender systems. IEEE Trans Knowl Data Eng. 2021;34(11):5126–39.CrossRef
213.
go back to reference Ban Y, Liu Y, Yin Z, Liu X, Liu M, Yin L, Li X, Zheng W. Micro-directional propagation method based on user clustering. Comput Inform. 2023;42(6):1445–70.CrossRef Ban Y, Liu Y, Yin Z, Liu X, Liu M, Yin L, Li X, Zheng W. Micro-directional propagation method based on user clustering. Comput Inform. 2023;42(6):1445–70.CrossRef
214.
go back to reference Kings M, Täcklind S. Leveling up the playing field: exploring the strengths and weaknesses of AI-generated content in game development. 2023. Kings M, Täcklind S. Leveling up the playing field: exploring the strengths and weaknesses of AI-generated content in game development. 2023.
215.
go back to reference Larsson T, Font J, Alvarez A. Towards AI as a creative colleague in game level design. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 18, no. 1, 2022, pp. 137–45. Larsson T, Font J, Alvarez A. Towards AI as a creative colleague in game level design. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 18, no. 1, 2022, pp. 137–45.
216.
go back to reference Shen Z. Effects of AI-generated content (AIGC) in the game development: from traditional PCG to AIGC. 2023. Shen Z. Effects of AI-generated content (AIGC) in the game development: from traditional PCG to AIGC. 2023.
217.
go back to reference Huang F, Wang Z, Huang X, Qian Y, Li Z, Chen H. Aligning distillation for cold-start item recommendation. In: Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2023. pp. 1147–57. Huang F, Wang Z, Huang X, Qian Y, Li Z, Chen H. Aligning distillation for cold-start item recommendation. In: Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2023. pp. 1147–57.
218.
go back to reference Bakkes S, Tan CT, Pisan Y. Personalised gaming: a motivation and overview of literature. In: Proceedings of the 8th Australasian Conference on Interactive Entertainment: Playing the System. 2012. pp. 1–10. Bakkes S, Tan CT, Pisan Y. Personalised gaming: a motivation and overview of literature. In: Proceedings of the 8th Australasian Conference on Interactive Entertainment: Playing the System. 2012. pp. 1–10.
219.
go back to reference Zhu C. Research on emotion recognition-based smart assistant system: emotional intelligence and personalized services. J Syst Manag Sci. 2023;13(5):227–42. Zhu C. Research on emotion recognition-based smart assistant system: emotional intelligence and personalized services. J Syst Manag Sci. 2023;13(5):227–42.
220.
go back to reference Göbel S, Wendel V. Personalization and adaptation. Serious games: foundations, concepts and practice. 2016. pp. 161–210. Göbel S, Wendel V. Personalization and adaptation. Serious games: foundations, concepts and practice. 2016. pp. 161–210.
221.
go back to reference Liu Q, Chang C, Shen H, Cheng S, Li X, Zheng R. Research on artificial intelligence generated audio. In: Sixth International Conference on Computer Information Science and Application Technology (CISAT 2023), vol. 12800. SPIE, 2023, pp. 1206–12. Liu Q, Chang C, Shen H, Cheng S, Li X, Zheng R. Research on artificial intelligence generated audio. In: Sixth International Conference on Computer Information Science and Application Technology (CISAT 2023), vol. 12800. SPIE, 2023, pp. 1206–12.
222.
go back to reference Plans D, Morelli D. Experience-driven procedural music generation for games. IEEE Trans Comput Intell AI Games. 2012;4(3):192–8.CrossRef Plans D, Morelli D. Experience-driven procedural music generation for games. IEEE Trans Comput Intell AI Games. 2012;4(3):192–8.CrossRef
223.
go back to reference Karpov N. Artificial intelligence for music composing: future scenario analysis. 2020. Karpov N. Artificial intelligence for music composing: future scenario analysis. 2020.
224.
go back to reference Martinson F, Rangel D. A comprehensive analysis of game hacking through injectors: exploits, defenses and beyond. Int J Comput Appl. 2023;975:8887. Martinson F, Rangel D. A comprehensive analysis of game hacking through injectors: exploits, defenses and beyond. Int J Comput Appl. 2023;975:8887.
225.
go back to reference Sai S, Sai R, Chamola V. Generative AI for industry 5.0: analyzing the impact of chatGPT, DALLE, and other models. IEEE Open J Commun Soc. 2024;1–1. Sai S, Sai R, Chamola V. Generative AI for industry 5.0: analyzing the impact of chatGPT, DALLE, and other models. IEEE Open J Commun Soc. 2024;1–1.
226.
go back to reference Sai S, Yashvardhan U, Chamola V, Sikdar B. Generative AI for cyber security: analyzing the potential of chatGPT, DALL-E, and other models for enhancing the security space. IEEE Access. 2024;12(53):497–516. Sai S, Yashvardhan U, Chamola V, Sikdar B. Generative AI for cyber security: analyzing the potential of chatGPT, DALL-E, and other models for enhancing the security space. IEEE Access. 2024;12(53):497–516.
227.
go back to reference Maario A, Shukla VK, Ambikapathy A, Sharma P. Redefining the risks of kernel-level anti-cheat in online gaming. In: 2021 8th International Conference on Signal Processing and Integrated Networks (SPIN). IEEE. 2021. pp. 676–80. Maario A, Shukla VK, Ambikapathy A, Sharma P. Redefining the risks of kernel-level anti-cheat in online gaming. In: 2021 8th International Conference on Signal Processing and Integrated Networks (SPIN). IEEE. 2021. pp. 676–80.
228.
go back to reference Sai S, Gaur A, Sai R, Chamola V, Guizani M, Rodrigues JJPC. Generative AI for transformative healthcare: a comprehensive study of emerging models, applications, case studies, and limitations. IEEE Access. 2024;12(31):078–106. Sai S, Gaur A, Sai R, Chamola V, Guizani M, Rodrigues JJPC. Generative AI for transformative healthcare: a comprehensive study of emerging models, applications, case studies, and limitations. IEEE Access. 2024;12(31):078–106.
229.
go back to reference Sai S, Kanadia M, Chamola V. Empowering IoT with generative AI: applications, case studies, and limitations. IEEE Internet of Things Magazine. 2024;7(3):38–43.CrossRef Sai S, Kanadia M, Chamola V. Empowering IoT with generative AI: applications, case studies, and limitations. IEEE Internet of Things Magazine. 2024;7(3):38–43.CrossRef
230.
go back to reference Chamola V, Sai S, Sai R, Hussain A, Sikdar B. Generative AI for consumer electronics: enhancing user experience with cognitive and semantic computing. IEEE Consum Electron Mag. 2024;1–9. Chamola V, Sai S, Sai R, Hussain A, Sikdar B. Generative AI for consumer electronics: enhancing user experience with cognitive and semantic computing. IEEE Consum Electron Mag. 2024;1–9.
231.
go back to reference Liu H-I, Tang B-R. DACA: dynamic anti-cheating architecture for MMOGS. In: 2009 International Conference on Advanced Information Networking and Applications. IEEE. 2009. pp. 892–7. Liu H-I, Tang B-R. DACA: dynamic anti-cheating architecture for MMOGS. In: 2009 International Conference on Advanced Information Networking and Applications. IEEE. 2009. pp. 892–7.
232.
go back to reference Tychsen A, Hitchens M, Brolund T, Kavakli M. The game master. ACM International Conference Proceeding Series. 2005;2005(123):215–22. Tychsen A, Hitchens M, Brolund T, Kavakli M. The game master. ACM International Conference Proceeding Series. 2005;2005(123):215–22.
233.
go back to reference Mohammad Abedrabbu Alkhawaldeh MASK. Insights on the use of AI-powered game-based learning in translation education. J Southwest Jiaotong University. 2023;58(5). Mohammad Abedrabbu Alkhawaldeh MASK. Insights on the use of AI-powered game-based learning in translation education. J Southwest Jiaotong University. 2023;58(5).
234.
go back to reference Choi S, Kim N, Kim J, Kang H. How does AI improve human decision-making? Evidence from the AI-powered go program. Evidence from the AI-Powered Go Program (April 2022). USC Marshall School of Business Research Paper Sponsored by iORB, No. Forthcoming. 2022. Choi S, Kim N, Kim J, Kang H. How does AI improve human decision-making? Evidence from the AI-powered go program. Evidence from the AI-Powered Go Program (April 2022). USC Marshall School of Business Research Paper Sponsored by iORB, No. Forthcoming. 2022.
235.
go back to reference Huang Q, Park DS, Wang T, Denk TI, Ly A, Chen N, Zhang Z, Zhang Z, Yu J, Frank C, et al. Noise2music: text-conditioned music generation with diffusion models. 2023. arXiv preprint arXiv:2302.03917 Huang Q, Park DS, Wang T, Denk TI, Ly A, Chen N, Zhang Z, Zhang Z, Yu J, Frank C, et al. Noise2music: text-conditioned music generation with diffusion models. 2023. arXiv preprint arXiv:​2302.​03917
236.
go back to reference Sai S, Garg A, Chamola V. Navigating the metaverse: a comprehensive analysis of consumer electronics prospects and challenges. ACM Trans. Internet Technol. 2024. just Accepted. [Online]. Available: https://doi.org/10.1145/3680545 Sai S, Garg A, Chamola V. Navigating the metaverse: a comprehensive analysis of consumer electronics prospects and challenges. ACM Trans. Internet Technol. 2024. just Accepted. [Online]. Available: https://​doi.​org/​10.​1145/​3680545
237.
go back to reference Sai S, Prasad M, Garg A, Chamola V. Synergizing digital twins and metaverse for consumer health: a case study approach. IEEE Transactions on Consumer Electronics. 2024;70(1):2137–44.CrossRef Sai S, Prasad M, Garg A, Chamola V. Synergizing digital twins and metaverse for consumer health: a case study approach. IEEE Transactions on Consumer Electronics. 2024;70(1):2137–44.CrossRef
242.
go back to reference Roberts A, Engel J, Raffel C, Simon I, Hawthorne C. Musicvae: creating a palette for musical scores with machine learning. Magenta. 2018. Roberts A, Engel J, Raffel C, Simon I, Hawthorne C. Musicvae: creating a palette for musical scores with machine learning. Magenta. 2018.
243.
go back to reference Abdrabuh EAA. AI-synthesized speech: generation and detection. State University of New York at Albany; 2022. Abdrabuh EAA. AI-synthesized speech: generation and detection. State University of New York at Albany; 2022.
244.
go back to reference Leongómez JD, Pisanski K, Reby D, Sauter D, Lavan N, Perlman M, Varella Valentova J. Voice modulation: from origin and mechanism to social impact. 2021. p. 20200386. Leongómez JD, Pisanski K, Reby D, Sauter D, Lavan N, Perlman M, Varella Valentova J. Voice modulation: from origin and mechanism to social impact. 2021. p. 20200386.
245.
go back to reference Sai S, Prasad M, Upadhyay A, Chamola V, Herencsar N. Confluence of digital twins and metaverse for consumer electronics: real world case studies. IEEE Transactions on Consumer Electronics. 2024;70(1):3194–203.CrossRef Sai S, Prasad M, Upadhyay A, Chamola V, Herencsar N. Confluence of digital twins and metaverse for consumer electronics: real world case studies. IEEE Transactions on Consumer Electronics. 2024;70(1):3194–203.CrossRef
246.
go back to reference Sai S, Goyal D, Chamola V, Sikdar B. Consumer electronics technologies for enabling an immersive metaverse experience. IEEE Consumer Electronics Magazine. 2024;13(3):16–24.CrossRef Sai S, Goyal D, Chamola V, Sikdar B. Consumer electronics technologies for enabling an immersive metaverse experience. IEEE Consumer Electronics Magazine. 2024;13(3):16–24.CrossRef
247.
go back to reference Liang C, Du H, Sun Y, Niyato D, Kang J, Zhao D, Imran MA. Generative AI-driven semantic communication networks: architecture, technologies and applications. 2023. arXiv preprint arXiv:2401.00124 Liang C, Du H, Sun Y, Niyato D, Kang J, Zhao D, Imran MA. Generative AI-driven semantic communication networks: architecture, technologies and applications. 2023. arXiv preprint arXiv:​2401.​00124
248.
go back to reference Li C. System design and platform implementation for AI-based metaverse music. In: Proceedings of the 2nd International Conference on Bigdata Blockchain and Economy Management, ICBBEM 2023, May 19–21, 2023. Hangzhou, China; 2023. Li C. System design and platform implementation for AI-based metaverse music. In: Proceedings of the 2nd International Conference on Bigdata Blockchain and Economy Management, ICBBEM 2023, May 19–21, 2023. Hangzhou, China; 2023.
249.
go back to reference Li B, Zhao Y, Zhelun S, Sheng L. Danceformer: music conditioned 3D dance generation with parametric motion transformer. Proceedings of the AAAI Conference on Artificial Intelligence. 2022;36(2):1272–9.CrossRef Li B, Zhao Y, Zhelun S, Sheng L. Danceformer: music conditioned 3D dance generation with parametric motion transformer. Proceedings of the AAAI Conference on Artificial Intelligence. 2022;36(2):1272–9.CrossRef
250.
go back to reference Höllein L, Cao A, Owens A, Johnson J, Nießner M. Text2room: extracting textured 3D meshes from 2D text-to-image models. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023. pp. 7909–20. Höllein L, Cao A, Owens A, Johnson J, Nießner M. Text2room: extracting textured 3D meshes from 2D text-to-image models. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023. pp. 7909–20.
251.
go back to reference Paliwal R. Generative artificial intelligence in metaverse era. Int Res J Modernization Eng Technol Sci. 2023;5(09). Paliwal R. Generative artificial intelligence in metaverse era. Int Res J Modernization Eng Technol Sci. 2023;5(09).
252.
go back to reference Kanematsu H, Fukumura Y, Barry DM, Sohn SY, Taguchi R. Multilingual discussion in metaverse among students from the usa, korea and japan. In,. Knowledge-Based and Intelligent Information and Engineering Systems: 14th International Conference, KES. Cardiff, UK, September 8–10, 2010, Proceedings, Part IV 14. Springer. 2010;2010:200–9. Kanematsu H, Fukumura Y, Barry DM, Sohn SY, Taguchi R. Multilingual discussion in metaverse among students from the usa, korea and japan. In,. Knowledge-Based and Intelligent Information and Engineering Systems: 14th International Conference, KES. Cardiff, UK, September 8–10, 2010, Proceedings, Part IV 14. Springer. 2010;2010:200–9.
253.
go back to reference Jot J-M, Audfray R, Hertensteiner M, Schmidt B. Immersive and 3D audio: from architecture to automotive (I3DA). IEEE. 2021;2021:1–15. Jot J-M, Audfray R, Hertensteiner M, Schmidt B. Immersive and 3D audio: from architecture to automotive (I3DA). IEEE. 2021;2021:1–15.
254.
go back to reference Clancy M. Artificial intelligence and music ecosystem. CRC Press. 2022. Clancy M. Artificial intelligence and music ecosystem. CRC Press. 2022.
255.
go back to reference Onderdijk KE, Bouckaert L, Van Dyck E, Maes P-J. Concert experiences in virtual reality environments. Virtual Reality. 2023;27(3):2383–96.CrossRef Onderdijk KE, Bouckaert L, Van Dyck E, Maes P-J. Concert experiences in virtual reality environments. Virtual Reality. 2023;27(3):2383–96.CrossRef
256.
go back to reference Tabak C. Intelligent music applications: innovative solutions for musicians and listeners. Uluslararası Anadolu Sosyal Bilimler Dergisi. 2024;7(3):752–73.CrossRef Tabak C. Intelligent music applications: innovative solutions for musicians and listeners. Uluslararası Anadolu Sosyal Bilimler Dergisi. 2024;7(3):752–73.CrossRef
257.
go back to reference Chen C, Zhang KZ, Chu Z, Lee M. Augmented reality in the metaverse market: the role of multimodal sensory interaction. Internet Res. 2024;34(1):9–38.CrossRef Chen C, Zhang KZ, Chu Z, Lee M. Augmented reality in the metaverse market: the role of multimodal sensory interaction. Internet Res. 2024;34(1):9–38.CrossRef
258.
go back to reference Raghuvanshi N, Lin MC. Physically based sound synthesis for large-scale virtual environments. IEEE Comput Graph Appl. 2007;27(1):14–8.CrossRef Raghuvanshi N, Lin MC. Physically based sound synthesis for large-scale virtual environments. IEEE Comput Graph Appl. 2007;27(1):14–8.CrossRef
259.
go back to reference Park B, Namkung K, Pan Y. Could you evaluate sounds in a virtual environment? Evaluation components of auditory experience in a metaverse environment. Appl Sci. 2023;13(19):10991.CrossRef Park B, Namkung K, Pan Y. Could you evaluate sounds in a virtual environment? Evaluation components of auditory experience in a metaverse environment. Appl Sci. 2023;13(19):10991.CrossRef
260.
go back to reference Kulkarni C, Druga S, Chang M, Fiannaca A, Cai C, Terry M. A word is worth a thousand pictures: prompts as AI design material. 2023. arXiv preprint arXiv:2303.12647 Kulkarni C, Druga S, Chang M, Fiannaca A, Cai C, Terry M. A word is worth a thousand pictures: prompts as AI design material. 2023. arXiv preprint arXiv:​2303.​12647
261.
go back to reference Zhang C, Zhang C, Zhang M, Kweon IS. Text-to-image diffusion models in generative AI: a survey. 2023. arXiv preprint arXiv:2303.07909 Zhang C, Zhang C, Zhang M, Kweon IS. Text-to-image diffusion models in generative AI: a survey. 2023. arXiv preprint arXiv:​2303.​07909
262.
go back to reference Urban Davis J, Anderson F, Stroetzel M, Grossman T, Fitzmaurice G. Designing co-creative AI for virtual environments. In: Proceedings of the 13th Conference on Creativity and Cognition. 2021. pp. 1–11. Urban Davis J, Anderson F, Stroetzel M, Grossman T, Fitzmaurice G. Designing co-creative AI for virtual environments. In: Proceedings of the 13th Conference on Creativity and Cognition. 2021. pp. 1–11.
263.
go back to reference Jeong Y, Lee Y, Byun G, Moon J. Navigating the creation of immersive learning environments in roblox: integrating generative AI for enhanced simulation-based learning. Immersive Learn Res Pract. 2024;16–19. Jeong Y, Lee Y, Byun G, Moon J. Navigating the creation of immersive learning environments in roblox: integrating generative AI for enhanced simulation-based learning. Immersive Learn Res Pract. 2024;16–19.
265.
go back to reference Díaz J, Saldaña C, Avila C. Virtual world as a resource for hybrid education. International Journal of Emerging Technologies in Learning (iJET). 2020;15(15):94–109.CrossRef Díaz J, Saldaña C, Avila C. Virtual world as a resource for hybrid education. International Journal of Emerging Technologies in Learning (iJET). 2020;15(15):94–109.CrossRef
266.
go back to reference Regenwetter L, Nobari AH, Ahmed F. Deep generative models in engineering design: a review. Journal of Mechanical Design. 2022;144(7):071704.CrossRef Regenwetter L, Nobari AH, Ahmed F. Deep generative models in engineering design: a review. Journal of Mechanical Design. 2022;144(7):071704.CrossRef
268.
go back to reference Divya V, Mirza AU. Transforming content creation: the influence of generative AI on a new frontier. EXPLORING THE FRONTIERS OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING TECHNOLOGIES. 2024. p. 143. Divya V, Mirza AU. Transforming content creation: the influence of generative AI on a new frontier. EXPLORING THE FRONTIERS OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING TECHNOLOGIES. 2024. p. 143.
269.
go back to reference Niu X, Feng W. Immersive entertainment environments-from theme parks to metaverse. In: International Conference on Human-Computer Interaction. Springer; 2022. pp. 392–403. Niu X, Feng W. Immersive entertainment environments-from theme parks to metaverse. In: International Conference on Human-Computer Interaction. Springer; 2022. pp. 392–403.
270.
go back to reference Mitra DS. Generative AI and metaverse: companionship and assisted living for elderly people. Available at SSRN 4843464. 2023. Mitra DS. Generative AI and metaverse: companionship and assisted living for elderly people. Available at SSRN 4843464. 2023.
271.
go back to reference Shen B, Tan W, Guo J, Zhao L, Qin P. How to promote user purchase in metaverse? A systematic literature review on consumer behavior research and virtual commerce application design. Applied Sciences. 2021;11(23):11087.CrossRef Shen B, Tan W, Guo J, Zhao L, Qin P. How to promote user purchase in metaverse? A systematic literature review on consumer behavior research and virtual commerce application design. Applied Sciences. 2021;11(23):11087.CrossRef
272.
go back to reference Kliestik T, Novak A, Lăzăroiu G. Live shopping in the metaverse: visual and spatial analytics, cognitive artificial intelligence techniques and algorithms, and immersive digital simulations. Linguistic and Philosophical Investigations. 2022;21:187–202.CrossRef Kliestik T, Novak A, Lăzăroiu G. Live shopping in the metaverse: visual and spatial analytics, cognitive artificial intelligence techniques and algorithms, and immersive digital simulations. Linguistic and Philosophical Investigations. 2022;21:187–202.CrossRef
273.
go back to reference McEwan M. Taking motion controls to the next level: interactions in the metaverse. 2023. McEwan M. Taking motion controls to the next level: interactions in the metaverse. 2023.
274.
go back to reference Wang Y, Wang L, Siau KL. Human-centered interaction in virtual worlds: a new era of generative artificial intelligence and metaverse. Int J Human–Comput Interact. 2024. pp. 1–43. Wang Y, Wang L, Siau KL. Human-centered interaction in virtual worlds: a new era of generative artificial intelligence and metaverse. Int J Human–Comput Interact. 2024. pp. 1–43.
275.
go back to reference Wang X, Wan Z, Hekmati A, Zong M, Alam S, Zhang M, Krishnamachari B. IoT in the era of generative AI: vision and challenges. 2024. arXiv preprint arXiv:2401.01923 Wang X, Wan Z, Hekmati A, Zong M, Alam S, Zhang M, Krishnamachari B. IoT in the era of generative AI: vision and challenges. 2024. arXiv preprint arXiv:​2401.​01923
276.
go back to reference Di Pietro R, Cresci S. Metaverse: security and privacy issues. In: 2021 Third IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). IEEE. 2021. pp. 281–88. Di Pietro R, Cresci S. Metaverse: security and privacy issues. In: 2021 Third IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). IEEE. 2021. pp. 281–88.
277.
go back to reference Jaber TA. Security risks of the metaverse world. Int J Interact Mobile Technol. 2022;16(13). Jaber TA. Security risks of the metaverse world. Int J Interact Mobile Technol. 2022;16(13).
278.
go back to reference Zhang M, Wei E, Berry R, Huang J. Age-dependent differential privacy. IEEE Trans Inf Theory. 2023. Zhang M, Wei E, Berry R, Huang J. Age-dependent differential privacy. IEEE Trans Inf Theory. 2023.
279.
go back to reference Xu H, Li Z, Li Z, Zhang X, Sun Y, Zhang L. Metaverse native communication: a blockchain and spectrum prospective. In: 2022 IEEE International Conference on Communications Workshops (ICC Workshops). IEEE. 2022. pp. 7–12. Xu H, Li Z, Li Z, Zhang X, Sun Y, Zhang L. Metaverse native communication: a blockchain and spectrum prospective. In: 2022 IEEE International Conference on Communications Workshops (ICC Workshops). IEEE. 2022. pp. 7–12.
280.
go back to reference Barreda-Ángeles M, Hartmann T. Hooked on the metaverse? Exploring the prevalence of addiction to virtual reality applications. Frontiers in Virtual Reality. 2022;3:1031697.CrossRef Barreda-Ángeles M, Hartmann T. Hooked on the metaverse? Exploring the prevalence of addiction to virtual reality applications. Frontiers in Virtual Reality. 2022;3:1031697.CrossRef
281.
go back to reference Illia L, Colleoni E, Zyglidopoulos S. Ethical implications of text generation in the age of artificial intelligence. Business Ethics, the Environment & Responsibility. 2023;32(1):201–10.CrossRef Illia L, Colleoni E, Zyglidopoulos S. Ethical implications of text generation in the age of artificial intelligence. Business Ethics, the Environment & Responsibility. 2023;32(1):201–10.CrossRef
282.
go back to reference Wang P, Song W, Qi H, Zhou C, Li F, Wang Y, Sun P, Zhang Q. Server-initiated federated unlearning to eliminate impacts of low-quality data. IEEE Trans Serv Comput. 2024. Wang P, Song W, Qi H, Zhou C, Li F, Wang Y, Sun P, Zhang Q. Server-initiated federated unlearning to eliminate impacts of low-quality data. IEEE Trans Serv Comput. 2024.
283.
go back to reference Li M, Wan Z, Zou T, Shen Z, Li M, Wang C, Xiao X. Artificial intelligence enabled self-powered wireless sensing for smart industry. Chem Eng J. 2024;492: 152417.CrossRef Li M, Wan Z, Zou T, Shen Z, Li M, Wang C, Xiao X. Artificial intelligence enabled self-powered wireless sensing for smart industry. Chem Eng J. 2024;492: 152417.CrossRef
284.
go back to reference Sun G, Xu Z, Yu H, Chang V. Dynamic network function provisioning to enable network in box for industrial applications. IEEE Trans Ind Inf. 2020;17(10):7155–64.CrossRef Sun G, Xu Z, Yu H, Chang V. Dynamic network function provisioning to enable network in box for industrial applications. IEEE Trans Ind Inf. 2020;17(10):7155–64.CrossRef
285.
go back to reference Sun G, Xu Z, Yu H, Chen X, Chang V, Vasilakos AV. Low-latency and resource-efficient service function chaining orchestration in network function virtualization. IEEE Internet Things J. 2019;7(7):5760–72.CrossRef Sun G, Xu Z, Yu H, Chen X, Chang V, Vasilakos AV. Low-latency and resource-efficient service function chaining orchestration in network function virtualization. IEEE Internet Things J. 2019;7(7):5760–72.CrossRef
286.
go back to reference Sun G, Zhu G, Liao D, Yu H, Du X, Guizani M. Cost-efficient service function chain orchestration for low-latency applications in NFV networks. IEEE Syst J. 2018;13(4):3877–88.CrossRef Sun G, Zhu G, Liao D, Yu H, Du X, Guizani M. Cost-efficient service function chain orchestration for low-latency applications in NFV networks. IEEE Syst J. 2018;13(4):3877–88.CrossRef
287.
go back to reference Ghimire P, Kim K, Acharya M. Generative AI in the construction industry: opportunities & challenges. 2023. arXiv preprint arXiv:2310.04427 Ghimire P, Kim K, Acharya M. Generative AI in the construction industry: opportunities & challenges. 2023. arXiv preprint arXiv:​2310.​04427
288.
go back to reference M. Zhou, V. Abhishek, T. Derdenger, J. Kim, and K. Srinivasan, “Bias in generative AI. 2024. arXiv preprint arXiv:2403.02726 M. Zhou, V. Abhishek, T. Derdenger, J. Kim, and K. Srinivasan, “Bias in generative AI. 2024. arXiv preprint arXiv:​2403.​02726
289.
go back to reference Wang P, Wei Z, Qi H, Wan S, Xiao Y, Sun G, Zhang Q. Mitigating poor data quality impact with federated unlearning for human-centric metaverse. IEEE J Selected Areas Commun. 2023. Wang P, Wei Z, Qi H, Wan S, Xiao Y, Sun G, Zhang Q. Mitigating poor data quality impact with federated unlearning for human-centric metaverse. IEEE J Selected Areas Commun. 2023.
290.
go back to reference De Angelis L, Baglivo F, Arzilli G, Privitera GP, Ferragina P, Tozzi AE, Rizzo C. Chatgpt and the rise of large language models: the new AI-driven infodemic threat in public health. Frontiers in Public Health. 2023;11:1166120.CrossRef De Angelis L, Baglivo F, Arzilli G, Privitera GP, Ferragina P, Tozzi AE, Rizzo C. Chatgpt and the rise of large language models: the new AI-driven infodemic threat in public health. Frontiers in Public Health. 2023;11:1166120.CrossRef
291.
go back to reference Kim JH, Kim J, Park J, Kim C, Jhang J, King B. When chatGPT gives incorrect answers: the impact of inaccurate information by generative AI on tourism decision-making. J Travel Res. 2023;00472875231212996. Kim JH, Kim J, Park J, Kim C, Jhang J, King B. When chatGPT gives incorrect answers: the impact of inaccurate information by generative AI on tourism decision-making. J Travel Res. 2023;00472875231212996.
292.
go back to reference Menell PS, Scotchmer S. Intellectual property law. Handbook of law and economics. 2007;2:1473–570.CrossRef Menell PS, Scotchmer S. Intellectual property law. Handbook of law and economics. 2007;2:1473–570.CrossRef
293.
go back to reference Hacker P, Engel A, Mauer M. Regulating chatGPT and other large generative AI models. In: Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency. 2023, pp. 1112–23. Hacker P, Engel A, Mauer M. Regulating chatGPT and other large generative AI models. In: Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency. 2023, pp. 1112–23.
294.
go back to reference Rajput RS, Shah S, Neema S. Content moderation framework for the LLM-based recommendation systems. Journal of Computer Engineering and Technology (IJCET). 2023;14(3):104–17. Rajput RS, Shah S, Neema S. Content moderation framework for the LLM-based recommendation systems. Journal of Computer Engineering and Technology (IJCET). 2023;14(3):104–17.
295.
go back to reference Kilovaty I. Hacking generative AI. Loyola of Los Angeles Law Review, vol. 58. 2025. Kilovaty I. Hacking generative AI. Loyola of Los Angeles Law Review, vol. 58. 2025.
Metadata
Title
A Comprehensive Survey on Generative AI for Metaverse: Enabling Immersive Experience
Authors
Vinay Chamola
Siva Sai
Animesh Bhargava
Ashis Sahu
Wenchao Jiang
Zehui Xiong
Dusit Niyato
Amir Hussain
Publication date
04-09-2024
Publisher
Springer US
Published in
Cognitive Computation
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-024-10342-9

Premium Partner